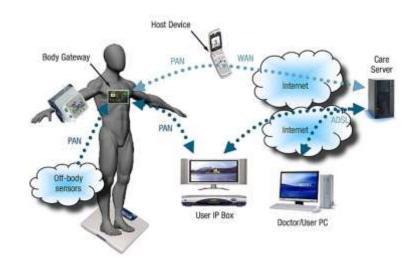


面向高级医疗应用的恩智浦射频功率解决方案

FTF-MHW-N1999

SONG DI 2016年9月29日


议程

- 医疗领域的射频功率应用
- 医疗领域的射频应用历史简介
- · 射频医疗技术和LDMOS的优势
- 微波消融
- 美容治疗
- 透热疗法
- 面向医疗应用的恩智浦射频功率解决方案

但在开始之前…

在该讲座中,我们不会涉及射频在病人监护或其他通信应用中的使用

我们仅讨论手术和无创伤美容应用,在这些应用中射频功率技术发挥了关键作用。

射频功率

空中无线通信

- 蜂窝通信
- 无线电和电视广播
- 雷达和空中交通管制
- 对讲机通讯

大功率 生成

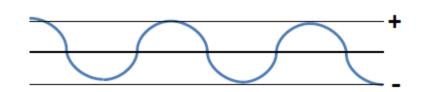
- 激光和等离子体生成
- 粒子加速
- 医疗
- 工业焊接、干燥、加热

使用射频功率的医疗应用

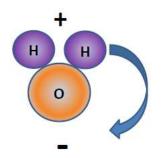
医疗领域的射频应用历史简介

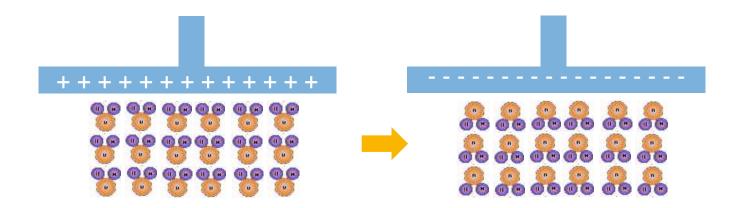
医疗领域的射频应用历史简介

- · 1891年,Nikola Tesla指出高频率电流可在人体内产生热量,并建议将其用于医疗领域
- · D'Arsonval发现,高于10kHz的高频电流不会导致触电的 生理反应,但会发热
- 1899年,von Zaynek发现人体组织中的热量产生率与频率密切相关。



1920年的透热疗法




高频电流是如何加热材料的? 以915 MHz为例

交流电波在正极和负极之间每秒转换9.15亿次。

每次当微波转换极性时,水偶极子翻转。 这种运动导致水分子摩擦,从而产生热量。

哪些频段可用?

- 工业、科学和医疗(ISM)频段是国际上专为除电信之外的工业、科学和医疗用途的射频能量使用保留的频段。
- 未经授权许可的无线电操作通常被允许使用这些频段。不需要政府许可。

ISM频段	波长
6.78 MHz* (6.78 MHz ±15kHz)	44米/48码
13.56 MHz (13.56 MHz ±15kHz)	22米/24码
27 MHz (27.12 MHz ±163 kHz)	11米/12码
41 MHz (40.68 MHz ±20 kHz)	7米/8码
434 MHz* (433.92 MHz ±870 kHz)	69厘米/2.25英尺
915 MHz (902-928 MHz)	33厘米/1英尺
2.45 GHz (2400-2500 MHz)	12厘米/4.8英寸

医疗领域中的射频功率技术

- 真空管, 主要是磁控管, 例如在微波炉中使用的磁控管
- · **固态器件**,例如双极结型晶体管(BJT)和垂直 MOSFET(VMOS),是最早用于医疗应用的固态器件,只 能在低频率下工作
- · LDMOS射频功率晶体管的产量目前不断增加

当时…

现在…

晶体管相对于磁控管的优势

1.精确控制

2.简单易用

3.高可靠性

4.物理尺寸和重量

LDMOS晶体管相对于老式晶体管 (BJT和VMOS) 的优势

相对于VMOS的优势

- · 在高于100 MHz的频率下性能不会 迅速降低
- 良好的热性能
- 高增益
- · 封装不含BeO (禁用材料)

