
C-Ware Application Design and
Building Guide

C-WARE SOFTWARE TOOLSET, VERSION 2.4

CSTADBG-UG/D
REV 01

© 2004 Freescale Semiconductor, Inc. All rights reserved.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
C-3e, C-5, C-5e, C-Port, and C-Ware are also trademarks of Freescale Semiconductor. All
other product or service names are the property of their respective owners.

No part of this documentation may be reproduced in any form or by any means or used to
make any derivative work (such as translation, transformation, or adaptation) without
written permission from Freescale.

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by that
customer’s technical experts. Freescale Semiconductor does not convey any license under
its patent rights nor the rights of others. Freescale Semiconductor products are not
designed, intended, or authorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyers purchase or
use Freescale Semiconductor products for any such unintended or unauthorized
application, Buyers shall indemnify and hold Freescale Semiconductor and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

FREESCALE SEMICONDUCTOR
TABLE OF CONTENTS
About This Guide
Guide Overview . 11
Using PDF Documents . 12
Guide Conventions . 13
References to CST Pathnames . 14
Revision History . 15
Related Product Documentation . 16

CHAPTER 1 CST Application Overview
Overview . 1
Functional Distribution . 3

SDP . 3
CPRC . 4
XPRC . 5
Host Processor . 7

CHAPTER 2 Application Design and Coding Options
Overview . 9
C Coding Recommendations . 10

Suppress Automatic Inlining of Functions . 10
Avoid Branches . 11

Example 1 . 11
Example 2 . 11

Use the Test and Set Operation for Locking Support . 12
Avoid Globals, File Statics and Pointers . 13
Avoid ‘Volatile’ Storage Qualifier . 14
Avoid Shared and Global DMEM Accesses . 15
Read the Generated Code . 15
Avoid Literal Masking of Control Registers . 16
Avoid Function Calls . 17
Functions Take a Maximum of Four Arguments . 17

2 TABLE OF CONTENTS
Avoid Loads/Stores to Local DMEM After Initiating DMA . 17
Avoid Serializing Tasks . 17

Tokens Versus Semaphores . 17
Tokens . 17
Semaphores . 18

Recirculation . 20
Benefits . 21
Scenarios . 22
Elasticity . 22

Aggregation . 24
Queue Sharing . 24

Uses and Limitations . 24
Costs and Benefits . 24
Code Examples . 25

Shared DMEM-Resident Data Structures . 25
Costs and Benefits . 25
Code Examples . 25

Shared DMEM . 26
Software Tokens . 26

Program 1 -- Waiting For Token . 26
Program 2 -- Owns Token . 26

Software Semaphores . 26
IMEM Optimization . 27

Diagnosing Memory Problems . 29
Table Design and Table Building . 31

Indexed Storage . 31
Exact Matches . 31

Overview . 31
Design Tradeoffs and Performance . 32

Variable Prefix Matches . 33
VP Trie - Data Table Chain . 34
8-Bit Index - VP Trie - Data . 34
16-Bit Index - VP Trie - Data . 34
Design Tradeoffs and Performance . 35

Partitioning An XPRC Program For Initialization . 35
Partitioning the Program . 36

Coding the Init Phase Program . 36
FREESCALE SEMICONDUCTOR

TABLE OF CONTENTS 3
Coding the Main Phase Program . 36
Utilizing Multiple Contexts in Main Phase Program . 37
Allocating Queues . 37
Accessing the TLU . 37

Coding the Package Description File . 37
Passing User Data From Init Phase Program to the Main Phase Program . 38
Address Resolution Among XPRC, CPRC, and XP Primary Bootstrap . 39

Exporting a Value . 40
DCPEXPORT Macro . 40
DCPEXPORT_VALUE Macro . 40

Importing a Value . 41
DCPIMPORT Macro . 41
 DCPIMPORT_WEAK Macro . 41

Valid API Routines to Call From an Initialization Phase Program . 42
Kernel Services . 42
Buffer Services . 42
Queue Services . 43
Protocol Services . 43
PDU Services . 43
Fabric Services . 43
Table Services . 43

Design Tradeoffs . 44

CHAPTER 3 Application Directory Structure and Build System Conventions
Overview . 45
Application Directory Structure . 46
Structure Requirements for File and Directory Names . 47

Directory Keywords . 47
TAGS Support . 48

Makefiles . 49
Directory Example for Applications . 50
File Placement Guidelines . 52
Object File Generation . 53

Object Directory Location . 53
Environment Variables for Object File Generation . 54
Variants . 56
Dependency Checking . 57
FREESCALE SEMICONDUCTOR

4 TABLE OF CONTENTS
Using the Build System . 58
Setting Environment Variables . 58

Setting Variables Manually . 58
Setting Variables Automatically . 59

CST’s Provided Application-Level Build Targets . 60
CST’s Provided Make Include Files . 61
Additional Makefile Functionality . 63

Summary of Build System Requirements and Recommendations . 63
Build System Directory Requirements for Applications . 64
Naming Conventions . 64
 . 65

Build System Checklist . 65

CHAPTER 4 Building and Packaging An Application
Overview . 67
About Building a C-Ware Application . 68
Environment Variables . 70

Using the ‘sv’ Script . 70
Using the ‘make’ Tool . 70

Makefiles . 71
Targets . 72
Current Directory for Running Make . 73

Using the C-Ware Compiler . 74
Compiler Support for Different Network Processors . 75
Compiling a Program Targeted for the CPRC . 76
Compiling a Program Targeted for the XPRC . 77
Linker Recommendation . 78
Packaging and Loading An Application . 79
About the dcpPackage Tool, Package Description Files, and Package Files . 79
Understanding NP Application Configurations . 80

XPRC Executable . 80
CPRC Executables . 80
Examples of Application Configuration . 80

Using the ‘dcpPackage’ Tool . 81
Building a Package . 81

Purpose of the Package Description File . 81
Sample Package Description File . 82
FREESCALE SEMICONDUCTOR

TABLE OF CONTENTS 5
Package Description Statements . 84
Specifying the XPRC Init and Main Phase Executables . 86
No Overlap of Primary Bootstrap . 90
Specifying a USES Clause . 91

Reporting the Contents of a Package File . 92
Listing of Command Line Switches . 92

RC Interface Code . 93
Inclusion in a NP Package File . 93
Run-Time Activity . 93

How the XP Starts . 94
Loading and Reloading the CPRCs . 96

CPRC Life Cycle . 96
State of Channel Processor DMEM After Reloading the CPRC . 97

APPENDIX A Offline Table Building Libraries
Using Offline Table Building Libraries . 99

Workflow to Build a Program that Uses the OLTBLs . 100
Hardware-Targeted NP Applications That Use OLTBL . 101
Structure of an OLTBL Client Program . 102

Source Files . 102
Command Line Parsing . 102
Routines Defined in the OLTBL Library . 103
Sample Offline Table Building Programs . 103
Structure of OLTBL Client Program . 104
Preempting Automatic Assignment . 106
Calling tsRestoreTLU() . 106

Package Components . 106

Index . 109
FREESCALE SEMICONDUCTOR

6 TABLE OF CONTENTS
FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
CSTADBG-UG/D

REV 01
FIGURES
1 SDP Configuration and Data Flows for Bit-Oriented and Byte-Oriented Recirculations 21
2 Recirculated Traffic Routed to an Unused Channel Processor . 23
3 C-Ware Application Building Process . 68
4 Sample Package Description File, Ethernet Switch Application . 83
5 Demonstration of Package Description File Rules for Loading Channel Processors 87
6 Sample Package Description File, XP Init and Main Phase Programs 89
7 Sample Package Description File, Multiple XP Init Phase Programs 89
8 Sample Package Description File, USES Clause and Identification Strings 91
9 Sample Output from ‘dcpPackage -l’ Command Line . 92
10 Typical Code to Perform Table Building . 105
CSTADBG-UG/D REV 01

8 FIGURES
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
CSTADBG-UG/D

REV 01
TABLES
1 Navigating Within a PDF Document . 13
2 C-Ware Application Design and Building Guide Revision History . 15
3 C-Port Silicon and CST Documentation Set . 16
1 Resource Usage of Hash-Trie-Key Tables With Different Hash Table Sizes 33
2 Resource Usage of Table Chain Types With Different Lookup Index Sizes 35
3 Build System Terminology. 46
4 Standard Makefile Targets . 49
5 Directory Structure Naming Hierarchy for Applications . 51
6 Directories Containing Files Generated by Build System . 53
7 Environment Variables Required by the Build System . 55
8 Build Targets Defined in CST-Provided Make Include Files . 60
9 CST-Provided Make Include Files . 61
10 Requirements of CST Applications . 64
11 Naming Conventions/Requirements of CST Applications . 64
12 Checklist of Build System Requirements of CST Applications . 65
13 Standard Makefile Targets . 72
14 Contents of the Package Header. 95
15 Offline Table Building Library Routines. 103
16 Locations of Files in OLTBL Package . 107
CSTADBG-UG/D REV 01

10 TABLES
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
CSTADBG-UG/D

REV 01
ABOUT THIS GUIDE
Guide Overview The C-Ware Application Design and Building Guide describes several tools that are
included with the C-Ware Software Toolset (CST) and that allow you to build executable
programs targeted for a C-Port Network Processor (NP) and for the CST’s C-Ware Simulator.

This guide is primarily intended for software application developers who must produce
communication applications that run on a C-Port NP, assuming the reader’s basic
understanding of the C-5 NP architecture and the CST’s development tools, as
documented in the CST documentation set listed in Table 3 on page 16.

This guide is organized as follows :

• Chapter 1 provides an overview of the structure of a CST application as it relates to the
Build System structure of the C-Ware Software Toolset and the C-Port Network
Processor architecture.

• Chapter 2 describes "design" approaches for C-coding and compiling an application
within the CST build system structure and also for partitioning and packaging it for
maximal implementation of the C-Port Network Processor.

• Chapter 3 describes specific directory structure requirements and build system
conventions for using the Makefile build system utility within the CST.

• Chapter 4 describes how the C-Ware compiler and the dcpPackage tool work
together to support partitioning an application into separate, dynamically loadable
initialization executables and main processing executables. It also explains why and
how to use the dcpPackage tool for producing package files. A package file contains
all software and data for the application that is loaded into a C-Port NP.

• Appendix A describes the C-Ware Software Toolset’s special table-building tool, the
Offline Table Building Library, for building routing and switching tables used by your
NP-based network application. It also provides additional details about key modules in
the Main Phase program.
CSTADBG-UG/D REV 01

12 ABOUT THIS GUIDE
Using PDF Documents Electronic documents are provided as PDF files. Open and view them using the Adobe®
Acrobat® Reader application, version 3.0 or later. If necessary, download the Acrobat
Reader from the Adobe Systems, Inc. web site:

http://www.adobe.com/prodindex/acrobat/readstep.html

PDF files offer several ways for moving among the document’s pages, as follows:

• To move quickly from section to section within the document, use the Acrobat
bookmarks that appear on the left side of the Acrobat Reader window. The bookmarks
provide an expandable ‘outline’ view of the document’s contents. To display the
document’s Acrobat bookmarks, press the ‘Display both bookmarks and page’ button
on the Acrobat Reader tool bar.

• To move to the referenced page of an entry in the document’s Contents or Index, click
on the entry itself, each of which is “hot linked.”

• To follow a cross-reference to a heading, figure, or table, click the blue text.

• To move to the beginning or end of the document, to move page by page within the
document, or to navigate among the pages you displayed by clicking on hyperlinks,
use the Acrobat Reader navigation buttons shown in this figure:

Beginning
of document End of document

Next pagePrevious page

Previous or next hyperlink
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

www.adobe.com/prodindex/acrobat/readstep.html

Guide Conventions 13
Table 1 summarizes how to navigate within an electronic document.

Guide Conventions The following visual elements are used throughout this guide, where applicable:

This icon and text designates information of special note.

Warning: This icon and text indicate a potentially dangerous procedure. Instructions
contained in the warnings must be followed.

Warning: This icon and text indicate a procedure where the reader must take
precautions regarding laser light.

This icon and text indicate the possibility of electrostatic discharge (ESD) in a procedure
that requires the reader to take the proper ESD precautions.

Table 1 Navigating Within a PDF Document

TO NAVIGATE THIS WAY CLICK THIS

Move from section to section within the
document.

A bookmark on the left side of the Acrobat Reader
window

Move to an entry in the document’s Contents
or Index.

The entry itself

Follow a cross-reference (highlighted in blue
text).

The cross-reference text

Move page by page. The appropriate Acrobat Reader navigation
buttons

Move to the beginning or end of the
document.

The appropriate Acrobat Reader navigation
buttons

Move backward or forward among a series of
hyperlinks you have selected.

The appropriate Acrobat Reader navigation
buttons
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

14 ABOUT THIS GUIDE
References to CST
Pathnames

You typically install the C-Ware Software Toolset (CST) on your development workstation
in a directory path suggested by the installation procedure, such as:

• C:\C-Port\Cstx.y\ (on Windows 2000/XP)

• /usr/yourlogin/C-Port/Cstx.y/ (on Sun SPARC Solaris and Linux)

or:

/usr/cport/C-Port/Cstx.y/

or:

/opt/C-Port/Cstx.y/

where ‘x’ is a major version number and ‘y’ is a minor (or intermediate) version number.

You typically install each CST version under some directory path ...\C-Port\Cstx.y\.
However, the user can install the CST in any directory on the development workstation.
The user can also install more than one CST version on the same workstation.

Therefore, to refer to installed CST directories, we use pathnames that are relative to the
...\C-Port\Cstx.y\ path, which is the “root” of a given CST installation.

For example, the apps\gbeSwitch\ directory path refers to the location of the Gigabit
Ethernet Switch application that is installed as part of the CST. The full path of this
directory on a Windows 2000/XP system might be C:\C-Port\Cst2.1\apps\gbeSwitch\,
so this convention is convenience for shortening the pathname.

Other top-level directories that are installed as part of the CST include bin\, diags\,
Documentation\, services\, and so on. These directories are described in the C-Ware
Software Toolset Getting Started Guide document, which is part of the CST documentation
set.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Revision History 15
Revision History Table 2 provides details about changes made to create this new guide.

Table 2 C-Ware Application Design and Building Guide Revision History

For Revision History details on the now-retired Application Building Guide, refer to its
previously published version, released on June 12, 2002.

REVISION DATE CHANGES

01 6/2004 This document was revised to replace
internal references to ’Motorola’ with
’Freescale Semiconductor’. Copyright
Freescale Semiconductor, Inc. 2004.
Deleted "ver" and "mfg" as unsupported
variants for target environments.

00 3/2004 Created a new, unified document after
collating 4 documents published
separately for previous CST releases
(Application Guidelines, Build System
Conventions, Application Design Guide,
and, the forerunner of this manual,
Application Building Guide).
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

16 ABOUT THIS GUIDE
Related Product
Documentation

Table 3 lists the user and reference documentation for the C-Port silicon, C-Ware
Development System, and the C-Ware Software Toolset.

Table 3 C-Port Silicon and CST Documentation Set

DOCUMENT
SUBJECT DOCUMENT NAME PURPOSE DOCUMENT ID

Processor
Information

C-5 Network Processor Architecture Guide Describes the full architecture of the C-5
network processor.

C5NPARCH-RM

C-5 Network Processor Data Sheet Describes hardware design specifications for
the C-5 network processor.

C5NPDATA-DS

C-5e/C-3e Network Processor Architecture
Guide

Describes the full architecture of the C-5e and
C-3e network processors.

C53C3EARCH-RM

C-5e Network Processor Data Sheet Describes hardware design specifications for
the C-5e network processor.

C5ENPDATA-DS

M-5 Channel Adapter Architecture Guide Describes the full architecture of the M-5
channel adapter.

M5CAARCH-RM

Hardware
Development
Tools

C-Ware Development System Getting Started
Guide

Describes installation of the CDS. CDS20GSG-UG

C-Ware Development System User Guide Describes operation of the CDS. CDS20UG-UG

Software
Development
Tools

C-Ware Software Toolset Getting Started Guide Describes how to quickly become acquainted
with the CST’s software development tools for a
given CST platform.

CSTGSGW-UG
(Windows)
CSTGSGS-UG
(Sun SPARC Solaris
and Linux)

C-Ware Debugger User Guide Describes the GNU-based tool for debugging
software running on either the C-Port network
processors simulators.

CSTDBGUG-UG

C-Ware Integrated Performance Analyzer User
Guide

Describes use of the Integrated Performance
Analyzer tool for gathering performance
metrics of a C-Port NP-based application
running under the simulator.

CSTIPAUG-UG

C-Ware Simulation Environment User Guide Describes how to configure and run a
simulation of a C-Port NP-based application
using simulator tools.

CSTSIMUG-UG
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Related Product Documentation 17
Application
Development

C-Ware Application Design and Building Guide Describes tools to build executable programs
for the C-Port network processors or simulators
and design guidelines and trade-offs for
implementing new C-Port NP-based
communications applications.

CSTADBG-UG

C-Ware API Reference Guide Describes the subsystems and services that
make up the C-Ware Applications Programming
Interface (API) for C-Port NP-based
communications applications.

CSTAPIREF-UG

C-Ware API Programming Guide Provides practical guidance in programming
the C-Ware API services.

CSTAPIPROG-UG

C-Ware Host Application Programming Guide Describes the CST software infrastructure and
APIs that support host based communications
applications.

CSTHAPG-UG

C-Ware Microcode Programming Guide Describes programming the C-Port network
processor’s Serial Data Processors and Fabric
Processor.

CSTMCPG-UG

Other
Documents

Answers to FAQs About C-Ware Software
Toolset Version 2.0

Describes how the directory architecture
provided in C-Ware Software Toolset Version 2.0
differs from previous CST releases.

CSTOAFAQ-UG

Table 3 C-Port Silicon and CST Documentation Set (continued)

DOCUMENT
SUBJECT DOCUMENT NAME PURPOSE DOCUMENT ID
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

18 ABOUT THIS GUIDE
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
REV 01

REV 01
Chapter 1
CST APPLICATION OVERVIEW
Overview The overall programming process involves at least two, and more likely three main phases:
“writing”, “building” (also called “compiling”), and “testing & revising”. This manual is a
guide to application “design” and “building” to suggest an overall process that is repeated
— that is, that most programmers during application development will cycle several times
through all the phases of writing, compiling, testing, and revision.

Design refers, not only to the overall development of an idea for an application using a
C-Port Network Processor (NP), but also to the proper layout of modules within an
application so that they can access and activate different parts of the NP during program
initiation and ongoing processing. Design, therefore, also involves adherence to C-Ware
Software Toolset (CST) directory structure requirements, naming conventions, and
partitioning conventions for using various parts of the NP. Design also involves adherence
to Makefile rules as well as to the rules for using other tools within the CST, such as cwsim,
cwipa, and so on.

Building refers to all aspects of compiling, linking, and testing a CST application. Implicit
is the use of all tools available within the CST environment, however this manual only
discusses aspects of the Makefile tool and the GNU C compiler. Refer to other tool manuals
in the CST documentation set for additional details, especially for simulation and
debugging.

The programmer partitions the NP application into some or all (and more) of the following
sections, each of which refer to processors within the NP:

XPRC

CPRC

SDP

FP

.

.

.

REV 01 REV 01

2 CHAPTER 1: CST APPLICATION OVERVIEW
The sections refer to Executive Processor Risc Core (XPRC), Channel Processor Risc Core
(CPRC), Serial Data Processor (SDP), and Fabric Processor (FP). The purpose for each is
summarized below. For additional details on these sections, refer to “Functional
Distribution” on page 3.

• Modules that a programmer specifies in the section for XPRC will govern the behavior
of the Executive Processor Risc Core, that is, the processor assigned the task of
initializing and maintaining the NP. See “1” in the figure below.

• Modules that a programmer specifies in the section CPRC will govern the behavior of
each of the16 Channel Processors in the NP. See “2” in the figure below.

• Modules that a programmer specifies in the section SDP will govern the behavior of
the 5 serial processors that are assigned to each Channel Processor in the NP (5 X 16 =
80 serial processors). See “3” in the figure below.

• Modules that a programmer specifies in the section FP will govern the behavior of the
Fabric Processor (if implemented) in the NP. See “4”in the figure below.

The overall layout of the typical Network Processor is as follows:

�� �� �� � ��� 	
�

� �� �
�
� �� ��

� �

�� � �

� � � � 	 �
� �
� �� ��

� �

�� � �

� � �� � � ��� �� � �

� �

� �
�

� �
�

� �
��

��
� �

� � � �� � ��� �� ��

� �

� �
��

� �
��

��
�

� �
�!

"� � ��
# �� $	 %
& �
�
�" #& �

� 	 ' '� �
()* �
& �
�

��(& �

� � �� � � ��� �� � �

� �

� �
�

� �
�

� �
�

��
�

+, � +, � +, �

� � � �� � ��� �� ��

� �

� �

� �
!

��
-

� �
.

+, � +, � +, �

/ 	 � 	�
()* �
& �
�

�/ (& �

�- 0�� 1�
��

� �� � '� �� 2
� + �� 1# � 3�

& "4 � �5 �� 0� 3�
5(�� �� � +

+ � 5(
+� 5(�� ��
� � �� �� � ��
� ��

'
� �

+ , � 5(

+, � +, � +, � +, � +, � +, � +, �

�- �� �4 � 1� � 0+ "(1� �- �� �� � 0�� � �� �� � �� � �

 �� �4 � 1�� � 0+ "(1 � 1 �� �6
) ��
� �� �� � �� � �

� 1 ��
� ��� � � �� � � + � 7 8 0(�7 8 �� ��* � �

� 	
 ��* ��� �� � '� ��

7 �
� �� � & �
�� �9 � �� � �

+ , �

+, � +, �
� �� � �� �

1

2 3

4

REV 01 REV 01 FREESCALE SEMICONDUCTOR

Functional Distribution 3
Functional Distribution Each processing activity already identified has functional characteristics that lends itself to
being implemented in certain NP components or on a host processor. This section briefly
presents the functional capabilities of each of the NP’s processing components and how
those capabilities support the required processing activities’ functional characteristics.

SDP The SDPs are proprietary microsequencers that contain a series of 8bit machines that
process one byte at a time of network data traffic. These machines are optimized for
bit-level computation and manipulation of the data stream. The SDPs have specialized
support for CAM matching, CRC validation and generation, ALU computation, and so on.

Of the 5 microsequencers (also called serial processors) that make up the SDP for each
Channel Processor:

• Two are used for Serial Data Processing Transmissions (TxSDP): TxBit and TxByte.

• Three are used for Serial Data Processing Receptions (RxSDP): RxBit, RxSync, and
RxByte.

In addition, the SDPs’ microsequencers can read and write information to a small set of
registers that are shared with the SDP’s corresponding Channel Processor RISC Core
(CPRC). These registers can be used to exchange information such as status code
reporting, transmit instructions, header extraction, and so on.

The SDPs’ microarchitecture make them particularly apt for bit-level manipulation before
writing information into these shared memory spaces. The benefit is that the CPRC’s code
can be made more efficient because that code need not spend cycles on bit-shifting or
ANDing, operations that are typically inefficient in a RISC processor.

One of the SDP microsequencers (the RxByte serial processor) also has the special ability
to launch transactions to the Table Lookup Unit (TLU) over the NP’s Ring Bus. This allows
for pipelining the process of looking up information, while the contents of a packet or cell
are being received across the channel.

Finally, certain SDP microsequencers (RxByte and TxByte) have access to an area of the
Channel Processor’s DMEM that is used as temporary storage for packets or cells that must
also be stored in buffer memory that is external to the NP. These areas of DMEM are
written to (RxByte) or read from (TxByte) by these microsequencers in order to move the
frames payload either to or from the external buffer memory.
FREESCALE SEMICONDUCTOR REV 01 REV 01

4 CHAPTER 1: CST APPLICATION OVERVIEW
Some operations that are typically handled by a MAC or framing layer device or activity
are appropriately performed by the NP Channel Processors’ SDPs. Some of these
operations are very inefficient when implemented on a general-purpose RISC processor.

Given these capabilities, the SDPs typically implement the following types of operations:

• CRC validation and calculation

• Packet and cell header validation

• Extraction of cell or packet headers or fields in those headers

• Launching of lookups to the NP’s TLU via the Ring Bus

• Writing or reading of packet or cell payload data to/from DMEM for DMA to/from
external memory

In keeping with their intended function, the SDPs’ programming language appears as
familiar C code, but it is a microcoded, proprietary language. When implementing SDP
microprograms, one thing to consider in your software design is the degree of difficulty in
writing, debugging, and maintaining microcode as such. The case can be made for
trading off some application performance for ease of application maintenance and
understandability, by having functionality exist in the CPRCs instead in the SDPs. However,
most system designers put significant functionality into the SDPs primarily to support
different external interfaces (Ethernet, GbE, OC3, 12, etc). Some designers even employ
the SDP to maximize the application’s performance across all NP processing resources, but
there is not much room to move functionality from CP to SDP. For example, RxByte within
SDP only has "512 words" storage for microcode programming. For additional details on
how to microcode the SDPs , refer to the C-Ware Microcode Programming Guide .

CPRC The NP ’s Channel Processor RISC Core (CPRC) is contained in each NP Channel Processor
(CP). These RISC cores implement an instruction set that is relatively simple (that is, MIPS I
compliant) and that doesn’t contain instructions for multiplication, division, or
floating-point operations.

Each CPRC has a dedicated local instruction memory, or IMEM (24KB for C-5 and 32KB for
C-5e/C-3e), and local data memory, or DMEM (48KB). The somewhat limited size of these
data stores can lead to CPRC programs that consume the lion’s share of instruction and
data memory in the CP.

The CPRC can access many of the NP’s resources, such as event timers, cycle timers,
interrupts, DMA to/from external memory, the TLU, QMU, and so on. Thus, the user’s CPRC
REV 01 REV 01 FREESCALE SEMICONDUCTOR

Functional Distribution 5
programs can be very flexible and surprisingly complex, despite its ease-of-use via the C
code language. This level of detailed accessibility can greatly improve the efficiencies of
the resources available to the overall C-Port NP-based system.

The CPRCs also have the role of having to complete certain tasks in a finite amount of time
to meet the performance criteria for wire-speed operation set by many networking data
path protocols. Thus, the amount of work and amount of code that a CPRC can execute
over a single packet or cell is small. This is precisely the reason that the SDP, not the CPRC,
implements some of the application’s more time-critical tasks (launching lookups, data
validation, and so on).

The CPRCs are instrumented to perform some of the application’s more complex logic
because of their powerful instruction set and access to certain other NP system resources.
For example, the CPRC program typically collects lookup results that were launched from
that CP’s SDP, evaluate them along with other information parsed by the SDP, and finally
make a classification or policy decision (that is, whether to enqueue something for an
egress port, filter it, count a statistic, and so on).

The CPRC also has access to other system features like fast context-switching, shared
DMEM, and aggregation (see the section “Aggregation” on page 24) that can aid in
processing particular types of traffic -- high speed, loss of processing, and so on.

Among the C-Ware Reference Library applications, here are examples of functionality that
is implemented on the CPRCs:

• Collection of lookup results

• Inspection of results of packet processing and validation

• Keeping of statistics

• Notification of the XP upon the occurrence of certain events, such as bridge address
learning or reception of SONET overhead

• Forwarding and drop decisions

• Error handling in the data path

XPRC The NP’s Executive Processor (XP) contains its own Executive Process or RISC Core (XPRC).
As a RISC processor core, the XPRC is functionally identical to the CPRCs. However, the
XPRC is intended to perform different application activities than implemented on the
CPRCs.
FREESCALE SEMICONDUCTOR REV 01 REV 01

6 CHAPTER 1: CST APPLICATION OVERVIEW
For example, the XPRC is not used in the data path forwarding function between physical
interfaces. This is because the CPRCs typically notify the XPRC either by a shared memory
write over the Global Bus or by DMA of data to XPRC’s DMEM. The XPRC also has similar
instruction and data memory size limitations as the CPRC (32KB of IMEM for C-5 and 48K
of IMEM for C-5e/C-3e, and 32KB of DMEM for all NPs), so the XPRC-resident program is
also limited in size.

Though the name might imply it, the XPRC does not run any type of real-time executive
program. The primary function of the XPRC is system boot, initialization, and code
download, but actually the most important function for XP is to communicate with the
external Host processor. When the NP is taken out of reset, the XPRC is the first processor
to load and execute its program. Because of the XPRC’s small amount of available IMEM
and DMEM, XPRC programs must be relatively small.

The XPRC is also responsible for reading the NP package (a structure that is the
concatenation of all executable code for all NP processors and certain additional memory
structures) out of either PROM or PCI memory, then loading that program into the
instruction and data memories of all the NP’s CPRCs and SDPs. Additionally, the XP
distributes any data from the package to all the CAMs and instruction storage for all the
NP’s microsequencers (in the CPs and FP).

After initialization, the XPRC begins running the user program on the XPRC. The XPRC
does not usually place itself in the application’s data path for all packets. Instead, the XPRC
often implements low-latency control protocols that must run periodically in the system
but that also must complete in a reasonable amount of time and for cases where the host
processor shouldn’t be involved.

Examples of user XPRC programs that require low latency:

• Bridge Address Learning and Again in for Ethernet MAC bridging

• SONET overhead monitoring for applications that support SONET

• An agent that performs communication between the NP and the a debugger running
on the host

Additionally, the XPRC runs a portion of the C-5 Device Driver that enables the host
processor to exchange information with NP. The XP manages this communication using
the PCI bus and memory-mapped accesses and using DMA between itself and the host
processor.
REV 01 REV 01 FREESCALE SEMICONDUCTOR

Functional Distribution 7
Using the PCI interface, the XP can move very small to very large units of data between the
host and NP. Depending on the size of the data, you might prefer to use different methods
for moving the data. The PCI interface on the XP supports DMA from external buffer
memory to local XP DMEM to host memory over the PCI. The NP can also perform read
and write memory-mapped transactions from the host over the PCI bus, 32 bits at a time.

Depending on the type of data transaction, you might use one or the other technique. The
C-Ware Reference Library applications typically use PCI DMA to move packet data
between the NP’s processing resources and use memory-mapped reads/writes for small
control information (status reporting, and so on).

Each of these techniques is by choice of the application software running on the XPRC and
on the host processor.

Host Processor The host processor in a C-Port NP-based system runs a Real-Time Operating System
(RTOS), which, in turn, must utilize the C-5/5e/3e Device Driver via the C-Ware Host API’s
Host Services routines. These routines and the Device Driver must be built into the Board
Support Package (BSP) that is part of the host application program that runs on the host
processor. The host application program also contains the software that will functionally
“connect” the network stack running on the host processor with that software running on
the NP.

The NP Device Driver allows the host processor to programmatically access and control
the NP. That is, the Driver allows the host processor to interrupt the NP, take a NP out of
reset, to interrupt the NP’s XPRC and CPRC programs, to download a package to the NP, to
initiate a DMA data transfer between host processor memory and NP memory, and so on.
The host application program typically accesses Device Driver functionality via the C-Ware
APIs Host Services. The C-Ware Host API Host Services, the C-5 Device Driver, and their
relationship are described in the C-Ware Host Application Programming Guide document.

There are additional features for particular system requirements that are typically
implemented in the host application program, such as routing table updates, console
driver, a SNMP agent, and so on.
FREESCALE SEMICONDUCTOR REV 01 REV 01

8 CHAPTER 1: CST APPLICATION OVERVIEW
REV 01 REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
CSTADBG-UG/D

REV 01
Chapter 2
APPLICATION DESIGN AND CODING
OPTIONS
Overview Developing a CST application requires many decisions regarding "design" of the program
to make most effective use of all Risc processors and SDPs within the C-Port Network
Processor. In this sense, design is fundamentally directed toward maximizing NP
architecture.

While this manual addresses "design and building" an application in a slightly different
sense (see “Overview” on page 1), an element of design is clearly involved in all facets of
application development. Within this chapter, design is treated in that broader approach.

The following sections discuss design to maximize the NP architecture during C code
module development, using C coding requirement and recommendations:

• “C Coding Recommendations” on page 10

• “Tokens Versus Semaphores” on page 17

• “Recirculation” on page 20

• “Aggregation” on page 24

• “Shared DMEM” on page 26

• “IMEM Optimization” on page 27

• “Table Design and Table Building” on page 31
CSTADBG-UG/D REV 01

10 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
The following sections discuss design to maximize the NP architecture during
compilation/linking/packaging (partitioning and overall building):

For a full description of the application "building" procedure itself , which involves all the
above elements, refer to Chapter 3

• “Partitioning An XPRC Program For Initialization” on page 35

• “Partitioning the Program” on page 36

• “Coding the Package Description File” on page 37

• “Passing User Data From Init Phase Program to the Main Phase Program” on page 38

• “Address Resolution Among XPRC, CPRC, and XP Primary Bootstrap” on page 39

• “Valid API Routines to Call From an Initialization Phase Program” on page 42

• “Design Tradeoffs” on page 44

C Coding
Recommendations

These coding and compilation recommendations can help reduce the size of your C
programs and result in faster code execution.

Suppress Automatic
Inlining of Functions

When optimization is in use, the gcc compiler aggressively inlines functions — that is, it
integrates that function’s code into the code for its callers. This makes execution faster by
eliminating the function-call overhead, but it can also drastically increase the size of the
generated code.

The CST uses this gcc switch to suppress automatic inlining of functions:

-fno-inline-functions

Functions explicitly declared as inline are inlined as usual. Here are some guidelines for
using explicit function inlining in your programs:

• If the function is very short (about two to five opcodes, excluding the return
instruction), it is a good candidate for inlining.

• If the function is relatively short and you are absolutely sure that it is now, and will be
forever, called in only one place, it is a possible candidate for inlining.

• Functions that use varargs or stdarg calling sequences (such as printf and its variants)
or called indirectly through a pointer cannot be inlined.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

C Coding Recommendations 11
• Recursive functions are usually not good candidates for inlining.

• A function body that appears in a header file should always have the keywords static
inline in its definition. This prevents the compiler from instantiating a separate function
body that never gets called if all uses of the function are successfully inlined.

• Do not declare as inline a function prototype if the function’s body is not available in
the compilation unit. The compiler cannot inline code that it cannot see.

• For gcc, inlining of a function works only if that function appears lexically before any
uses of it. Put the “leaf” inline routines at the top of the source file, followed by the
“stem” inline routines that might use these leaf routines, and so on.

Avoid Branches A branch can cause between zero and three IMEM fetch stall cycles, depending on the
target address. In general, avoid branches in your code where possible.

Example 1
A cascaded if-then-else statement is a common example of code where dynamic
branches can be eliminated:

The above code can be rewritten for better results as the following:

Example 2
Here is another example:

if (bar == 0)
// Almost never gets here

else if (bar < 0)
// Sometimes gets here

else
// Almost always gets here

if (bar > 0)
// Almost always gets here

else if (bar < 0)
// Sometimes get here

else
// Almost never gets here
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

12 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
The above code can be rewritten for better results as the following:

Use the Test and Set
Operation for Locking

Support

The “Test and Set” operation enables any of the RISC cores (that is, the Executive Processor
RISC Core, or XPRC, and the Channel Processor RISC Core, or CPRC) on the C-5 NP to
provide lock support that an application can use to implement semaphore-like behavior.

The Test and Set operation is accomplished in software by executing the lwc0 opcode.
The format of the lwc0 instruction is:

lwc0 rt, offset (base)

where rt is the target register, base is the register that contains the base address, and offset
is the byte offset from the base address in DMEM.

This opcode operates as a standard load instruction, reading the DMEM at the given
address by offset (base) and storing the result in the target register.

Regardless of the value read from memory at the address in DMEM specified, the location
is written with 0xFFxxxxxx, where ‘x’ represents the value prior to the read. The value
transferred to the target register is ‘xxxxxx’.

if (cond){
// Common path here
x = 1;

}
else

x++;

if (x == 1)
// Do something

if (cond){
// Common path here
x = 1;
// Do something

}
else

x++;
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

C Coding Recommendations 13
The value available in the target register reflects the success/failure of the Test and Set
operation. If the most significant byte of the target register is zero, the location has not
previously been used for a Test and Set. If the most significant byte is 0xFF, the location
has been used as a Test and Set destination.

This scheme allows branching based on the sign of the target register.

To reset the location, software can reset the location (via the sw instruction or another
instruction).

This functionality is available in the C-Ware API library via the functions ksMutexInit(),
ksMutexLock(), ksMutexLockTry(), and ksMutexUnlock().

After the lwc0 instruction is executed, like any other memory load instruction, there must
be a one-cycle delay before accessing the destination register.

Avoid Globals, File Statics
and Pointers

A local variable is much easier for the compiler to disambiguate, so it usually gets
promoted to a register for the lifetime of the routine (unless register pressure gets too
high, which generally isn’t the case). In some cases it might be beneficial to copy such a
variable to a local. For example, look at the following code fragment:
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

14 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Avoid ‘Volatile’ Storage
Qualifier

Use the volatile storage qualifier only on control, input/output, and other addresses that
the NP hardware changes asynchronously or that have a side-effect when read, such as
the rxMsg FIFO.

From the compiler’s view, a volatile object cannot be promoted to a register, cannot be
eliminated, cannot be part of a common subexpression, and so on. In a nutshell, every
reference to a volatile object generates a load or a store instruction.

If you load a volatile object and know that it can't change because of some semaphore
(that is, the Avail bit indicates that you own it), copy the field into a local and reference the
local instead. In this case, you might also consider removing the volatile storage qualifier
from the Creg that you only read when its “safe”.

// Compiler can’t tell if someOtherGlobal and *p might overlap,
// so it generates a "load *p" instruction each time through the loop.

foo (int* p) {
for (expensive loop){

if (someOtherGlobal == *p){
// Do something

}
 someOtherGlobal = something
}

}

// If someOtherGlobal and *p never overlap, copy *p before entering
// the loop. Here the compiler knows a local can never interfere
// with someOtherGlobal and should put local into a register.
// This avoids a load each time through the loop.

foo (int* p) {
int local = *p;
for (expensive loop){

if (someOtherGlobal == local){
// Do something

}
someOtherGlobal = something
}

}

CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

C Coding Recommendations 15
Avoid Shared and Global
DMEM Accesses

“Shared” means non-local but within the same CP cluster. “Global” means across a CP
cluster. Shared accesses always use one extra cycle. A global bus access can take 100
cycles in the worst case.

“Global” also refers to a variable that is accessible outside its compilation link unit. Such an
object has an “optimizer penalty”. Use of global variables typically prevents optimized
access of that data.

It might be better to use a local and just pass it around to its using routines, particularly if
the using functions can be inlined.

If a choice is available, select the storage class for your program’s variables in this order of
preference:

1 Local

2 Parameter (particularly if can be inlined or passed in register; that is, no more than four
arguments)

3 C file static

4 C compilation unit global

Read the Generated Code The gcc compiler is not always as efficient as it could be. Extra moves and branches could
be eliminated by the compiler but sometimes aren’t. In these cases you might explicitly
inline a function or otherwise explore what is preventing optimization.

For example:
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

16 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Avoid Literal Masking of
Control Registers

Instead of masking control registers with literal constants, use the macros in
services\chip\inc\dcpRegisterDefs.h. These macros have been optimized to produce
efficient MIPS code when extracting bits.

// Simply changing the return type of foo() to int reduces the
// number of instructions from 19 to 14! It appears that different
// sized operands have prevented optimization.

int ext;

void halt();
void ksPrintf(char *format, ...);

static __inline__
signed char foo() {

if (ext > 0)
return 1;

else
return 0;

}

void start() {
if (foo()){

ksPrintf("pass");
}
else{

ksPrintf("fail");
}
halt();

}

void halt() {
asm("add $0, $0, $0");

}

void ksPrintf(char *format, ...) {
asm("add $0, $0, $2");

}

CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Tokens Versus Semaphores 17
For example, this expression produces terrible code:

(txmsg_ctl & 0x80000000)

Use this macro instead:

BitIsSet(txmsg_ctl, RB_AVAILABLE)

Avoid Function Calls A function call is slower for obvious reasons — it requires instructions for argument setup,
stack setup, and so forth — but also may cause shared IMEM stalls.

Functions Take a
Maximum of Four

Arguments

The first four arguments for a called routine are passed in registers and can be referenced
directly. Each argument after the fourth is stored in non-register memory and is accessed
in the called routine indirectly via pointer.

Avoid Loads/Stores to
Local DMEM After

Initiating DMA

A load or store instruction on a CP’s local DMEM can stall during payload transfer. If
possible, pre-fetch local data before initiating transfer or defer it until DMA already
complete.

Avoid Serializing Tasks Look for independent tasks and try to initiate them without waiting for them to complete.

Tokens Versus
Semaphores

From time to time, application developers are faced with an application requirement of
providing serialized access to shared data structures. Examples of this would be structures
that represent queues, table entries, and so on.

In the C-Ware Software Toolset (CST) the programming environment supplies two types
of support for these types of sharing issues: tokens and semaphores.

Tokens A token is a mechanism that can be used to protect a shared data structure. There are
Hardware Receive tokens and Software Receive tokens. For details, refer to Appendix B in
your NP Architecture Guide. A token is useful in an application when access to the shared
data involve one writer and multiple readers. In a C-Ware application an example of this is
where there is an aggregated set of CPRCs accessing a shared data structure (such as
queues), but only one of them at a time is updating the data structure.

The following code fragment illustrates the use of a HW token in he SDP:

/* Wait for my RC to have the token before updating the shared data
 * structure */
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

18 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
while (!ksTokenPresent(SHARED_TOKEN));

/* Now update the shared data structure */
*sharedStruct++;

/* Pass the token, now that I am done with the resource */
ksTokenPass(SHARED_TOKEN);

When using tokens by calling the CPI routine ksTokenPass(), the passing sequence within a
cluster is:

0 -> 1 -> 2 -> 3 -> 0

When passing tokens by calling the CPI routine ksTokenPassBack(), the passing sequence
within a cluster is:

0 -> 3 -> 2 -> 1 -> 0

Semaphores A semaphore is also a mechanism that can be used to protect a shared data stucture.
A semaphore is typically used in an application situation where there are multiple writers.

The type of semaphores supported by the C-Ware Software Toolset are binary semaphores
(as opposed to counting semaphores). Counting semaphores are supported by the NP
hardware, but no software support for them exists in this CST release.

A semaphore executes a special instruction that locks an item of data when accessing it
before returning control, if the resource is available. This primitive operation is typically
known as the Test-And-Set instruction.

Due to execution of the Test-And-Set instruction, using a semaphore is slightly more
costly in performance terms than using a token. Also, there is limitation in the NP on the
memories (that is, whether XPRC DMEM, CPRC DMEM, or other memory addresses) that
can be used with a semaphore.

The following is the functionality that the CST provides for utilizing semaphores in C-Ware
applications:

• Semaphore initialziation, via the CPI routine ksMutexInit().

• Semaphore asynchronous access, via the CPI routine ksMutexLockTry().

• Sempahore synchronous access, via the CPI routine ksMutexLock().

• Semaphore release, via the CPI routine ksMutexFree().
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Tokens Versus Semaphores 19
Application code to synchronously lock a sempahore (that is, spin and wait for it) might
includes this sample excerpt:

/* Initialize mutex */
ksMutexInit(mySemaphore, "noname");

/* Spin and wait for semaphore */
ksMutexLock(mySemaphore);

/* Now that we have semaphore, update data */
*mySharedData++;

/* Release semaphore */
ksMutexFree(mySemaphore);
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

20 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
An optional code segment that could be used to lock asynchronously a semaphore (test
and return to caller if semaphore is not available, to prevent spin loops) is as follows:

/* Initialize mutex */
ksMutexInit(mySemaphore, "noname");

/* Test for availability */
if (ksMutexLockTry(mySemaphore)) {

ksPrintf("got semaphore, updating data structure\n");
*sharedData++;
ksMutexFree(mySemaphore);
return success;

} else { /* couldn’t lock */
ksPrintf("couldn’t get semaphore\n");

/* no need to free since we didn’t get it */
}

Each of these two techniques has pluses and minuses:

• The tokens perform more quickly but are more restrictive in how they can be used.

• The semaphores are general purpose, but perform slightly worse.

• With poor application design, either technique can cause run-time deadlocks.

Recirculation Certain applications for C-Port NPs have processing requirements that cannot always be
met by a single Channel Processor (CP) because of computational complexity and
complex reformatting of the data.

The NP provides a mechanism for using each of the CPs in a loopback mode called
recirculation.

Recirculation allows users to send data through the transmit path of a CP (TxSDP) and,
rather than sending it to the channel’s physical interface, loop the data back to the receive
path of the same CP (RxSDP). Enabling recirculation for an SDP means to configure its
RxSDP and TxSDP so that the output from the TxSDP is routed to the input of its
corresponding RxSDP.

Figure 1 on page 21 depicts the SDP configurations that support bit-oriented and
byte-oriented recirculation data flows.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Recirculation 21
Figure 1 SDP Configuration and Data Flows for Bit-Oriented and Byte-Oriented Recirculations

The SDP can be configured to permit recirculation of the data path in either of two ways:

• Byte Processor loopback

• Bit Processor loopback

Byte Processor loopback changes the data path in the TxSDP to go from the base of the
TxLargeFIFO to the bottom of the RxLargeFIFO, instead of going to the TxSONETFramer
and TxBit. This is configured by calling the CPI function ksSdpByteLoopbackConfigure()
routine. This function configures this data path by setting the CP’s SDP_MODE3 register.

Bit Processor loopback changes the data path in the TxSDP to go from the base of the
TxSmallFIFO to the bottom of the RxSmallFIFO, instead of going to the PHY. This is
configured by calling the CPI function ksSdpBitLoopbackConfigure() routine. This function
configures this data path by setting the CP’s SDP_MODE3 register.

Benefits Recirculation allows the application designer to tradeoff processing power for ports.

For applications where there are complex processing requirements, it is possible to
commit some CPs to the task of post-processing packets received by other CPs that are
directly connected to a physical network line. The cost is in reduced port density.

Merge
Space

Data from
DMEM

8b/10b
Decode
Block

Small
FIFO

Large
FIFOTransmit SDP

Receive SDP

Channel Processor

TLU
Lookups

Extract
Space

Data to
DMEM

TxSONET
Framer
Block

RxBit
Loopback

RxByte
Loopback

Small
FIFO

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxByte
Processor

TxBit
Processor

TxByte
Processor

Large
FIFO

8b/10b
Encode
Block
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

22 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Scenarios Enabling recirculation for a given CP’s SDP can be useful in two distinct kinds of
application scenarios.

In a first scenario, the CP that performs incoming packet demuxing on a given channel
offloads the cell or packet hader processing to another, unused CP. This is useful when the
former CP’s role is to prepare the series of cells or frames from a multiplexed data stream
for another CP whose SDP can perform header field extraction. In the latter CP’s TxSDP, the
TxByte serial processor would process the header fields out of DMEM in the conventional
manner, but would forward its data traffic by recirculating via the corresponding RxSDP’s
RxByte processor whose output is routed back to DMEM for forwarding by the former CP.

Figure 2 on page 23 illustrates this recirculation scenario.

In a second scenario, recirculation between an SDP’s TxBit and RxBit processors (or
between its TxByte and RxByte) can support debugging output from the CP’s transmit
side without routing the data traffic through the external PHY, with its attendant
requirements for traffic analysis.

The NP’s recirculation features and functions can be used for any application that requires
greater degrees of packet processing, such as the C-Ware Reference Library applications
that support multi-channel HDLC and segmentation.

Elasticity An important property of the recirculation path through the SDP is that it provides a full
chain of backpressure signalling through the CP. The RxByte serial processor stalls until
the CPRC provides Extract Space resource. While RxByte stalls, the RxLarge FIFO block and
then the TxLarge FIFO block will back up with data bytes. When they are full, TxByte will
block on the next write to payload out. While it is blocked the TxDMA engine will also
block. Also, the transmit side of the CPRC code will block because the Merge Space will
not become available. As the transmit side of the CPRC stalls, the inbound queues will fill
up with descriptors.

The key distinction between this scenario and a non-recirculation scenario is that in a
non-recirculation scenario the network is supplying bits/bytes at a fixed rate, and there is
no facility for backpressure. In a recirculated application the SDP’s FIFOs provide some
elasticity, and ultimately backpressure causes the transmit side to stall.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Recirculation 23
Figure 2 Recirculated Traffic Routed to an Unused Channel Processor

Eventually the inbound queues reach their limit and not more can be enqueued for
processing. Before that hard limit is reached, the system has a large amount of elasticity.
This is a benefit in that it provides the flexibility to apply precious cycle budget across
multiple PDUs. However, the cost is in latency variation.

CP1 CP5

CP2 CP6

CP3 CP7

CP4CP0
Recirculation
Path

CP Pairs

Ingress
Port

Receive
Process 1

Egress
Port

Recirculation
Path

Receive
Process 2

Transmit
Process 2

Transmit
Process 1
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

24 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Aggregation Aggregation is a technique where multiple Channel Processors (CPs) in a NP can be
configured to work together to process a single traffic stream. Aggregation can be broken
down into the following individual techniques:

• Queue sharing

• Shared DMEM-resident data structures

• Shared IMEM resources

Queue Sharing Multiple CPs in a cluster can share the same set of input and output queues using the
queue sharing code found in the QueueManager library. Clearly this implies sharing of
queues within the QMU. You may also want to consider using Serial Bandwidth schaling
or sharing; refer to the “Purpose of the C-5e NP Channel Aggregate Mode” in your
Architecture Guide.

Uses and Limitations
The queue sharing mechanisms ensure that the CPs access the queues in a coordinated
fashion, either for the serialization or the scheduling of access to queues.

Serialization means that a sequence of descriptors must be processed in strict order. There
may be multiple CP working to process pieces of work that are described by the
descriptors in the queue. Under queue sharing the CPs take turns either enqueueing to or
dequeueing from the queue. The CP typically use software tokens to ensure the ordering
of their dequeue operations.

In this context, “scheduling” of queues means that the sending process draws packet
descriptors from multiple egress queues and must use a scheduling algorithm to
determine which queue to draw from on each packet transmit opportunity.

Using the queue sharing library, queues can be shared between two or four CPs in the
same cluster. There is nothing preventing three CPs from sharing a queue, but the queue
sharing library does not support this configuration as presently designed.

Costs and Benefits
The costs associated with the use of this technique:

• Increased application design complexity

• Increased processing overhead resulting from the use of queue sharing library code
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Aggregation 25
Potential benefits of queue sharing include:

• Improved performance through the use of multiple parallel CP programs, all
performing the same task

• Serialization of processing by multiple parallel tasks

Code Examples
The apps\components\queueUtils\ directory contains the source code for a C-Ware
application component that provides Serial Bandwidth scaling functionality.

Shared DMEM-Resident
Data Structures

There are many application problems that can be addressed through the use of
DMEM-resident data structures that are referenced and updated by all the CPs in a cluster,
or even in different clusters.

The use of shared data structures by multiple parallel processors typically requires the use
of some access arbitration mechanisms. The C-Ware CPI library provides token-passing
and test-and-set mechanisms that can be used to effect such access arbitration. These
mechanisms are described in more detail in the section “Shared DMEM” on page 26.

There are CPI routines that allow a CP program to construct the address of a location in
another CP’s DMEM, given the location of the same data structure in the calling CP’s local
DMEM.

Costs and Benefits
All four CPs within a cluster can access DMEM through a local bus with a latency that is
generally 2 to 5 cycles, but in extreme cases can be 9 or 13 cycles. A CP can access the
DMEM in another cluster through the NP’s Global Bus with a latency of from 10 to 110
cycles, depending on the Global Bus’s load.

Code Examples
The queue sharing library source code provides an example of a DMEM-resident data
structure that is shared within a cluster.

For another example, the ATM receive port in the Gigabit Ethernet to ATM OC-12c SAR
Switch application maintains a shared cache of Virtual Circuit information that is
referenced and updated by all the CPs in the cluster.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

26 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Shared DMEM Because of the shared-memory architecture of the NP, there is visibility into all the local
data memories (DMEM) on the chip (XP and CP). This access may be done either on an
efficient local bus (like within a cluster of CPs sharing DMEM) or over the NP’s Global Bus
(when sharing DMA through the between BMU [Buffer Management Unit]).

Shared DMEM is typically used for implementing software tokens using software
semaphores.

Software Tokens Software tokens are used by application programs running in the CPRCs that have one
writer at one time and multiple readers. Because of the fact that there is only writer at one
time, the data does not need to be protected. An example of where software tokens
might be used is in aggregation of CPs within a cluster.

With aggregation, one CP within its cluster is typically waiting for its turn in line to access
a particular resource. Because it won’t use that resource unless it has the software token, it
only writes when it owns the token. A code example of how this would work follows:

Program 1 -- Waiting For Token
// I am waiting for the token.
while (!kstokenPresent(myToken)) {

doSomethingElse();
}
// I now have the token -- proceed.
doMyTokenOperation();

Program 2 -- Owns Token
// I have token.
doMyTokenOperationWhileHavingTheToken();

// Done with the token - I’ll give it up.
ksTokenPass(myToken);

// Ensure that what the program does next doesn’t require the token.
...

Software Semaphores Software semaphores are another way for implementing a mutual exclusion disicpline for
a program that doesn’t follow the same serial access rules as a program using software
tokens.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

IMEM Optimization 27
Programs try to ‘obtain’ a software semaphore when it wants to access a data structure.
This is implemented by the RISC core by executing a test-and-set instruction that
atomically reads the data and writes a pattern into it if no other program is using it.
Programs that must access a shared data structure would first obtain the semaphore, then
modify the shared data structure, then ‘release’ the semaphore.

An example of this follows:

// I need to access dataStructure.

while (!ksMutexLock(&semaphore)) {
doSomethingElse;

}

// I have obtained the semaphore.

updateSharedMemory();

// Finished updating the shared data structure; release the semaphore.

ksMutexUnlock(&semaphore);

IMEM Optimization To fit more functionality into the limited IMEM space available on the C-5 family of chips
you can take some of the following actions to reduce the amount of IMEM a program uses.

Not all methods are appropriate in all circumstances. Some would not be acceptable in a
production/commercial configuration, but may be useful for debugging and bring-up
testing.

As a prerequisite, you should be familiar with the C-5 Architecture and the CST
documentation set.

1 Generate and look at the memUsage.txt file for the application, to get an overview of
the IMEM usage. In the reference applications, this file is generally found in the
application_name\run\bin\variant\memUsage.txt file. Specifically, an example is in

enetOc3Switch\run\bin\c5-d0-sim-debug\memUsage.txt

To see how this file is generated, look in the bin\cport-apps-rules.mk file for
"memUsage". Notice how a perl script is invoked on a .map file to generate the
memUsage.txt file.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

28 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
2 Review the use of INLINE functions. Although INLINE functions save cycles by avoiding
stack frame push/pop instructions, they use up more IMEM than the normal method
of calling a subroutine. Note that for very small functions, an INLINE is both smaller
and faster (that is, when the function length is small compared to the push/pop/return
overhead).

3 Whenever possible, move non-forwarding path processing off the CPs to the XP, and
further off the XP to the host. This reduces the IMEM required on-chip, in favor of host
IMEM, which is abundant.

4 Use the init/main mechanism to conserve CP IMEM space by moving initialization and
configuring operations to an "Init" program phase. See Chapter 4, “Building and
Packaging An Application”. See also the “Kernel Services” chapter of the C-Ware API
User’s Guide.

5 Use the following linker switches to get a map output, even if the link fails due to
IMEM size. This will help in determining which functions are being loaded into
memory and the size of each function.

#
Linker map, debug, and tracing options
#
make EXTRA_CFLAGS=’--verbose -Wl,--verbose -Wl,--trace
-Wl,--print-map’

In some cases, depending on how the application Makefile is written, you use the
following addition to the Makefile:

LDFLAGS_enetOc3Switch = --verbose -Wl,--verbose -Wl,--trace
-Wl,--print-map

6 Consider using a macro which will cause all ksPrintf() and ksPanic() calls to go away:

#define ksPrintf(a,...)
#define ksPanic(msg)
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

IMEM Optimization 29
7 Use the following bash shell script (for example, on UNIX or NT-Cygwin) to find
functions linked in but not called. To run it, enter ispace filename.map.

#! /bin/sh
ispace -- find unused functions in imem
#
rm -f xxcalls xxdefs
func calls
grep jal $1.map | awk ’{FS="<|>"; print $2}’ | sort | uniq > xxcalls

func definitions
grep "O .text" $1.map | awk ’{print $6}’ | sort > xxdefs

show funcs defined but not called
comm -23 xxdefs xxcalls

8 Compile Switches. Using the -g switch for gdb does not increase IMEM usage. You can
save some IMEM by compiling without defining the DCP_APPLICATION_EVENTS
macro.

Diagnosing Memory
Problems

Occasionally a given .dcp executable cannot be built and the linker complains of a
memory shortage (usually IMEM). For example:

/vobs/sw/ssbin/Gnu/mips-cport-elf/bin/ld: region IMEM is full
(bin/c5-d0-sim-debug/xpCodeSep1InitXp.dcp section .text)
collect2: ld returned 1 exit status

This can be caused by the linker bringing in unwanted libraries due to finding the wrong
instance of a symbol in the code. The following procedure will help identify symbols that
may be referencing the wrong library.

1 Rebuild Your Executable Passing 2 Extra ld Flags

make EXTRA_LDFLAGS="-Wl,-T
/vobs/sw/ssbin/Gnu/mips-cport-elf/lib/ldscripts/rc-large -Wl,-Map foo"

The first flag tells the linker to use a special linker script (rc-large) which has all
memories set to their maximum levels (128 kbytes for IMEM, 64 kbytes for DMEMs).

The second flag tells the linker to create a linker map file called foo. This map file
identifies what object file was pulled from what library as an effect of a reference from
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

30 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
what object file. Thus, it is possible to answer the question, “Why is foo.o from bar.a
being linked in?”

2 Generate a Report

After you have an executable built you can get a quick look at all functions present
with the following command:

cport-objdump --syms foo.dcp | grep ’\.text’ | sort

The output produced will look something like this :

00000000 g O .text 00000000 _ftext
00000000 l d .text 00000000
00000008 g O .text 000138f4 DCPmain
000138fc g O .text 000000c0 bsInitialize
000139bc l .text 00000190 bsPoolAllocateInternal
00013b4c g O .text 00000180 ksProcLoadXp
00013ccc g O .text 00000020 ksProcLoadMain
00013cec g O .text 000000e4 _waitForDmemTransfer
...

Note that the compiler has been told to emit size information for all functions (column
5 above - for example, DCPmain is 0x138f4 bytes long).

3 Trace Dependencies

Using this output in combination with the linker map file you can follow all sorts of
dependencies. For example:

a bsInitialize() is referred to in xpCodeSep1InitXp.o and that causes linking in of
bsInit.o, as evidenced by this line of linker map file :

../../../../../../services/lib/c5-d0-sim-debug/xprc/
services.a(bsInit.o)

obj/c5-d0-sim-debug/xprc/xpCodeSep1InitXp.o (bsInitialize)

b bsInitializeInternal() is defined (and used) in bsInit.o by the virtue of including
bsMachDep.h. bsInitializeInternal() calls bsPoolAllocateInternal() (defined in the
same header), which references _dcpRevRevision - that causes linking in of init.o :

../../../../../../services/lib/c5-d0-sim-debug/xprc/services.a(init.o
)
../../../../../../services/lib/c5-d0-sim-debug/xprc/

services.a(bsInit.o) (_dcpRevRevision)
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Table Design and Table Building 31
Table Design and Table
Building

Applications that use C-Port NPs have specific requirements for the routing/switching
table lookups that must be performed. These requirements are typically one of the
following:

• Indexed storage

• Exact matches

• Variable prefix matches

For additional details on table-building refer to Appendix A, “Offline Table Building
Libraries”.

Indexed Storage This type of table is general data storage that can be thought of as a large array of data.
The records can be accessed by the ‘index’ of the array. This index is usually a small
number, expressable in 16 bits or so, because the number of records in this table are a
direct function of the size of this index. For example, a 16bit index makes possible indexed
access to a table of 64K entries.

A practical example of this type of table would be a IEEE 802.1Q VLAN ID table, which is a
12bit quantity that is referenced directly by the VLAN ID as the index.

The NP implements this type of table as a TLU ‘data’ table. The data table’s entries are
referenced directly by the index number, and it consumes one TLU table. Because the
maximum addressability of TLU tables is 1M entries, the maximum key size is 20bits.

Exact Matches This type of table is used for exactly matching data as well, but the difference from a data
table is that the size of the key is larger. Exact match tables in the NP can be up to 112bits
in length.

Overview
In most system architectures, this would be a much larger table that is sparsely populated.
How this type of lookup works is to take the key, run it through some type of hash
function and generate a smaller index that could be used to reference entries in another
table — much like an indexed table.

A practical example of what type of lookup this would be is an Ethernet MAC address or a
IPv4 flow. These are larger keys (48bits and 112bits, respectively) that can be reduced to a
small domain that can point to entries in a smaller table.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

32 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
In the C-5 NP’s TLU, this type of function is implemented by chaining three tables
together: a hash table, a trie table, and a key table, as follows:

• Hash table —The hash table is used to take the key of up to 112bits and have it point
to another entry in another table of a smaller domain size. For example, a 48bit key is
run through a hash function that produces an index that is an entry in the hash table.
That entry will point to one of: an entry in a trie table or an entry in a key table.

• Trie table — The trie table is used to resolve any collisions by the hash table. Collisions
can occur if two different keys hash to the same location in the hash table. The trie
table is used to differentiate the two keys one bit at a time from each other since they
hashed to the same entry in the hash table. The leaf trie entries point to an entry,
where the key and associated data are kept, called a key table.

• Key table — The key table is used to store both the key for the entry and its associated
data. The key is kept in the entry to do a full comparison with the one that it being
looked up by the TLU. If there is a match the TLU will return the associated data part of
the entry in the same record. If there is no match (which can happen if non-matching
entries point to the same entry in the hash table), the TLU will indicate that in its
response.

As for C-5e NP’s table lookups, the functionality has been greatly expanded yet simplified.
For details, refer to “Supported Table Types” in the C-5e/C-3e Network Processor
Architecture Guide.

Design Tradeoffs and Performance
The chaining together of these types of tables by the TLU allows the system designer to
choose among speed versus space tradeoffs during system architecture and design.

The performance of these types of tables is equated with the number of entries in all
tables that have to be visited to get to the associated data. The biggest impact to that
metric here is the number of collisions — which is the number of trie table entries that
must be referenced. The number of trie table entries is really a function of how good (or
how bad) the hash function is when it is hashing the key and how many entries the hash
table contains.

The hash table is thought to be a large, sparsely populated table. The larger the table, the
fewer collisions and fewer references to entries in the trie table. Typically, the hash table is
some number of times bigger than the key table, where the associated data is kept. A
hash table that is 2X the number of data entries will perform worse than a hash table with
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Table Design and Table Building 33
4X the number of entries. Obviously, the table size will increase with a hash table 2X the
size of the key table.

The number of entries in a trie table is based on the number of collisions that are
anticipated to happen. This will be slightly more in the 2X case than in the 4X case, but
probably linear.

As an example, assume two hash-trie-key tables that support up to 64K entries. Table 1
shows the memory consumption and approximate performance of each.

Variable Prefix Matches The other primar y type of table that is required by certain applications are called variable
(or longest) prefix match tables. This type of table is specifically for protocols that find the
best match for lookups. This is the default behavior for IPv4 address lookups in systems
that support IP.

Some systems require that this type of table (IP routing table) have a wide range of
entries. Some systems are as little as 1K and some are can be up to 1M entries. The C-5
provides a flexible manner in which system parameters may be dialed to make the speed
versus space tradeoff for these types of tables.

The following information is specific to the C-5 NP. (For the C-5e, TLU lookup is so
improved that use of 8-bit and 16-bit index tables is obsolete.) Variable prefix tables are
constructed in the TLU by chaining together one of the following series of tables:

• VP Trie - Data

Table 1 Resource Usage of Hash-Trie-Key Tables With Different Hash Table Sizes

HASH TABLE SIZE

HASH-TRIE-KEY TABLE SIZE OR
PERFORMANCE METRIC 2X KEY TABLE SIZE 4X KEY TABLE SIZE

Storage of hash table entries 1M
(that is, 128K * 8Bytes)

2M
(that is, 256K * 8Bytes)

Storage of trie table entries 64K
(that is, 8K * 8B)

32K
(that is, 4K * 8Bytes)

Storage of key table entries 1M
(that is, 64K * 16Bytes)

1M
(that is, 64K * 16Bytes)

Total table storage > 2M > 3M

Performance estimate of lookups*

* See the C-53/3e Network Processor Architecture Guide for a complete analysis.

N SRAM references N-2 SRAM references
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

34 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
• 8bit Index - VP Trie - Data

• 16bit Index - VP Trie - Data

VP Trie - Data Table Chain
This type of table chain has the VP Trie table implement the variable prefix and keeps
track of the best match. The data table contains just the associated data. This is different
from hash-trie-key because the VP Trie table resolves the bits of the key, and it isn’t
needed to be stored in the data table entry.

The advantage of this type of table is that it is compact and only consumes two tables.
The disadvantage is that it can contain more table entry references the more keys that are
installed in it.

8-Bit Index - VP Trie - Data
This type of table extends above the concept with an optimization. The first eight bits of
the lookup key are evaluated as a direct index into a 256-entry index table. That index
table’s entries point into the VP Trie table, which points to the associated data in the data
table.

This type of table is a compromise between speed and space, because it improves the
number of memory references, but adds a new 256-entry table that the TLU must allocate.

16-Bit Index - VP Trie - Data
This final table configuration for doing best matches is the most efficient of the three, but
consumes the most table space. Like the 8-bit index table, the first 16 bits of the lookup
key are evaluated as a direct index into a 64K entry index table. That index table’s entries
point into the VP Trie table that points to the associated data in the data table.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Partitioning An XPRC Program For Initialization 35
Design Tradeoffs and Performance
The performance and memory consumption of these three different table types vary
greatly. Table 2 shows the differences between the three.

Partitioning An XPRC
Program For Initialization

For an Executive Processor RISC core (XPRC) program to use available IMEM resource to its
fullest, the C-Ware Software Toolset (CST) supports placing the program’s initialization
code in a separate executable (called the init phase executable) and supports a
mechanism for allowing that executable (called the main phase executable) to load
another executable that performs the XPRC’s primary processing.

When program and processor configuration and initialization are complete, the primary
processing executable is loaded on top of the initialization executable. Thus, the primary
executable can contain only the code used for post-initialization processing.

Thus, you can design your XPRC’s primary program to exclude the code for some of the
larger C-Ware API services, such as:

• The code to load the Channel Processors and Fabric Processor from the package

• The code to allocate buffer pools, to assign them to Channel Processors, and to
initialize their BTags

• The code to initialize the queues and allocate them to the various processors

Table 2 Resource Usage of Table Chain Types With Different Lookup Index Sizes

TABLE CHAIN TYPE*

SIZE OR PERFORMANCE METRIC NO INDEX 8-BIT INDEX 16-BIT INDEX

Index table entry storage 0 2K
(that is, 256 * 8Bytes)

524K
(that is, 64K * 8Bytes)

VP Trie table entries storage 1.5M
(that is, 64K * 24Bytes)

1.5M
(that is, 64K * 24Bytes)

1.5M
(that is, 64K * 24Bytes)

Data table entries storage 0.5M
(that is, 64K * 8Bytes)

0.5M
(that is, 64K * 8Bytes)

0.5M
(that is, 64K * 8Bytes)

Total storage 2M > 2M > 2M

Estimated performance (min/typical/max)
in SRAM references

2/11/33 3/16/26 3/12/18

* The examples below show the three table types with 64K of associated data.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

36 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Remember that the XPRC initialization feature is intended to make more IMEM available
for the XPRC’s predominant runtime processing. It is not intended to be a general
checkpoint/restore mechanism or an overlay scheme that would allow a program to
progress to an arbitrary point, then stop and save the NP’s entire state before loading the
next executable and continuing processing.

Partitioning the Program Most larger XPRC programs have a natural partitioning between code that is run once as
the NP boots and the overall NP application starts, and code that runs to support the
forwarding application for as long as the forwarding processor is running.

Among the initialization and one-time activities you would want to implement in an init
phase executable:

• Calls to the various C-Ware API initialization routines (that is, ksInitialize(), bsInitialize(),
qsInitialize(), and so on)

• Calls to configure the system resources (that is, bsPoolAllocate(), bsPoolInitialize(),
qsQueueCreate(), and so on)

• Calls to load the NP’s embedded processors (that is, ksProcLoad()).

It is important to note that the initialization code should not start the processors (that is,
should not call ksProcStart()).

Coding the Init Phase
Program

The init phase program is simply an XPRC program that ends with a call to the API routine
ksProcLoadXp(), which overlays the XP’s IMEM and DMEM with the code and
corresponding data images for either another XPRC init phase executable or the XPRC
main phase executable.

To preserve the in-memory data structures created by the initialization routines, these
services arrange for their data areas to be written to SDRAM by ksProcLoadXp() before the
main program is loaded. Be aware that ksProcLoadXp() does not return to its caller.

Coding the Main Phase
Program

The main phase program comprises the remainder of the application. Before execution
starts at the application’s DCPmain(), the system reloads all preserved data that is used in
both the initialization code and in the main program. The main program must call
ksInitialize(); otherwise, it need not call any C-Ware API service initialization routine that
was called in the initialization program.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Coding the Package Description File 37
Utilizing Multiple Contexts
in Main Phase Program

If the XPRC’s main phase program (that is, the remainder of the application) uses multiple
CPU contexts (by calling ksContextCreate()), the contexts must be created in the main
phase program rather than in any init phase program. Be aware that the call to
ksProcLoadXp() resets all contexts and stacks.

Allocating Queues The XPRC init phase program should allocate queues if it needs them, but should not use
those queues until the main phase program is running. This is because loading the main
phase program resets the status of any pending messages on the queues.

Accessing the TLU Though the init phase program code may use the TLU, that code should ensure that the
TLU is quiescent before calling ksProcLoadMain().

Coding the Package
Description File

After you have created an application with both init phase and main phase programs, you
build them into a package by including lines like the following in the package description
file:

XPINIT "filename" "optional description";
XP "filename" "optional description";

For a NP application that does not have a separate init phase program, the package
description file should contain only the ‘XP’ statement.

See Chapter 4 for a description of how to code the entire package description file.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

38 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Passing User Data From
Init Phase Program to the
Main Phase Program

The XPRC init phase program can create user-defined data structures and pass them to
the main phase program. To do so, user data must be placed in one or more structures
that are aligned on a 64Byte boundary by using the ‘ALIGNED64’ (or ‘ALIGNED128’) macro.
Any data that, in fact, must be aligned should of course appear at the beginning of the
structure. For an example, see the structure ‘BufSvcsData’ in this file:

services\kernel\chip\np\xprc\inc\kernelSvcsData.h.

Typically, the declaration of the user data to be passed to the main phase program
appears in a header file with the ‘extern’ keyword. Any module including that file can then
refer to the data in the structure. For example:

typedef struct {
/* Global variable that keeps track of initialized services. */

int32 serviceInit;
pkgInfo PKGinfo;

/* Number of buffers allocated in pool 29 */
int32u pool29Buffers;

} KernelSvcsData;

extern KernelSvcsData ALIGNED64 kernelSvcsData;

In both the init phase and main phase programs, there must be exactly one module that
defines the data structure. If there is a common source module that is linked into both the
initialization and main programs, it can contain the definition. Otherwise, the definition
must appear once in an init phase-only source module, and once again in a main
phase-only source module. The linker issues an error message if this rule is violated.

The definition in the main phase-only source module must repeat the declaration, but
without the ‘extern’ keyword. It must also include a use of the KS_INIT_DATA macro so
that the data will be preserved from one program to the next. (This macro is defined by
including dcpKernelSvcs.h in your program.) Thus, to continue our example, the
definition in the main phase-only source module contains:

UserData ALIGNED64 userData;
KS_INIT_DATA(data_identifier, &userData, sizeof(userData),

windDownRtn);

The data_identifier is a small number between 32 and 63, and must be different for each
user data structure defined in this way. (The values 0 to 31 are reserved for use by the
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Address Resolution Among XPRC, CPRC, and XP Primary Bootstrap 39
CST’s system services.) Thus, there can thus be up to 32 separate data areas passed,
though for efficiency, fewer is better.

The windDownRtn parameter is either zero (0) or the name of a function taking no
arguments and returning void. If present, this function will be called before the data is
written. It can ensure that any asynchronous operations are complete, and that their
results are reflected in the userData area.

Address Resolution
Among XPRC, CPRC, and
XP Primary Bootstrap

The definitions in the file:

services\chip\inc\dcpImportExport.h

allow the programmer a limited form of address resolution at package build time among
the XPRC program(s), the CPRC programs, and the XP primary bootstrap.

You can define a value (usually the address of a variable) in one module and specify that it
be “exported.” You can “import” that value into another module. These “export” and
“import” statements (defined as C language macros) add information to the ELF file that is
used by the package build tool to resolve the imports.

To use this feature, add this statement in your program:

#include <dcpImportExport.h>

For additional information see the comments in dcpImportExport.h.

For example, assume that you have a host application program that must write directly to
a specific location in a particular Channel Processor DMEM region. To export an address
within that DMEM for use by the host program, include code such as the following in the
CPRC program:

/* Internal IP Address */
int32u ipInternalAddr;
#ifdef HOST_TEST
DCPEXPORT(ipInternalAddr);
#endif

The ‘DCPEXPORT’ macro causes this symbol and its CP DMEM address to be included in a
reserved section of any package that uses this CPRC program.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

40 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
To import the address within that DMEM region into the host program, include code such
as the following in the host program:

char * symName = "ipInternalAddr";
...

status=hsSymbolImport(ipStack->dcpHandle,symName,(void**)&valPtr);

This makes the address in the DMEM region, represented by the exported symbol
‘ipInternalAddr’, available to the host program.

Exporting a Value To export a value, use the DCPEXPORT macro or DCPEXPORT_VALUE macro in the code.
These statements must appear at the top level of the code, outside any function scope.

DCPEXPORT Macro
DCPEXPORT(var_name)

The var_name argument is the name of an external variable or procedure. Its address can
be imported into other programs as var_name.

It is usual that var_name be defined in the current compilation unit, but it is possible to
export a name declared here but defined elsewhere in the program being linked.

It is valid for multiple programs in a package to export the same var_name, but only if the
value is the same in all of the exports. Similarly, the same var_name can be exported
multiple places in a single program, but only if the same value is exported everywhere.

DCPEXPORT_VALUE Macro
DCPEXPORT_VALUE(value, name)

The value argument is an expression to be exported that must be constant at compile
time. The value of the expression value is available to be imported elsewhere using the
name name.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Address Resolution Among XPRC, CPRC, and XP Primary Bootstrap 41
Importing a Value To import a value, use the DCPIMPORT macro or DCPIMPORT_WEAK macro in the code.
These statements must appear at the top level of the code, outside any function scope.

DCPIMPORT Macro
DCPIMPORT(import_name, name)

This declares a variable named import_name of type ‘void*’. At package build time, the
value of name exported from some other program is stored in import_name.

If the other program exported name using the ‘DCPEXPORT(name)’ macro, the void*
import_name contains a pointer to the variable in the other program.

If a CPRC program is exporting a variable's address, the imported pointer value contains
the address of the variable in CP0. The importing program must explicitly relocate it to
point to some other CP's memory if necessary.

If the other program exported name using the ‘DCPEXPORT_VALUE(value, name)’ macro,
the void* import_name contains the value from the other program. In this case it may be
necessary to cast the void* to some other type.

 DCPIMPORT_WEAK Macro
DCPIMPORT_WEAK(import_name, name)

Same as the DCPIMPORT macro, but import_name contains 0 if name is not exported
anywhere.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

42 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Valid API Routines to Call
From an Initialization
Phase Program

The C-Ware API routines are documented in the C-Ware API User Guide document.

For more information about restrictions on the functionality for partitioning the XPRC
program, see the C-Ware Software Toolset Release Notes document for this C-Ware
Software Toolset version.

Only the following C-Ware API routines can be called within an init phase
executable.

Kernel Services ksInitialize() — Must be called in each init or main executable, but not more than once in
each executable

ksLssiRead()
ksLssiReadComplete()
ksLssiWrite()
ksLssiWriteComplete()
ksMdioRead()
ksMdioReadComplete()
ksMdioWrite()
ksMdioWriteComplete()
ksPanic()
ksPrintf()
ksProcIdCreate()
ksProcLoad()
ksProcLoadXp()
ksSerialBusConfigLssi()
ksSerialBusConfigMdio()

Buffer Services bsInitialize() —Must be called no more than once across all init/main executables

bsError()
bsPoolAllocate()
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Valid API Routines to Call From an Initialization Phase Program 43
Queue Services qsInitialize() — Must be called no more than once across all init/main executables

qsEnable()
qsQueueConfig()
qsQueueCreate()
qsQueueLevelSet()
qsQueuePool()

Protocol Services psInitialize() — Must be called no more than once across all init/main executables

All other routines can be called from the init executable.

PDU Services pduInitialize() — Must be called no more than once across all init/main executables

All other routines can be called from the init executable.

Fabric Services fsInitialize() — Must be called no more than once across all init/main executables

All other routines can be called from the init executable.

Table Services InitializeTableServices() — Must be called no more than once across all init/main
executables

and/or

CreateTable()
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

44 CHAPTER 2: APPLICATION DESIGN AND CODING OPTIONS
Design Tradeoffs There are certain features that can be implemented in any of various components of a
C-Port NP-based system.

Some of these features are in the control path, and it is desirable that they execute quickly.
But such features also cost memory and cycle time when implemented on the NP. These
types of features might present a classic speed/space tradeoff by being implemented on
the NP’s XPRC versus the host processor.

Examples of protocol features that fit into this category are:

• Bridge Address Table management

• Bridge Learning and Aging

• Ethernet autonegotiation

These types of features can be implemented in a XPRC program that can run quickly
(almost at the line interface speed); however, they cost the system in instruction and data
memory.

Some designers of NP-based systems choose to implement, for example, the Bridge
Address Table management in the XP to allow for quick lookup access times. This is
because the application can learn a large number of bridge addresses quickly. The down
side of implementing this function on the XP is that it consumes instruction memory and
cycles that could otherwise be used by other features of the system running on the XP.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
REV 01
Chapter 3
APPLICATION DIRECTORY STRUCTURE
AND BUILD SYSTEM CONVENTIONS
Overview The C-Ware Software Toolset (CST) is an easily-accessible environment for implementing C
code, as soon as the user learns how to employ its software directory structure and build
system.

This chapter provides the necessary information for mastering use of both CST directory
structure and of the build system (make) utility:

• “Application Directory Structure” on page 46

• “Structure Requirements for File and Directory Names” on page 47

• “Makefiles” on page 49

• “Directory Example for Applications” on page 50

• “File Placement Guidelines” on page 52

• “Object File Generation” on page 53

• “Using the Build System” on page 58

• “Summary of Build System Requirements and Recommendations” on page 63
REV 01

46 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
Because the C-5e and C-3e Network Processors have very similar architectures, there is
considerable sharing of code between builds for these devices, even where the same
code would not be shared with a build for the C-5 Network Processor. Directories named
“cxe” are used to contain this code.

Table 3 provides definitions of terms used in this document and their descriptions.

Application Directory
Structure

Applications that run under the environment provided by the CST are required to support
multiple chip versions (C-5, C-5e, others), different revision levels (A1, B0, and so on) for
each chip version, and different run-time environments (software simulation, hardware).

The directory structure accommodates software that is:

• Common between the CPRC and XPRC and any chip or chip revision

• Processor dependent (that is, specific to CPRC, XPRC, SDP, FDP, or host)

• Processor and chip dependent (for example, specific to CPRC on C-5e)

• Processor, chip and rev dependent (for example, specific to CP on C-5 Version D0)

There are a set of rules that allow a flexible implementation and interpretation of the
structure of the directories in the build tree.

Table 3 Build System Terminology

TERM DEFINITION

Architecture The architecture of the chip specified. Today, this is just “np” (network
processor)

Model The chip being specified. Today this is “C-5”, “C-5e”, or “C-3e”

Processor The processor on a given chip. For example, “cprc”, “xprc”, “sdp”, and so on.

Revision The revision of a given chip. For example, “a1”, “b0”

Environment The environment that the given software runs on. For example, software
simulation (“sim”), hardware (“hw”)

Configuration The configuration of the build (“debug” or “release”) that controls the usability
and optimization level of the code

Variant Combination of the components (that is, the architecture, model, processor,
revision, environment, and configuration) that make up a build target.
A variant is specified by the settings of a related set of environment variables
provided by the C-Ware Software Toolset.
REV 01 FREESCALE SEMICONDUCTOR

Structure Requirements for File and Directory Names 47
The CST uses this directory structure for both its C-Ware Reference Library applications
(found in subdirectories under the CST’s apps\ directory) and application components
(found in subdirectories under the CST’s apps\components\ directory).

Structure Requirements
for File and Directory
Names

The build system has a certain set of requirements of the directory structure in order for it
to work properly.

The build system consists of a set of Makefiles that do the following:

• Automatically generate obj, lib, and bin subdirectories for a certain variant. The
variant is defined by the settings of a set of related environment variables provided by
the CST.

• Automatically generate deps directories for dependency information at build time.

To accomplish this, the build system requires that the following rules are followed:

1 If the variant to be built contains a directory named chip every subdirectory below
chip is of a well-known name, so that the build system knows how and when to build
it.

2 The only valid leaf directories that contain sources and headers involved in the build
are to be named src and inc.

3 The src directory should contain only source files (*.c, *.cpp, *.S).

4 The inc directory should contain only header files (*.h).

5 There should be no empty directories. For instance, if the src or inc directory exists, it
should contain at least one source or include file (respectively). This is not an absolute
requirement but will slow down builds, as empty directories may be checked for
building.

6 All paths in Makefiles should be relative.

Directory Keywords There are a number of keywords used in the directory trees to help control the build and
to provide context for the code included in them. As a general rule, there can be an inc or
src directory at any level.

• Top Level:

– chip, host, and offline
FREESCALE SEMICONDUCTOR REV 01

48 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
• Architectures:

– np and offline

• Processors:

– xprc, cprc, sdp, fdp (found only under chip)

– ppcVxworks and i86Linux (found only under host)

• Chips:

– c5 (for C-5), c5e (for C-5e), c3e (for C-3e), cxe (for C-5e and C-3e)

• Revisions:

– a1, b0, d0

• Environment

– sim, hw

This list will be added to over the course of time as Motorola introduces new products in
the C-Port family.

TAGS Support The build system also supports the TAGS feature that many editors (such as GNU emacs)
use.

The TAGS feature allows users to highlight variables, structures, and so on and have a file
that contains the definition of that item automatically loaded. For software development
activities, this is a very handy feature.

Once again, no special support is required in individual Makefiles to support this feature.
Users need only make sure that they include the CST file bin\cport-rules.mk make
include file in Makefiles.

To use this feature, first build the TAGS files as follows:

D:\C-Port\CST2.2\apps\gbeSwitch\run> make tags

This step will build a TAGS file in the bin\Variant\$(CPORT_PROC)\ directory with the
name $(APPNAME).tags for both the cprc and xprc.

In editors that support this feature, this is the file that should be loaded when using the
feature.
REV 01 FREESCALE SEMICONDUCTOR

Makefiles 49
The TAGS files are not automatically built by the build system.

Makefiles The application Makefile will include several standard targets. These targets are necessary
so that a parent Makefile will be able to invoke a child Makefile in a consistent manner.
Table 4 summarizes these targets.

Also note that Makefiles must support GNU emacs TAGS.

Here is a portion of an example Makefile that illustrates the use of the standard targets:

default: all

all: $(TGT)/widget.pkg

patterns: $(INPAT_DIR)/widgetIn.pat
cd $(INPAT_DIR) && $(MAKE)

test:
$(DCPSIM) –batch
.
.
.

accept: all patterns test

Table 4 Standard Makefile Targets

TARGET NAME DESCRIPTION

default First target in the Makefile. Has a single dependency of “all” and no rules.
Invoking make on the command line with no targets will build the target
“all.”

all Builds all necessary code images. (e.g. the *.pkg file)

patterns Generates all input pattern files used for regression testing.

test Runs the regression test.

accept Builds the code image, generates the patterns, and runs the regression test.
Equivalent to “make all patterns accept.”

clean Removes all files created by the make process from all of the standard
targets.
FREESCALE SEMICONDUCTOR REV 01

50 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
clean:
rm –r $(TGT)
rm –f $(INPAT_DIR)/*.pat
.
.
.

Directory Example for
Applications

The following is one example of a directory structure that the build system can
accommodate.

Table 5 provides a hierarchical description of the directory tree for one of the sample
applications found in the apps directory of the CST. While the table illustrates the
directory tree for only one application (gbeSwitch), another application will employ the
same subdirectory structure layout, although it might not use all those those listed in the
table.

As you look at your CST installation and compare its contents to that in the following
table, please notice that one directory below apps is not an application name. Its name,
components
suggests what it holds — subdirectories each named for a service component provided
to applications needing that service (examples are ip, sonet, atm, phy).

Notice that the directory hierarchy next described for applications also applies to
components.
For this reason, after Table 5, the section “File Placement Guidelines” describes all
top-level filenames as "app_or_component".
REV 01 FREESCALE SEMICONDUCTOR

Directory Example for Applications 51
Table 5 Directory Structure Naming Hierarchy for Applications

DIRECTORY NAME AND
HIERARCHY POSITION DESCRIPTION (EXAMPLE)

application The top-level module directory positioned below the apps directory in the CST directory structure. The actual name for application
(forthis example, it is gbeSwitch) usually suggests its functionality.

run* Holds simulation files, which are automatically generated by the CST build system, creating target-dependent subdirectories (like bin,
obj, lib, and deps) for such files. The gbeSwitch subdirectories are not listed here to maintain readability. See “Variants” on page 56 for
details about the contents of these subdirectories.

host† Holds files for a host application. Subdirectories for gbeSwitch are not listed here for simplicity, but note that this directory would hold an
np directory with subdirectory for whatever OS was being used on the host (for example, Linux and/or ppcVxworks)

offline Holds offline table-building code

doc Holds documentation for the application (README, app design spec)

chip Always so named for modules related to NP

np Always so named, may refer to C-5, C-5e, or C-3

sdp Always so named, holding subdirectories for functionality specific to SDP

src Holds source files for SDPs

inc Holds include files for SDPs

cprc Always so named, holding subdirectories for functionality specific to CPRC

c5 Always so named, but only present for applications built to use the c5

src Holds source files for the c5

inc Holds include files for the c5

cxe Always so named, but only present for applications built to use eitherthe c5e or the c3e

src Holds source files for either c5e or c3e

inc Holds include files for the c5e or c3e

xprc Always so named, holding subdirectories for functionality specific to XPRC

c5 Always so named, but only present for applications built to use the c5

src Holds source files for the c5

inc Holds include files for the c5

cxe Always so named, but only present for applications built to use eitherthe c5e or the c3e

src Holds source files for c5e or c3e

inc Holds include files for c5e or c3e

*Most files in subdirectories under run are automatically generated by the CST build system, dependent on values you feed to it in order
to describe the particular target for this current “variant”. See “Object File Generation” on page 53 for details on variants.
†This directory may also contain an inc and src subdirectory, depending upon the application. Files inserted at this upper level would
be for code that has no direct dependencies on the NP “chip”.
FREESCALE SEMICONDUCTOR REV 01

52 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
It is important that any body of software limit the amount of environment-dependent
code (version to version) that is different for a given application, so this structure works
well.

File Placement Guidelines To benefit from this organization, it is important that the files are all placed properly.

Here are guidelines to assist you in determining where source files should be placed in a
directory tree that the build system can support:

• app_or_component/run — This optional directory is used by some software
(applications) that contain the high-level Makefile, simulation files, and so on. This is
the directory where your both build an application and run simulations of it, if a “sim”
variant is present.

• app_or_component/inc — This include directory should contain header files
that are architecture, model, processor, version and environment independent.
Header files must match *.h. An example would be a header file that contained
definitions that ran on any architecture, any version, any processor and any
environment. Otherwise, the header file must be placed at a lower level inc directory.

• app_or_component/doc — This optional directory should contain
documentation for the given component. This is primarily for applications.

• app_or_component/chip — This directory must be present so that the build
system knows where to start conditionally determining which files to build. This
directory should contain only subdirectories.

• app_or_component/chip/np — This directory (reserved keyword) contains
subdirectories that contain files that are only relevant to a network processor
architecture.

• app_or_component/chip/np/<cprc|xprc|sdp|fdp>/
<src|inc> — If present, these directories should contain at least one file (source or
header) that is specific for the processor that is specified (that is, cprc, xprc, sdp, fdp).

• app_or_component/chip/np/<cprc|xprc|sdp|fdp>/
<c5|cxe>/<src|inc> — If present, these directories should contain at least one
file (source or header) that is specific for the chip model(s) and processor(s) that is
specified.
REV 01 FREESCALE SEMICONDUCTOR

Object File Generation 53
• app_or_component/chip/np/<cprc|xprc|sdp|fdp>/
<c5|cxe>/<a1|b0|d0>/<src|inc> — If present, these directories should
contain at least one file (source or header) that is specific for the chip model(s),
processor(s), and processor revision that is specified.

• app_or_component/chip/np/<cprc|xprc|sdp|fdp>/
<c5|cxe>/<a1|b0|d0>/<sim|hw/<src|inc> — If present, these
directories should contain at least one file (source or header) that is specific for the
chip model(s), processor(s), processor revision, and environment that is specified.

Object File Generation A major benefit of the build system is the automatic generation of object file directories.
This allows users to specify a certain set of environment variables and build for a specific
target variant. See the section “Variants” on page 56.

In the build system, builds of multiple variants can coexist without corrupting each other.

Object Directory Location The build system automatically creates target-dependent directories for the storage of
object files, libraries, and executables. These directories are:

• obj — Stores object files that end in *.o

• lib — Stores archived libraries that end in *.a

• bin — Stores binaries, executables and package files that end in *.exe, *.dcp, *.pkg,
and so on

These directories are located underneath the run directory. All corresponding files would
be located under this directory as shown in Table 6.

Table 6 Directories Containing Files Generated by Build System

DIRECTORY CONTENTS

app/run/obj/variant/cprc/ Contains all the object files for the CPRC for the application for
the given variant.

app/run/lib/variant/cprc/ Contains any archived libraries for the CPRC for the application
for the given variant.

app/run/obj/variant/xprc/ Contains all the object files for the XPRC for the application for
the given variant.

app/run/lib/variant/xprc/ Contains any archived libraries for the XPRC for the application
for the given variant.
FREESCALE SEMICONDUCTOR REV 01

54 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
For example, the following shows where the obj, bin, and lib directories would be
located:

application
run

obj
c5-d0-sim-debug

 cprc
xprc
sdp
fdp

lib
c5-d0-sim-debug
cprc
xprc

bin
c5-d0-sim-debug
cprc
xprc

Environment Variables for
Object File Generation

A few environment variables are required for the build system to properly operate.

The environment variables that are supported by the build system fall under two
categories:

app/run/obj/variant/sdp/ Contains all the object files for the SDPs (*.ucode, *.log) for the
application for the given variant.

app/run/obj/variant/fdp/ Contains all the object files for the FDPs (*.ucode, *.log) for the
application for the given variant.

app/run/bin/variant/ Contains all binary and executable type files for the application
for the variant. This includes:

• ELF binary files (*.dcp)

• Memory maps for those files (*.map)

• SDP image files (*.sdp)

• FDP image files (*.fdp)

• C-Ware package files (*.pkg)

• Emacs-like ‘tags’ files

Table 6 Directories Containing Files Generated by Build System (continued)

DIRECTORY CONTENTS
REV 01 FREESCALE SEMICONDUCTOR

Object File Generation 55
• Those required to define the type of target being built

• Those required by the build system, regardless of the configuration (these will be
discussed in detail later in this document)

Table 7 shows the set of environment variables required by the build system that may be
defined to customize the target of the build. Note that variables set in a Makefile will take
precedence over variables set in the environment.

Table 7 Environment Variables Required by the Build System

ENVIRONMENT
VARIABLE NAME PURPOSE

CPORT_ARCH Used by the build system to identify the architecture that is being built
for.
This variable can be defined on the command line, in the environment or
in the Makefiles themselves. Arguments on the command line will take
precendence, then those in the Makefile, then those in the environment.
Valid values for this variable are np.
The default value for CPORT_ARCH is np.

CPORT_MODEL Used by the build system to identify the chip model that is being built for.
This variable can be defined on the command line, in the environment or
in the Makefiles themselves.
Valid values for this variable are: c5, c5e, c3e.
The default value for CPORT_MODEL is: c5.

CPORT_REV Used by the build system to identify the revision of a particular version of
a chip that is being built for.
This variable can be defined on the command line, in the environment or
in the Makefiles themselves.
Valid values for this variable are: a1, b0, d0
The default value for CPORT_REV is dependent on the value of
CPORT_MODEL. There is no default for rev. For c5, the most recent rev is
d0. For c5e and c3e, the most recent rev is a1.

CPORT_TGT Used by the build system to identify the target for the
architecture/model/revision of a chip that is being built. This
differentiates software that is built for simulation vs. hardware.
This variable can be defined on the command line, in the environment or
in the Makefiles themselves.
Valid values for this variable are: hw, sim. The default value for
CPORT_TGT is: sim.
FREESCALE SEMICONDUCTOR REV 01

56 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
Variants To automatically generate the object file directories and to search for source files in the
correct places, the environment variables are used to generate something called an
identifier called a variant. A variant is a uniquely named identifier that is a combination of
chip architecture, model, processor, revision and environment.

For example, if a user had the following definitions:

CPORT_ARCH=np
CPORT_MODEL=c5
CPORT_REV=d0
CPORT_TGT=hw
CPORT_CFG=debug

The variant would be: c5-d0-hw-debug. This variant uniquely identifies the build target
by its combination of chip architecture, model, revision, target and configuration in the
source tree.

Because in the build system only one architecture currently exists, the value of
CPORT_ARCH is not currently used in forming the variant.

CPORT_CFG Used by the build system to identify the configuration being built
(release, debug).
This variable can be defined on the command line, in the environment or
in the Makefiles themselves.
Valid values for this variable are: debug, release.
The default value for CPORT_CFG is: debug.

Table 7 Environment Variables Required by the Build System (continued)

ENVIRONMENT
VARIABLE NAME PURPOSE
REV 01 FREESCALE SEMICONDUCTOR

Object File Generation 57
Dependency Checking The build system supports automatic dependency checking for .c, .cpp, and .s source files.
No changes are required to the Makefiles provided in the CST that take advantage of the
build system and include the proper *.mk files.

The build system automatically generates dependency information for all source files that
are included in the build on a per-variant basis. It does this by putting the dependency
information in a deps subdirectory under the build target’s run directory.

The following directory shows where the dependency checking information is stored:

<application>
run

deps
c5-d0-sim-debug
cprc
xprc
sdp
fdp

The first time that a build of a given target variant is performed, those directories in bold
will be populated with the dependency checking information. This allows subsequent
builds of this target variant to require only a rebuild of those source files for which a
dependent file has changed (such as a header file).

The dependency checking information will be contained in files named: filename.d in the
appropriate cprc and xprc subdirectory, and filename.ud in the sdp and fdp
subdirectories.

The CST files bin\cport-apps-rules.mk and bin\cport-rules.mk support dependency
checking. As long as they are included, no other support is required in the Makefiles.

If you change any file locations, we recommend that you perform the build system
command ‘make clean_all’. This causes the dependencies information to be
automatically updated with the location of the new file and prevents generation of new
build errors.
FREESCALE SEMICONDUCTOR REV 01

58 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
Using the Build System To properly use the build system under the guidelines described above, you must follow
certain practical rules for setting environment variables, and so on. To keep track of this
manually would be cumbersome.

This section shows how you can leverage the build system with the least knowledge of its
internals.

Setting Environment
Variables

The build system defines and uses three types of environment variables:

• Those required by the CST for valid operation of the software simulator, compiler and
debugger — These are set by running the sv.bat (or sv.[c]sh under Solaris and Linux)
command file when creating a new shell. (See the C-Ware Software Toolset Getting
Started document for the details.)

• Those required by the build system that are set inside of Makefiles — These are statically
defined inside of Makefiles and the *.mk make include files. These variables are
described in the file bin\cport-base.mk.

• Those required by the build system to customize for different build configurations — These
are variables that affect if the system is built for software simulation or hardware, what
chip model and revision, defining the variant, and so on (that is, CPORT_MODEL,
CPORT_REV, and so on). These variables are described in the file bin\cport-base.mk.

Setting Variables Manually
Users may set the environment variables manually. This may be desirable if the build is
initiated automatically by scripts, for example.

Users may set the environment variables manually in one of three ways:

• Define the variables in the user environment

• Statically assign the variables in Makefiles

• Call one of the configure scripts provided in the CST

To define the variables in the user environment, users can define the ‘CPORT_*’ variables
wherever variables are defined on that particular system:

• Windows — Under System Properties, Advanced, and Environment Variables

• Solaris and Linux— In an initialization file (.kshrc, .cshrc)
REV 01 FREESCALE SEMICONDUCTOR

Using the Build System 59
To set these environment variables in a Makefile, call out the variables:

CPORT_ARCH=np

Under the CST’s bin\ directory is the configure\ directory (for the CST on both Sun SPARC
Solaris and Linux platforms it is the ssbin/configure.[c]sh/ directories), which contains
batch files (or Unix shell scripts) that set the environment variables for typical build target
variants such as c5-d0-hw-debug or c5e-a1-sim-debug. The name of the script matches
the variant directory that is utilized based on the values assigned to the variables in that
script.

Note that for the CST on both the Sun SPARC Solaris platform and the Linux platform, you
must “source” each configuration script, as described for the sv.[c]sh script in the C-Ware
Software Toolset Getting Started document.

Setting Variables Automatically
Most users prefer to have the variables set automatically on the command line when
invoking ‘make’.

To do this, you can include the following variables-setting argument in the ‘make’
command line, if using the *.mk make include files provided in the CST’s bin\ directory:

D:\C-Port\CST2.2\apps\<appName>\run> make REV=c5-d0-sim-debug

In the case of this example, specifying this ‘REV’ variable causes the build system to
behave as if the following variables were set:

CPORT_ARCH = np
CPORT_MODEL = c5
CPORT_REV = d0
CPORT_TGT = sim
CPORT_CFG = debug

This allows flexible use of the build system without having to use different Makefiles or
constantly changing the environment between builds.

You can also use these variables in the CST’s simulation environment (for example, to find
where a particular package files is located). This capability has also been extended to be
used by the software simulator as follows:

D:\C-Port\CST2.2\apps\gbeSwitch\run> cwsim -rev c5-d0-sim-debug
FREESCALE SEMICONDUCTOR REV 01

60 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
In the case of this example, two things happen:

1 The software simulator behaves as if the ‘CPORT_*’ variables were set as specified in
the argument to the ‘-rev’ flag.

2 The correct simulator is invoked as specified by the argument to the ‘-rev’ flag.

CST’s Provided
Application-Level Build

Targets

The CST provides a set of make include files that define build targets for use in the
Makefiles that reside at the application level. These targets, listed in Table 8, are intended
to be run from the .\run\ subdirectory under any C-Ware application provided in the CST.

In Table 8 notice that each build target’s identifier is case-sensitive.

For any of the build targets listed in Table 8, you can specify the variant using the
command ‘make REV=<variant>’.

Table 8 Build Targets Defined in CST-Provided Make Include Files

BUILD TARGET WHERE DEFINED PURPOSE

accept bin\cport-apps-rules.mk Perform the ‘all’ target’s actions for this variant and run this variant’s
acceptance test (if any).

all Application-level, component-level, or
subsystem-level Makefile

Build all of this variant’s generated components (that is, *.o, *.a,
*.out, *.map, *.dll, *.exe, *.sdp, *.dcp, *.dsh, *.d).
This is typically the default target in an application-level,
component-level, or subsystem-level Makefile

checkEnv bin\cport-apps-rules.mk Run the CST’s bin\checkEnv.pl script.

clean bin\cport-apps-rules.mk Perform the ‘clean_local’ target’s actions for this variant, and delete
*.out and *.processed files for this application.

clean_all bin\cport-apps-rules.mk Perform the ‘clean’ target’s actions for all variants of this application.

clean_host bin\cport-apps-rules.mk Perform the ‘clean_local’ target’s actions for the host\ subdirectory
for this application.

clean_local bin\cport-apps-rules.mk Delete the subdirectory tree for this variant under the obj\, lib\,,
bin\,, and deps\ subdirectories for this application.

clean_local_all bin\cport-apps-rules.mk Perform the ‘clean_local’ target’s actions for all variants of this
application.

clean_patterns bin\cport-apps-rules.mk Delete all files in this variant’s inPatterns\ subdirectory, and delete
this variant’s outPatterns\s directory.

compare bin\cport-apps-rules.mk Compare the .out files produced by this variant’s acceptance test
with this variant’s .expected files.
REV 01 FREESCALE SEMICONDUCTOR

Using the Build System 61
CST’s Provided Make
Include Files

Table 9 lists the CST’s provided make include files (found under the CST’s bin\) and the
purpose of each. These files support the operations defined in the application-level
Makefiles that are provided in the CST for each C-Ware application.

parseMap bin\cport-apps-rules.mk Run the CST’s bin\memMapParse.pl script for this variant’s XPRC
and CPRC executables.

patternDir bin\cport-apps-rules.mk Create the outPatterns\ subdirectory for this variant.

patterns bin\cport-apps-rules.mk Build this variant’s input pattern files (if any).

pkg_check bin\cport-apps-rules.mk Validate the contents of the package file (*.pkg) for this variant.

test bin\cport-apps-rules.mk Perform the ‘pkg_check’ target’s actions for this variant, perform the
‘patterns’ target’s actions for this variant, run this variant’s
acceptance test (if any), then perform the ‘compare’ target’s actions
for this variant.

Table 8 Build Targets Defined in CST-Provided Make Include Files (continued)

BUILD TARGET WHERE DEFINED PURPOSE

Table 9 CST-Provided Make Include Files

ENVIRONMENT VARIABLE NAME PURPOSE

cport-base.mk This make include file processes the build environment
variables and sets up the required build variables. It is
used by cport-rules.mk.
This file is typically not modified by users. This file
should not be included directly in user Makefiles.

cport-base-port.mk Portable portion of cport-base.mk. Modify this file
when a new operating system and build targets are
added.
This file is typically not modified by users. This file
should not be included directly in user Makefiles.

cport-make.mk This make include file sets up the necessary build flags
and variables. Configures the build by including the
pertinent sub-Makefiles specific to the build target
variant’s elements. It is used by cport-rules.mk.
This file is typically not modified by users. This file
should not be included directly in user Makefiles.

cport-rules.mk This make include file provides support for building
object files, libraries, executables, and so on. Includes
cport-base.mk and cport-make.mk.
This file is typically not modified by users. This file
should not be included directly in user Makefiles.
FREESCALE SEMICONDUCTOR REV 01

62 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
cport-apps-rules.mk This make include file provides support for building
object files, libraries, executables, and so on. Includes
cport-base.mk and cport-make.mk.
This file is typically not modified by users. This file
should not be included directly in user Makefiles.

cport-<CPORT_MODEL>-
<CPORT_REV>.mk

Contains definitions specific to target model and
target revision.
This file can be modified by users to accommodate
changes in toolsets or command names.

cport-<CPORT_PROC>.mk
or
cport-make-<CPORT_OS>-
<CPORT_PROC>.mk

Contains definitions specific to target processor.
This file can be modified by users to accommodate
changes in toolsets or command names.

cport-make-<CPORT_OS>.mk Contains definitions specific to target operating
system.
This file can be modified by users to accommodate
changes in toolsets or command names.

cport-make-<CPORT_BUILD_OS>.mk Contains definitions specific to a particular build
operating system. Defines the general commands and
the native compiler.
This file can be modified by users to accommodate
changes in toolsets or command names.

cport-make-<CPORT_BUILD_OS>-
<CPORT_OS>.mk

Contains definitions specific to a particular build
operating system and target operating system. The
cross-compiler is defined here.
This file can be modified by users to accommodate
changes in toolsets or command names.

cport-<CPORT_TGT>.mk Contains definitions specific to build target.
This file can be modified by users to accommodate
changes in toolsets or command names.

cport-<CPORT_CFG>.mk Contains definitions specific to build configuration.
This file can be modified by users to accommodate
changes in toolsets or command names.

Table 9 CST-Provided Make Include Files (continued)

ENVIRONMENT VARIABLE NAME PURPOSE
REV 01 FREESCALE SEMICONDUCTOR

Summary of Build System Requirements and Recommendations 63
Additional Makefile
Functionality

This functionality is available only for CST releases after CST Version 2.0.

The CST’s build system allows you to add extra compiler flags and extra include paths from
both the command line and from individual Makefiles.

To add extra flags (which are assigned to the CFLAGS variable) from the command line,
execute the following:

make EXTRA_CFLAGS=-DMY_EXTRA_CFLAG

To add extra include paths (which are assigned to the INCLUDES variable) from the
command line, execute the following:

make EXTRA_INCLUDES=-I/home/me/MyTempIncludePath

Summary of Build System
Requirements and
Recommendations

The following tables list a set of requirements and recommendations for successfully
integrating applications into CST build system, split out into the following categories:.

• “Build System Directory Requirements for Applications”

• “Naming Conventions”

• “Build System Checklist”
FREESCALE SEMICONDUCTOR REV 01

64 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
Build System Directory
Requirements for

Applications

Table 10 enumerates the directory requirements of applications in the CST.

Naming Conventions Table 11 enumerates the naming conventions/requirements of CST applications.

Table 10 Requirements of CST Applications

DESCRIPTION REQUIRED

The directory structure will meet the specifications in “Application Directory
Structure” on page 46 and “Structure Requirements for File and Directory Names”
on page 47.

Yes

The only leaf directories at the <family> level or below will be “inc” and “src”. Yes

The only leaf directories at the <module> level will be “inc”, “src”, “doc”, and “sim”. Yes

The “sim” directory may contain a “patterns” directory. No

Source code should be placed in the directory tree at the highest level as practical. No

As a source code file becomes more target specific, it should be demoted down the
directory tree as appropriate.

No

Source code which is expected to be portable across all (or many) architectures
should be placed in the “<module>/src” directory and its public interface should
be placed in the “<module>/inc” directory.

No

Source code which implements interfaces between processors in a single
architecture should be placed in the “…/<family>/src” directory and its public
interface should be placed in the “…/<family>/inc” directory.

No

Source code which is intended to run on a particular processor should be placed in
the “…/<proc>/src” directory and its public interface should be placed in the
“…/<proc>/inc” directory.

No

Source code which includes chip specific implementation should be placed in the
“…/<chip>/src” directory and its public interface should be placed in the
“…/<chip>/inc” directory.

No

Source code which included chip revision specific implementation should be place
in the “…/<rev>/src” directory and its public interface should be placed in the
“…/<rev>/inc” directory.

No

Table 11 Naming Conventions/Requirements of CST Applications

DESCRIPTION REQUIRED

All files and directories will be named using a mixed case convention where the first
letter is always lowercase and the beginning of each subsequent logical word is
uppercase.

Yes

Filenames will meet the specifications in “Makefiles” on page 49. Yes
REV 01 FREESCALE SEMICONDUCTOR

Summary of Build System Requirements and Recommendations 65
Build System Checklist Table 12 presents a checklist to aid developers in making sure that an application meets
all the Build System requirements of the CST.

Makefiles will be named “Makefile” Yes

Simulation configuration files will be named “config[<desc>]”. Yes

Simulation input files will be named “sim[<desc>].in”. Yes

Filenames should not contain underscores. No

Header files used to export public functions and data should have the same file
name root as the source file in which the functions and data are contained.

No

Header files that describe interfaces between physical components should have a
file name root that ends in “If”.

No

Table 11 Naming Conventions/Requirements of CST Applications (continued)

DESCRIPTION REQUIRED

Table 12 Checklist of Build System Requirements of CST Applications

DESCRIPTION COMPLETE?

proper directory structure

properly named source code and header files

properly named Makefile and simulation files

standard targets in Makefile

support for GNU emacs TAGS

README file (recommended)

regression test (recommended)

design review (recommended)

no errors or warnings during build (recommended)
FREESCALE SEMICONDUCTOR REV 01

66 CHAPTER 3: APPLICATION DIRECTORY STRUCTURE AND BUILD SYSTEM CONVENTIONS
REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
CSTADBG-UG/D

REV 01
Chapter 4
BUILDING AND PACKAGING AN
APPLICATION
Overview This chapter provides an overview of the C-Ware versions of GNU tools that are provided
in the C-Ware Software Toolset (CST) and how you use them to build application
executables targeted to a C-Port Network Processor (C-5, C-5e, or C-3e NP). This document
is not intended to be a complete guide to programming in the C programming language
or to using the GNU software development tools.

This chapter — which, like the rest of this, assumes that you are an experienced
programmer familiar with the C programming language, C compilers, and make tools —
contains the following sections:

• “About Building a C-Ware Application” on page 68

• “Environment Variables” on page 70

• “Using the ‘make’ Tool” on page 70

• “Using the C-Ware Compiler” on page 74

– “Compiler Support for Different Network Processors” on page 75

– “Compiling a Program Targeted for the CPRC” on page 76

– “Compiling a Program Targeted for the XPRC” on page 77

– “Linker Recommendation” on page 78

• “Packaging and Loading An Application” on page 79

– “About the dcpPackage Tool, Package Description Files, and Package Files” on
page 79

– “Understanding NP Application Configurations” on page 80

– “Using the ‘dcpPackage’ Tool” on page 81

– “RC Interface Code” on page 93

– “How the XP Starts” on page 94

– “Loading and Reloading the CPRCs” on page 96
CSTADBG-UG/D REV 01

68 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
About Building a C-Ware
Application

After writing and modifying your code, you can build an application, or any component of
an application, that is targeted for a C-Port Network Processor (NP). Figure 3 on page 68
shows the process for compiling and packaging C-Ware code to run on the C-Ware
Simulator or on a NP.

Notice in Figure 3 that the ultimate product of building a network processor-based
application is a C-Ware package file, which is directly loadable into a NP device or into the
C-Ware Simulator.

Figure 3 C-Ware Application Building Process

Package
Specification

CP.dcp

ipLib.a

CP.dcp CP ELF Image

CP ELF Image

CP ELF Image

CP.dcp

support.o

C-Ware Compiler
XP Boot Program

XP ELF Image
ip.c

arp.c

support.c

> make > dcpPackage

1

2

3

CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

About Building a C-Ware Application 69
To build a C-Ware package file:

1 Execute the make tool and specify a build target, which specifies a target variant as
defined in the Build System Conventions document. The variant is a string formed as the
concatenated combination of shorter keyword strings, each of which signify one of the
following:

– Architecture — Network processor

– Model — C-5, C-5e, or C-3e

– Revision — A1, B0, and so on

– Environment — simulation or actual hardware

– Configuration — debug or release

make reads the specified Makefile (that is, typically specified implicitly and found in
the current directory) and executes the compiler, the library manager, the
dcpPackage packaging tool, and any other CST tools needed to build a C-Ware
package file for the specified target. Using the make tool is described in more detail in
“Using the ‘make’ Tool” on page 70.

2 make automatically builds dependency information as necessary about the software
components that contribute to producing each generated software component, then
automatically checks that information during each new build to determine which
components to rebuild. Under make control, the various tools perform these
operations:

– Compile C and C++ source modules, creating object files (default extension .o). For
more compiler details, refer to “Using the C-Ware Compiler” on page 74.

– Create libraries of object files. You can combine related object files into a library to
allow reuse and sharing of those objects. For example, if you had object files for
various routine protocols (such as ip.o, arp.o, and rarp.o), you could combine
them into a library called libip.a. This library could then be linked into multiple
products.

– Link the object files and libraries together to create executable files. For example, to
create an ethernet switch application, you might link files such as libip.a, boot.o,
enet.o, and so on. The resulting executable files conform to an industry-standard,
portable, file format known as ELF (Executable and Linking Format).
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

70 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
3 make produces a C-Ware package file from a variety of pieces: the XP Boot Program
(supplied by C-Port with the C-Ware Software Toolset), the application’s XP executable
file and CP executable files, and the SDP and FP microcode executable files.

If the Makefile’s dependencies dictate, make invokes the dcpPackage tool to create a
new package file. The dcpPackage operates under the control of a package
description file.

The dcpPackage tool and package description files are described in “Packaging and
Loading An Application” on page 79.

After a package is created, it can be specified in the configuration of a C-Ware Simulator
session, so that its contents are automatically loaded into that simulation session. The
Simulator also allows configuration of how the various pieces of the application found in
the specified package file are loaded into the appropriate areas of the simulated network
processor. For more information see the C-Ware Simulation Environment User Guide
document.

Environment Variables The C-Ware Software Toolset’s installation process automatically updates the user
environment variable settings on your machine. Consult the C-Ware Software Toolset
Getting Started document for a list of the environment variables pertinent to your
workstation’s operating system.

These environment variables point to the directories and subdirectories for a given
version of the C-Ware Software Toolset. Thus, their settings must change if you elect to
start working in a different CST version (for example, CST Version 1.8 or CST Version 2.0).

Using the ‘sv’ Script After opening a new command shell in which you intend to use any CST command line
tool for any CST version, always run the ‘sv’ script as your first step, but do not run it more
than once in the same shell process.

For more information about using the ‘sv’ script for your workstation’s operating system
environment, consult the C-Ware Software Toolset Getting Started document.

Using the ‘make’ Tool The C-Ware Software Toolset includes a copy of the GNU make tool that you can use to
automate the process of building software for the C-Ware Simulator or for a NP. make is
located in the Toolset’s top-level bin directory, and operates on GNU-compatible
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘make’ Tool 71
Makefiles that specify the commands and file dependencies needed to build an
application.

Makefiles Makefiles are ASCII text files that are suitable as inputs to the GNU make tool. In the
C-Ware Software Toolset there is a Makefile in each directory where work must be done to
build the C-Ware libraries and Reference Library application executables. Makefiles can
recursively invoke the make tool in other directories to ensure that a required component
is up to date.

Makefiles contain information that specifies:

• Which files need to be built, based on which files have changed since the last time
make was run. This dependency checking speeds up the builds because object files and
libraries that have not changed will not be rebuilt. The Makefiles provided in the CST
support automatic production and checking of dependency information.

• The commands to run to build a particular dependent file.

Makefiles can be performed from the command line:

C:\C-Port\CST2.2\apps\gbeSwitch\run> make

This make command builds the C-Ware Gigabit Ethernet Switch application.

A Makefile can also be performed by invocation from another Makefile or script:

myTarget:
cd targets\sim && $(MAKE)

One Makefile can also “include” another Makefile, called a make include file. A make
include file typically defines Makefile variables and certain “core” functionality that more
specifically “targeted” Makefiles can use.

The CST includes a set of make include files that are intended to be included by the
application-level Makefile for each C-Ware application provided in the CST. The included
make include files, combined with the CST’s well-defined build directory architecture,
allows all application’s Makefiles to be very similar to each other. See the Build System
Conventions document for the details.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

72 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Targets A target is a reference to the definition in a Makefile of a series of commands to perform
when specified “rules” are satisfied. The CST’s build system supports two kinds of targets:

• Build targets — Commands to perform to produce (that is, compile, link, or
otherwise filter) an application’s software component files based on other files. The
CST build system defines a scheme for specifying a “variant” target (that i,s the
combination of target processor, processor version, environment, and configuration).
The variant, which can be specified in the make command line or via previously set
environment variables, determines which tree of subdirectories (under the
application’s root directory) are populated with software component files and which
build-time switches are used by the C-Ware compiler s (and other build tools) to
produce those files.

Some targets of this kind are defined to produce all the software component files that
comprise the application deliverable (that is, a package file), whereas other targets of
this kind produce a narrowly defined subset of the necessary component files, such as
only the simulated ingress traffic files for an application’s simulation sessions.

• File maintenance targets — Typically, commands to delete some, or for certain
targets all, of the software components files used to produce the application
deliverable.

Each target’s identifier is case-sensitive.

If you specify no target in a make command line, the ‘all’ target is the default. The
operations performed for the ‘all’ target are defined in the application-level Makefile.

Table 13 summarizes the standard Makefile targets.

Table 13 Standard Makefile Targets

TARGET NAME DESCRIPTION

default First target in the Makefile. Has a single dependency of “all” and no rules.
Invoking make on the command line with no targets will build the target “all.”

all Builds all necessary code images. (e.g. the *.pkg file)

patterns Generates all input pattern files used for regression testing.

test Runs the regression test.

accept Builds the code image, generates the patterns, and runs the regression test.
Equivalent to “make all patterns accept.”

clean Removes all files created by the make process from all of the standard targets.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘make’ Tool 73
Also note that Makefiles must support GNU emacs TAGS.

Here is a portion of an example Makefile illustrating the use of the standard targets:

default: all

all: $(TGT)/widget.pkg

patterns: $(INPAT_DIR)/widgetIn.pat
cd $(INPAT_DIR) && $(MAKE)

test:
$(DCPSIM) –batch
.
.
.

accept: all patterns test

clean:
rm –r $(TGT)
rm –f $(INPAT_DIR)/*.pat
.
.
.

Current Directory for
Running Make

You typically build each of the CST-provided C-Ware applications from the application’s
run subdirectory.

Building the Reference Library executables in this way causes recursive calls to make to
build the executables for the NP’s various embedded processors, as well as the files that
support a simulation session for the application. Also, if necessary, the C-Ware services
libraries that the application uses will be rebuilt.

Finally, the make tool produces a C-Ware package file, which can be loaded either into the
C-Ware Simulator or on C-Port NP hardware.

For example, to build a package file for the Gigabit Ethernet Switch application that
incorporates debuggable executables and that is targeted to C-5 NP Version D0 hardware,
enter this command from the application’s run\ subdirectory:

C:\C-Port\CST2.2\apps\gbeSwitch\run> make REV=c5-d0-hw-debug
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

74 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Using the C-Ware
Compiler

The C-Ware Software Toolset includes a version of the GNU C compiler (GCC) that has
been customized for the C-Ware platform. GCC is a re-targetable and re-hostable compiler
system with multiple front ends and a large number of hardware targets. GCC is
complemented by a set of utility programs for object code translation and so on, and by
the GNU Debugger (GDB).

The C-Ware Software Toolset’s customized version of the GCC, called the C-Ware Compiler,
supports the programming of the Channel Processor RISC Cores (CPRCs) and Executive
Processor RISC Core (XPRC). You use the C-Ware Compiler to compile your C-Port Network
Processor-targeted programs, creating NP-targeted image and map files, which identify
the program and data sections of the image. You can examine this information for
debugging purposes or for determining the actual size of the NP image.

C-Port’s version of the GNU compiler is distributed under the GNU Public License (GPL).

The C-Port compiler executable is bin\cport-gcc.exe. This executable is automatically
invoked by the make tool, which is described in “Using the ‘make’ Tool” on page 70.

By convention, the C-Ware Makefiles produce executable files with a .dcp filename
extension.

The file bin\cport-make.include contains the switch settings that are used to compile
and link all source, object, and library files provided in the C-Ware Software Toolset.

The commands you use for building programs for the C-Port NP’s Channel Processor RISC
Core (CPRC) and the Executive Processor (XP) are described in the following sections.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Compiler Support for Different Network Processors 75
Compiler Support for
Different Network
Processors

The compiler expects a command line option to specify the C-Port NP (C-5, C-5e, or C-3e)
you are targeting. See the sections “Compiling a Program Targeted for the CPRC” on
page 76 and “Compiling a Program Targeted for the XPRC” on page 77 for the details.

Compilation for the C-5e supports additional XPRC/CPRC instructions compared with the
C-5.

Note these difference in the results of compilation and linkage of programs for the C-5
and C-5e processors:

• Unlike for the C-5, the C-5e’s ‘k0’ register (register 26) is not shared by the four register
contexts in a cluster.

• Additonal optimizations are performed for C-5e code, such as use of ‘Branch Likely’
instructions where appropriate and removal of “stray” nops that follow memory
accesses (LW and SW).

• For the C-5e the compiler does not generate workaround code for the SLT instruction
problem (found only in the C-5).

• Starting address of loaded code:

– 0x0000 for C-5e programs

– 0x8000 for C-5 programs

• IMEM size is larger for the C-5e than for the C-5.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

76 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Compiling a Program
Targeted for the CPRC

To compile a program to run on a C-5 NP’s Channel Processor RISC Core (CPRC), include
the following switch on the compiler command line:

-mcpu=cport

To compile a program to run on a C-5e or C-3e NP’s Channel Processor RISC Core (CPRC),
include the following switch on the compiler command line:

-mcpu=cport2

In the file bin\cport-make.include you will notice that Makefiles for C-Ware applications
additionally include these compiler switches:

-O3 -Wall -DDCP_APPLICATION_EVENTS -c

These switches specify optimization level, warning messages level, define the symbol
‘DCP_APPLICATION_EVENTS’ (to support generating event timing metrics), and compile
without linking, respectively.

The CPRC does not support the multiply or divide opcodes and does not have a floating
point unit. Avoid these operations. In an executable built to run on the CPRC, the main
routine must be named DCPmain().

To compile a debuggable program to run on a CPRC, additionally include this compiler
switch:

-g

In the file bin\cport-make.include you will notice that Makefiles for C-Ware applications
additionally include this compiler switch to support debugging:

-DDCP_DEBUG

When building an executable file that will be debugged, C-Port recommends that you
compile all source files to be debugged with a lower level of optimization, to allow more
convenient interaction with your source code. That is, use the “no optimization” switch
(-O0) to compile only the source files that you will be examining in source form.

It is usually not feasible to compile your entire CP application with the “no optimization”
switch because this increases the probability that the resulting executable image
exceeds the size of the CP’s IMEM.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Compiling a Program Targeted for the XPRC 77
Compiling a Program
Targeted for the XPRC

To compile a program to run on a C-5 NP Executive Processor (XP), include the following
switch on the compiler command line:

-mcpu=cportxp

To compile a program to run on a C-5e or C-3e NP Executive Processor (XP), include the
following switch on the compiler command line:

-mcpu=cportxp2

In the file bin\cport-make.include you will notice that Makefiles for C-Ware applications
additionally include these compiler switches:

-O3 -Wall -c

These switches specify optimization level, warning messages level, and compile without
linking, respectively.

The XP does not support the multiply or divide opcodes and does not have a floating
point unit. Avoid these operations. In an executable built to run on the XP, the main
routine must be named DCPmain().

To compile a debuggable program to run on the XP, additionally include this compiler
switch:

-g

In the file bin\cport-make.include you will notice that Makefiles for C-Ware applications
additionally include this compiler switch to support debugging:

-DDCP_DEBUG

When building an executable file that will be debugged, C-Port recommends that you
compile the source files to be debugged with a lower level of optimization, to allow more
convenient interaction with your source code. That is, use the “no optimization” switch
(-O0) to compile only the source files that you will be examining in source form.

It is usually not feasible to compile your entire XP application with the “no optimization”
switch because this increases the probability that the resulting executable image exceeds
the size of the XP’s IMEM.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

78 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
To compile a program to run on the XP and produce an executable file, additionally
include the following switch and object file specification on the compiler command line:

-nostdlib $(CPORT)/bin/Gnu/lib/gcc-lib/mips-cport-elf/3.2/xpcrt0.o

(The xpcrt0.o object file must precede any other sources, objects, and libraries in the
command line.)

When compiling for the XPRC, be aware that:

• The XP’s IMEM contains the program’s text section. It is limited to 32KB and is located
at 0x8000 for C-5 programs, and 0x0000 for C-5e programs. The IMEM is the only place
from which the XP can execute instructions.

• The XP’s default DMEM (bus ID 25) is limited to 16KB and is located at BD900000h. By
default, this area contains all static variables, constants, and so on, and also contains
the XP’s primary stack. To place aligned data in the XP’s default DMEM, use the
ALIGNED16, ALIGNED 64, or ALIGNED128 macros.

• The XP’s secondary DMEM (bus ID 24) is limited to 16KB and is located at BD800000h.
This area contains data declared using the FAR_DATA macro (that is, any program data
section whose name begins with the five characters “.far.”). To place aligned data in
the XP’s secondary DMEM, use the FAR_ALIGNED16, FAR_ALIGNED 64, or
FAR_ALIGNED128 macros. The compiler does not use the secondary DMEM unless
specifically requested.

See the file dcpRegisterDefsXp.h for definitions of the XP control registers.

Linker Recommendation If your XPRC or CPRC program fails to link due to the production of an executable image
that is too large for the target IMEM resource, by default the linker produces no map. This
can make debugging more difficult.

To force the linker to produce a map when the linkage itself fails, use this line in your
Makefile:

make BUILD=Release CFLAGS_DBG=’-WI,--print-map’ name_of_application

or some variant combination of switches that includes the ‘--print-map’ switch.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Packaging and Loading An Application 79
Packaging and Loading
An Application

With its 17 RISC cores (one XPRC and 16 CPRCs) and 17 microcode targets (16 Channel
Processor SDPs and one Fabric Processor FDP), the C-Port C-5, C-5e, or C-3e Network
Processor (NP) can load many possible combinations of executable images. To support the
NP’s many possible loadable configurations, the C-Ware Software Toolset provides an
object called a package that encapsulates the executable images that run on the NP.

A package is a set of binary data that is the concatenation of a set of executable images,
typically including:

• The primary boot image

• The user’s XPRC executable, the CP application executables (including the CP SDPs
executables), the FP FDP executable

• Other software infrastructure

About the dcpPackage
Tool, Package Description
Files, and Package Files

You build a package using the C-Ware Software Toolset’s dcpPackage tool. The
dcpPackage tool assembles a package from a set of executable components specified in
a package description file then stores the package in a package file, which is a binary file
with a ‘.pkg’ filename extension. Packaging is described in more detail in “Using the
‘dcpPackage’ Tool” on page 81.

The package description file serves these purposes:

• Identifies the location of each executable image to be built into the package.

• Determines the configuration of the target NP’s Channel Processors, including which
CPs will be loaded with software and whether a given cluster is shared.

• Identifies XPRC executable images so that they can be loaded in an overlaid manner as
the XPRC runs. See the section “Specifying the XPRC Init and Main Phase Executables”
on page 86.

• Identifies additional executable images that can be loaded into a CPRC by the XPRC
program based on run-time considerations.

A package file is suitable to be stored in a PROM device or can be loaded from any off-chip
source supported by the NP boot process.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

80 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Understanding NP
Application
Configurations

When the NP boots, executable images are loaded into the Executive Processor RISC Core
(XPRC) and the Channel Processor RISC Cores (CPRCs). The possible configurations of
these executables are described in the following sections.

XPRC Executable The XPRC executable is responsible for chip boot, initialization, and run time processing.

Due to its multiple roles, the XPRC executable is typically “partitioned” into one or more
init phase executables and one main phase executable. For information about coding your
XPRC and CPRC programs to support partitioning, see “Compiling a Program Targeted for
the XPRC” on page 77 and “Compiling a Program Targeted for the CPRC” on page 76.

CPRC Executables The configuration of the CPRCs is somewhat more complex. Depending on the nature of
your application, you might specify that the same executable image be loaded into each
CPRC, or you might use different images that run on certain CPRCs or images that differ
from CP cluster to CP cluster.

A CP cluster uses one executable image that is loaded into the cluster’s shared IMEM.
However, the SDPs for the CPs in that cluster might or might not use the same SDP
executable image; you can specify this in the package description file. See “Using the
‘dcpPackage’ Tool” for more information.

Examples of Application
Configuration

Examples of some of the possible configurations are found in the C-Ware Reference
Library applications. In your C-Ware Software Toolset installation look for the package
description files (*.dsc) in the apps\AppName\run\ subdirectories.

For example, in the ATM Cell Switch application the same executable is loaded on the CPs
configured to transmit as for those configured to receive. This application uses shared
IMEM on all four CP clusters in the NP and loads the same CPRC executable in all clusters.

On the other hand, in the Gigabit Ethernet application separate receive and transmit CP
executables run in certain CP clusters. The receive executable runs on two of the CP
clusters, and the transmit executable runs on the other two CP clusters.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘dcpPackage’ Tool 81
Using the ‘dcpPackage’
Tool

You use the dcpPackage tool to build a new package and store it to a file, and to report
the contents of an existing package file.

Building a Package The input to dcpPackage must be a package description file (default extension ‘.dsc’). The
output from dcpPackage is a package file (default extension ‘.pkg’).

To build the package file, in your Makefile use define a build rule for the package file
(extension ‘.pkg’) that performs a command line such as the following (for the gbeSwitch
application):

...
define a rule for putting all the pieces together into a package file
$(BINDIR)/$(APPNAME).pkg : $(APPNAME).dsc CPRC XPRC SDP FDP
$(BOOTFILE)

$(PACKAGE) $(PACKAGE_FLAGS) \
-DBTFILE=$(BOOTFILE) \
-DXPINIT=$(BINDIR)/$(APPNAME)XpInit.dcp \
-DXPFILE=$(BINDIR)/$(APPNAME)Xp.dcp \
-DRXFILE=$(BINDIR)/rx.dcp \
-DTXFILE=$(BINDIR)/tx.dcp \
-DSDPFILE=$(BINDIR)/gbe.sdp \
-DFDPFILE=$(BACK_TO_BACK_FABRIC) \
-o $@ $<

...

The series of lines beginning with the line “$(BOOTFILE)” specify a “parameterized”
dcpPackage command line. Each “-Dsymbol” line in the series of lines defines a symbol
used in the application’s package description file. Each symbol stands for the path of the
specific RC executable (*.dcp), SDP executable (*.sdp), or FP executable (*.fdp) files that
should be built into this application’s package file.

Purpose of the Package Description File
The package description file is an ASCII text file whose records can be empty, contain a
comment, or contain a statement beginning with a keyword.

Each keyword statement must be an expression that specifies the location of a file used in
building part of the package file. Some statements introduce a block of other statements
enclosed in braces, for specifying the executable image files for one or more CPRCs and
their respective associated SDPs.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

82 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Package description file statements can refer to symbols and macros in the Makefile that
calls dcpPackage.

In its simplest form, the package description file’s statements declare where the
dcpPackage tool should find the following image files, from which it builds a package
file:

• NP boot image (keyword BOOT)

• XPRC executable image(s) (keywords XP, XPINIT)

• RC Interface Code image (keyword INTERFACE)

• (For each Channel Processor) CPRC executable image (keyword CODE)

• (For each Channel Processor) SDP microcode image (keyword SDP)

• FP microcode image (keyword FP)

The dcpPackage tool builds information blocks to describe the CPRC and SDP executable
images and appends those blocks, along with the text, data, and relocation information
from the image files, into the package. This allows the XP Boot Program (also called the
primary boot) to find the CP information and pass it to the XP’s DCPmain().

Sample Package Description File
Figure 4 on page 83 shows a sample package description file. It tells the dcpPackage tool
where to find the executable images to be built into the package file.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘dcpPackage’ Tool 83
Figure 4 Sample Package Description File, Ethernet Switch Application

PACKAGE "Demonstration Ethernet Switch package description file";

BOOT $(BTFILE) "C-Port primary bootstrap";
XPINIT $(DEMO52XPINIT) "Demo Ethernet Switch - XP init program";
Xpmain: XP $(DEMO52XPFILE) "Demo Ethernet Switch - XP program";

FP = $(DEMO52FPFILE) "Demonstration Ethernet Switch - FP program";

// Use default rcInterface.dcp code, from Makefile.
// INTERFACE = $(INTERFACE);

// Specify statement label, for referencing via ’USES’ clause.
SDP_10: SDP=$(ENET10SDPFILE); // Define 10Mbit ucode image file.
SDP_100: SDP=$(ENET100SDPFILE); // Define 100Mbit ucode image file.

CP0-3 shared { // CP cluster is shared.
CODE = $(ENET100RCFILE);
SDP USES SDP_100; // All SDPs in cluster use same ucode image.

}

CP4-7 shared { // CP cluster is shared.
CODE = $(POSOC3CRCFILE); // Use same image for 4 shared CPs
SDP4 = $(POSOC3CSDP4FILE); // Use image in SDP4
SDP5-7 = $(POSOC3CSDP5FILE); // Use image in SDP5 to SDP7

}

CP8 shared { // CP cluster is shared, but only CP8 is loaded.
CODE = $(ENET1000RXRCFILE);
SDP = $(ENET1000RXSDP8FILE);

}

CP12 { // CP cluster is not shared (default); only CP12 is loaded.
CODE = $(ENET1000TXRCFILE); // Loads CP12 *only*.
SDP = $(ENET1000TXSDPFILE); // Loads SDP12 *only*.

}

// NOTE:
// This package does not configure the Channel Processors CP13, CP14,
// and CP15, so these CPs are not loaded during this package’s load
// time. Neither can these three CPs be loaded during the run-time for
// the XPRC program loaded from this package. The entire C-5 chip
// must be reset before these three CPs can be loaded.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

84 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Package Description Statements
The following sections describe the keywords used to begin each statement in a package
description file. Each (non-comment) line in the package description file starts with a
keyword.

Any statement in a package description file can be labeled. Each label can be up to eight
(8) characters long; the case of all label characters is significant.

PACKAGE Keyword
The ‘PACKAGE’ keyword specifies the following identification string (in quotes). For
informational purposes dcpPackage embeds this string in the package file.

BOOT Keyword
The ‘BOOT’ keyword specifies the location of the file containing the primary bootstrap
code image file. There can be only one line containing the ‘BOOT’ keyword in a package
description file. The quoted comment is included to provide version or other information.

A bootstrap code image file must be an ELF format image file. This file must be linked to a
‘text’ base in IMEM. It cannot contain any ‘data’ section. In Figure 4 on page 83, as in most
PROM images, the Freescale supplied “primary boot” is referenced. The dcpPackage tool
extracts the ‘text’ section from the executable image and places the boot image’s 32-byte
header and text at the beginning of the package, as the package’s first boot-loadable
section.

XPINIT and XP Keywords
The C-Ware Software Toolset provides the software infrastructure to support overlays of
XPRC executable images. Thus, an XPRC program can have one or more init phase
executable images and one main phase executable image. See the section “Specifying the
XPRC Init and Main Phase Executables” on page 86.

FP Keyword
The ‘FP’ keyword specifies the location of the file containing the Fabric Processor
executable image.

INTERFACE Keyword
The ‘INTERFACE’ keyword specifies the location of the RC interface image, which is loaded
into the CPRCs so that they can communicate in certain ways with the XPRC. This code
provides minimal infrastructure for supporting interrupt-driven operation of the C-Ware
Debugger.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘dcpPackage’ Tool 85
By default, if the package description file does not contain an ‘INTERFACE’ statement, the
dcpPackage tool looks for an RC Interface Code image file named rcInterface.dcp in the
directory where this package obtained the primary boot descriptor (that is, the
executable specified in the ‘BOOT’ statement).

For more information about how the RC interface code operates, see the section “RC
Interface Code” on page 93.

In your C-Ware Software Toolset installation, find sample RC Interface source code in this
file:

services\boot\chip\c5\xprc\src\rcInterface.S

CP, CODE, and SDP Keywords
For each configured Channel Processor, or Channel Processor cluster, that should be
loaded with an executable image, you include a block of lines that begin with the ‘CP’
keyword. Each block of lines, enclosed in braces, specifies the locations of:

• For one CP, the CPRC program image and SDP microcode image file(s)

• For a CP cluster, the CPRC program to load into the cluster’s shared IMEM and the SDP
microcode image file(s) to load into those CPs’ SDPs

In the block of lines that follow the ‘CP’ keyword statement, use the ‘CODE’ keyword to
specify the CPRC executable image and use the ‘SDP’ keyword to specify an SDP
executable image.

You specify a ‘CP’ statement either for one CP or for a cluster of CPs, as follows:

• For one CP, the ‘CODE’ keyword line that follows specifies that CP’s CPRC executable
image file, and the ‘SDP’ line specifies that CP’s SDP executable microcode image file.

• For a cluster of CPs, use the ‘CODE’ keyword line specifies the one CPRC executable file
that is loaded into each specified CP (which is not necessarily every CP in that cluster),
and use one or more ‘SDP’ keyword lines to specify which executable microcode
image file to load in a given SDP in that cluster.

For example, in the package description file shown in Figure 4 on page 83:

• Each of the first three CP clusters (CP0 to CP3, CP4 to CP7, and CP8 to CP11) is
configured to be shared; therefore, only one executable image is loaded into each
cluster’s shared IMEM. The CPRCs in each respective cluster run the same executable.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

86 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
• The SDPs in each shared cluster are either configured to use the same executable (as
for CP0 to CP3 in the example) or one or more SDPs can be loaded with a different
executable (as for CP4 to CP7 in the example).

• CPs 8 to 11 are configured as a shared cluster, but only CP8 is configured to be loaded
with an executable.

• CPs 12 to 15 are not configured as a shared cluster (the default), but only CP12 is
configured to be loaded with an executable.

In Figure 4 on page 83, as the comment for the sample file’s ‘CP12’ keyword states, by
default the CPs are not configured as clustered. CPs must be explicitly configured as
clustered using the ‘shared’ keyword.

To demonstrate additional rules for specifying the loading of the CPs, Figure 5 on page 87
shows parts of another sample package description file. In this example, notice the
following:

• Lists and ranges of SDPs can be used to specify which executable files to load in a
cluster.

• It is illegal to use a label with a statement specifying a range of SDPs.

• It is illegal for more than one ‘SDP’ statement to specify the same SDP.

Specifying the XPRC Init and Main Phase Executables
If the NP’s IMEM resources are insufficient to contain a given XPRC executable, the C-Ware
Software Toolset’s XPRC run-time infrastructure supports the overlaying of executables at
run-time. The infrastructure is implemented to support what are called “initialization
phase” (or “init phase”) and “main phase” executable images.

An init phase executable would be the first image loaded into the XPRC, and it would
perform the work of initializing the NP’s Channel Processors, the Fabric Processor, and also
perhaps manage the table loading process. After these activities are completed, the init
phase executable performs the step of requesting another executable to be loaded and
overlaid over itself. This could be another init phase executable that performs additional
one-time processing, or could be a main phase executable that remains resident and
running in the XPRC until the entire NP is next reset.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘dcpPackage’ Tool 87
Figure 5 Demonstration of Package Description File Rules for Loading Channel Processors

The XPRC main phase executable would contain code that interacts with the host
processor, supporting the overall device’s normal processing activities, as well as interacts
with the NP’s CPRC executables to perform the device’s normal data forwarding and
control activities.

During package loading of the NP, the XPRC executable image specified in the package
description file’s first ‘XPINIT’ statement (for an init phase executable) or ‘XP’ statement
(for a main phase executable) is loaded first into the XPRC. If an init phase executable is
loaded first, at run-time that executable’s code can cause another XPRC init phase
executable to be loaded, or can cause the main phase executable to be loaded, by calling
the ksProcLoadXp() routine and specifying as the second argument the label string of that
of ‘XPINIT’ or ‘XP’ statement in the package description file.

PACKAGE "Demonstration package description file";

BOOT $(BTFILE) "C-Port primary bootstrap";

...
// Specify statement label, for referencing via ’USES’ clause.
SDP_10: SDP=bar2.sdp;
...

CP0-3 shared { // CP cluster is shared.
CODE = foo1.dcp; // One CPRC image shared in cluster’s IMEM.
SDP0 = bar1.sdp;
SDP1-3 USES SDP_10; // USES keyword for reusing label statement.

}

CP4-11 shared { // 2 CP clusters, each is shared.
CODE = foo2.dcp; // One CPRC image shared in each cluster’s IMEM.

// More than one SDP in a cluster can use the same image file.
SDP4-6,8-11 = bar3.sdp; // Specify a list or range.
SDP7 = bar4.sdp;

}

CP12-15 shared { // 2 CP clusters, each is shared.
CODE = foo3.dcp; // One CPRC image shared in cluster’s IMEM.

FloatSdp: SDP12-14 = bar5.sdp; // *ERROR* No labels on ranges.
SDP14,15 = bar6.sdp; // *ERROR* References SDP 14 again.
SDP15-16 = bar6.sdp; // *ERROR* Outside cluster’s mask range.

}

FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

88 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Remember that the labeled ‘XPINIT’ and ‘XP’ statements themselves do not cause the
overlaying of executables to occur during the XPRC’s run-time. Rather, these statements
only associate a label string with each XPRC init phase or main phase executable image
that is embedded in the package. That is, in order to code the package description file
properly, you must have independent knowledge of the identity and purpose of each
XPRC executable image that the package description file references.

The characteristics of and requirements for XPRC init phase and main phase programs are
described in the following sections.

Specific Rules for ‘XPINIT’ and ‘XP’ Statements
The package description file must specify an ‘XPINIT’ statement for each XPRC init phase
executable. If there is more than one init phase executable specified in the package
description file, the second through last ‘XPINIT’ statements must also be labeled. The
statement’s label allows that executable image to be referenced in a call to the API routine
ksProcLoadXp().

The XPRC init phase executables referenced in labeled ‘XPINIT’ statements can be loaded
(that is, overlaid) at run-time in any order, regardless of the order of those statements’
appearance in the package description file.

You can place ‘XPINIT’ statements anywhere in the package description file.

If the XPRC’s main phase executable is not the first executable image loaded when the NP
is loaded, then the ‘XP’ statement must be labeled. This is because the main phase
executable will be loaded at run-time of another init phase execute by its calling the
ksProcLoad() routine, which requires a package description file label as its second
argument.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘dcpPackage’ Tool 89
Examples
Figure 6 shows a sample package description file that uses an ‘XPINIT’ line to distinguish
the XPRC’s initialization program from its main program. Notice that the ‘XP’ statement is
labeled, which allows that executable to referenced by label in a call to ksProcLoadXp() in
the already loaded overlay executable.

Figure 6 Sample Package Description File, XP Init and Main Phase Programs

Figure 7 shows a sample package description file that includes more than one ‘XPINIT’
statement. In this case the primary bootstrap loads the XPRC executable specified in the
‘XPINIT’ statement that follows the ‘BOOT’ statement because it is the first ‘XP’ or ‘XPINIT’
statement in the package description file.

Figure 7 Sample Package Description File, Multiple XP Init Phase Programs

PACKAGE "Demonstration of XP Init and XP main executable images";

BOOT $(BTFILE) "C-Port primary bootstrap";
XPINIT $(XPINIT) "XP init phase";

CP0-3 {
CODE = $(CPFILE);
SDP = t54_0thru3.sdp "SDP contents for CP 0 through 3";

}

XPmain: XP $(XPFILE) "XP main - 2nd arg to ksProcLoad() is XPmain”;

PACKAGE "Demonstration of multiple XP Init images";

BOOT $(BTFILE) "C-Port primary bootstrap";
XPINIT t54InitXp.dcp "XP Init phase 1, loaded by primary bootstrap";

CP0-3 {
CODE = $(CPFILE);
SDP = t54_0thru3.sdp "SDP contents for CP 0 through 3";

}

TestIn2: XPINIT t54Init2Xp.dcp "XP Init phase 2";
TestMain: XP t54MainXp.dcp "XP main phase";
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

90 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
An executable specified in an ‘XPINIT’ statement can call ksProcLoadXp() to chain to
another init phase executable specified in another ‘XPINIT’ statement, and so on, until
some init phase executable calls ksProcLoadXp() and chains to an XPRC main phase
executable. For the example shown in Figure 7:

1 The first XPRC init phase executable loads this package description file’s other init
phase executable, via a call to ksProcLoadXp() with the label ‘TestIn2’ as the second
argument passed.

2 The second XPRC init phase executable loads the XPRC main phase executable, via a
call to ksProcLoadXp() with the label ‘TestMain’ as the second argument passed.

No Overlap of Primary Bootstrap
An executable specified in an ‘XPINIT’ statement is not allowed to overlap the overlay
loading code, in anticipation of its later loading an XPRC main phase executable. Thus, its
maximum size is less than the maximum possible size of an XPRC executable image.

The primary bootstrap always loads the XPRC executable that is specified in the first
‘XPINIT’ or ‘XP’ statement in the package description file.

For more information about XP initialization, see the section “How the XP Starts” on
page 94.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using the ‘dcpPackage’ Tool 91
Specifying a USES Clause
In a given package description file a statement that includes a USES clause can refer to
another labeled statement and thereby declare a file indirectly. If any executable image
file description statement has a label, that specification can be used elsewhere in the
package description file via the USES keyword.

Figure 8 shows a sample package description file that includes more than one USES clause
to refer to the same CP executable image file.

Figure 8 Sample Package Description File, USES Clause and Identification Strings

PACKAGE "Demonstration of USES clauses with identification strings";

BOOT $(BTFILE) "C-Port primary bootstrap";
XP $(XPFILE) "Ethernet switch - XP program";

FP = t52_fp.sdp "Fabric port program";

CpFile: CODE = $(CPFILE) "Common CP program";

CP0 {
CODE USES CpFile;
SDP = t52_0.sdp "SDP contents for CP 0";

}

CP1 {
CODE USES CpFile;
SDP = t52_1.sdp "SDP contents for CP 1";

}

CP2 {
CODE USES CpFile;
SDP = t52_2.sdp "SDP contents for CP 2";

}

FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

92 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
Reporting the Contents of
a Package File

Use the dcpPackage tool’s ‘-l’ switch to produce a summary listing of a package file’s
contents. Enter a command line like this:

C:\C-Port\CST2.2\bin> dcpPackage -l myPackageFile.pkg

Figure 9 on page 92 shows the output for a package whose contents define a boot image,
two XPRC init phase executables, one XPRC main phase executable, the RC Interface Code
executable, and one shared Channel Processor cluster’s (CP0 to CP3) single CPRC
executable (but no SDP executable).

Figure 9 Sample Output from ‘dcpPackage -l’ Command Line

Listing of Command Line
Switches

Use the dcpPackage tool’s ‘-h’ switch to produce a listing of all command line switches
and their arguments.

$ dcpPackage -l test54.pkg
// test54.pkg - dump of package - Created Fri Jun 01 14:14:47 2002

// RCs active: 0-3
// RCs primary (1/shared cluster + nonshared): 0
// RCs in shared clusters: 0-3

PACKAGE "XP Init phase test";

BOOT "../../services/boot/lib/c5-d0-sim-debug/xprc/xpPrimaryBoot.dcp"
 "C-Port primary bootstrap";
 XPINIT "test54InitXp.dcp" "XP init phase";
TestIn2: XPINIT "test54Init2Xp.dcp" "XP 2nd phase init code";
TestMain: XP "test54MainXp.dcp" "XP main phase";
INTERFACE
"../../services/boot/lib/c5-d0-sim-debug/xprc/rcInterfaceSequence.dc
p";

 // File offset of header = 0x1ec0

RC0-3 SHARED { // Primary RCs = 0; Secondary RCs = 1-3
 CODE "test54Cp.dcp";
}

CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

RC Interface Code 93
RC Interface Code RC Interface Code is infrastructure software that allows C-