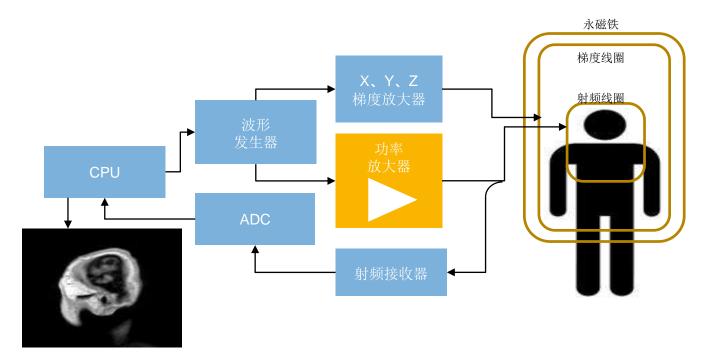
相对于BJT的优势

- 高耐用性
- 良好的热性能
- 高增益
- · 封装不含BeO
- 很多双极性晶体管已经停产

BeO:氧化铍

MRI核磁共振成像

MRI - 核磁共振成像


· MRI扫描仪利用来自以适当共振频率施加的 射频磁场的能量,检测人体内的激发态氧 原子(水分子)发射的射频信号

• 1.5 T MRI: 工作频率为 61-64 MHz

• 3 T MRI: 工作频率为 123-128 MHz

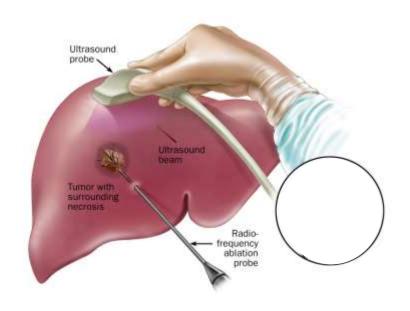
MRI已经使用射频晶体管长达数十年,目前 正在迁移到LDMOS

微波消融

消融术

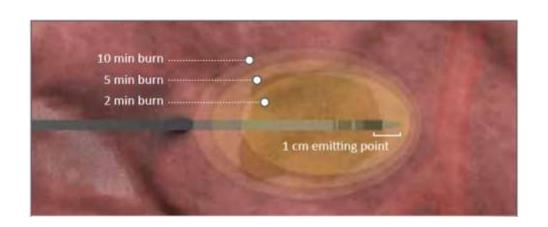
消融术是减小人体组织的大小或通过外科手术去除人 体组织的过程。

典型应用


- ✓ 去除 皮肤损坏
- ✓ 缩小 肺部、肝脏、肾、骨中的肿瘤大小
- ✓ 破坏 心脏中的异常电传导以缓解症状,这些电传导 会导致心律失常或脊神经根疾病

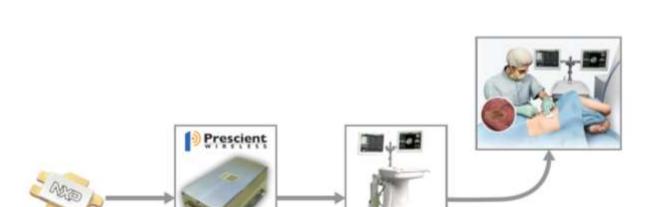
消融的类型

- · 射频(RF)消融 一目前最常用
 - -频率: 从数百kHz至5MHz
- 微波消融 一新兴
 - 相对比较新,工作频率为915MHz或2456MHz

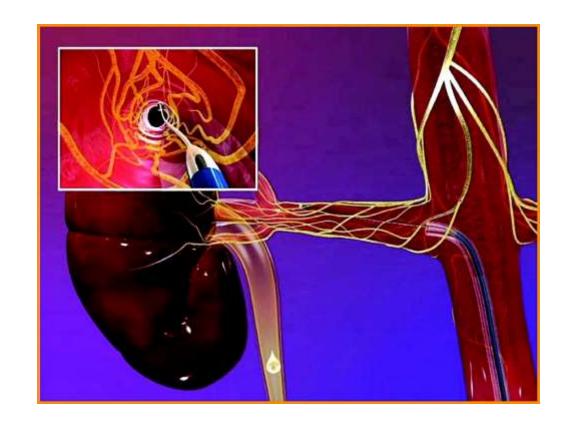


微波消融

微波消融相对于射频消融的优势:


- 更高的温度(更高的功率密度)
- 更快的消融速度
- 能够使用多个发热电极(天线)
- 更少的操作性疼痛
- · 实现更深的渗透, 高频率 能够穿过所有类型的人体组织
- 更大的肿瘤消融体积

Neuwave的消融系统基于Prescient无线PA模块: 140 W消融系统,频率为2456 MHz



肾脏去神经支配疗法(RDN)

最新和最有前景的射频功率应用之一

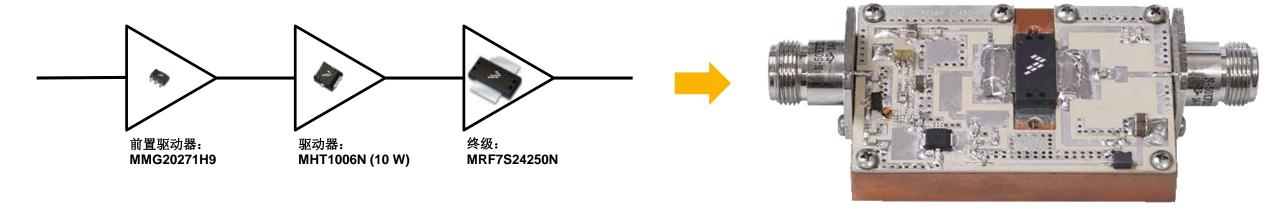
由于多种原因,其他任何高血压治疗方法 (包括改变生活方式或药物) 对于有些患者 都无法奏效时,这种疗法有可能帮助他们降 低血压

肾脏去神经支配疗法的工作原理

• 右侧的小导管放置在股动脉中,以便通过肾动脉到达神经

• 将能量传输到动脉,通过放置在肾脏中的导管尖传输少量 射频功率,对神经进行消融

• 能量通过血管壁传输,以损坏肾神经


经过这个治疗过程,患者能够在几小时内恢复活动, 并在后一天出院

恩智浦微波消融解决方案

示例: 250 W, 频率为2.45 GHz

所有消融解决方案:

	面向医疗应用的恩智浦射频功率解决方案				
医疗频率 参考电路		功率(W)	效率 (%)	增益(dB)	
915 MHz	MRF8VP13350N	350	55	21	
2.45 GHz	MRF7S24250N	250	55	15	
	MRF7S24250N 3级	250	51	44	
	MRF24300N	300	60	15	

皮肤治疗和医用激光

美容治疗

射频功率在市场上大量用于皮肤治疗

- 激光器 (使用射频作为能量来源)
- 射频功率直接应用于皮肤
- 以上两者的组合
- 射频 + 强脉冲光(IPL)的组合

* Thermage也是Solta Medical的注册商标。

医用激光

- 射频用于激发等离子体,转化为激光
- 应用:
 - 皮肤外科
 - 伤疤
 - 抗老化、防皱纹
 - -色素性病变
 - -皮肤紧致/嫩肤

DEKA的Smartxide²基于EI.En PA设计 使用MRFE6VP61K25H, 它是恩智浦提供的1250W晶体管

https://www.youtube.com/watch?v=ZVLLS__RbIM

激光治疗毛细血管扩张

对于那些鼻子、脸颊或下巴布满小血管的患者 而言,激光疗法具有极好的疗效

激光机是微调技术发展进步的结果

- 需要患者佩戴一副护目镜
- 发射短脉冲激光
- "嘶嘶封住" 小静脉且不会在表层皮肤上留 下疤痕
- 患者会觉得稍微不舒服,但不会像预期的那 么糟

激光治疗毛细血管扩张过程图片

Honkon Medical

Honkon是亚太地区的一家领先医疗设备制造商,在他们的Thermage机器中使用了射频器件

使用射频的另一种方式是从内加热皮肤和收缩胶原蛋白

Honkon-M600E+

强脉冲光(IPL) + 射频

IPL+RF方法在多次美容治疗中使用,包括:

- 脱毛
- 去疤
- 改善肤色等

实践证明,IPL和RF结合使用比其作为射频能量的附加手段更加有效,同时还带来了嫩肤的效果。

透热疗法

透热疗法

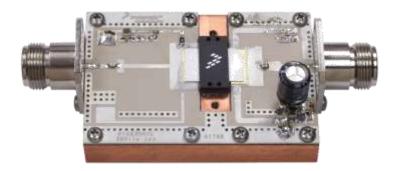
- 透热疗法是射频功率用于加热的另一个 实例
- 医疗用途: 关节炎、背痛、肌肉痉挛、 肌炎、神经痛、扭伤和拉伤、腱鞘炎、 肌腱炎、骨损伤、滑囊炎
- 透热疗法的类型
 - 短波透热疗法 (13.56 MHz、27 MHz和40 MHz)
 - 微波透热疗法 (915 MHz或2.45 GHz)

透热疗法的工作原理

- 透热疗法是一种通过使用射频能源生热的方 法,产生的热量可以深入目标人体组织
- •可以到达皮肤下最多2英寸
- 透热疗法实际上并不直接加热,而是产生电 流, 让人体组织本身内部产生热量
- 随着热量增加,血流也会增加,这样可以改 进僵硬关节和结缔组织的灵活性

治疗过程中, 患者会感觉发热或刺痛。

恩智浦医疗解决方案



恩智浦医疗解决方案

ISM频段	医疗应用	面向医疗应用的恩智浦射频功率参考电路			
		晶体管	Pout (W)	Eff (%)	增益(dB)
12 MU≂	射频消融 嫩肤 透热疗法	MRFE6VP61K25H	1350	75	23.5
13 IVITZ		MRFE6VP6300H	300	80	36
27 MHz	嫩肤 透热疗法	MRFE6VP61K25H	1200	81	27
40 MHz 嫩肤 透热疗法	MRFE6VP61K25H	1300	85	26	
	MRFE6VP6300H	350	85	23	
		MRFE6VP5150N	180	82	25
915 MHz	微波消融 透热疗法	MRF8VP13350N	350	55	21
2.45 GHz 微波消融 肾脏去神经支配疗法	MRF24300N	300	60	15	
	MRF7S24250N	250	55	15	
		MRF7S24250N 3级	250	51	44

为什么选择恩智浦LDMOS晶体

- ✔ 轻重量和小体积
- ✔ 高耐用性
- ✓ 高增益
- ✓ 高效率
- ✓ 高热性能
- ✔ 持续供应计划

SECURE CONNECTIONS FOR A SMARTER WORLD

版权声明

恩智浦、恩智浦徽标、恩智浦"智慧生活,安全连结"、CoolFlux、EMBRACE、GREENCHIP、HITAG、I2C BUS、ICODE、JCOP、LIFE VIBES、MIFARE、MIFARE Classic、MIFARE DESFire、MIFARE Plus、MIFARE Flex、MANTIS、MIFARE ULTRALIGHT、MIFARE4MOBILE、MIGLO、NTAG、ROADLINK、SMARTLX、SMARTMX、STARPLUG、TOPFET、TrenchMOS、UCODE、飞思卡尔、飞思卡尔徽标、AltiVec、C 5、CodeTEST、CodeWarrior、ColdFire、ColdFire+、C Ware、高能效解决方案徽标、Kinetis、Layerscape、MagniV、mobileGT、PEG、PowerQUICC、Processor Expert、QorlQ、QorlQ Qonverge、Ready Play、SafeAssure、SafeAssure徽标、StarCore、Symphony、VortiQa、Vybrid、Airfast、BeeKit、BeeStack、CoreNet、Flexis、MXC、Platform in a Package、QUICC Engine、SMARTMOS、Tower、TurboLink和UMEMS是NXP B.V.的商标。所有其他产品或服务名称均为其各自所有者的财产。ARM、AMBA、ARM Powered、Artisan、Cortex、Jazelle、Keil、SecurCore、Thumb、TrustZone和µVision是ARM Limited(或其子公司)在欧盟和/或其他地区的注册商标。ARM7、ARM9、ARM11、big.LITTLE、CoreLink、CoreSight、DesignStart、Mali、mbed、NEON、POP、Sensinode、Socrates、ULINK和Versatile是ARM Limited(或其子公司)在欧盟和/或其他地区的商标。保留所有权利。Oracle和Java是Oracle和/或其关联公司的注册商标。Power Architecture和Power.org文字标记、Power和Power.org徽标及相关标记是Power.org的授权商标和服务标记。© 2015–2016 NXP B.V.

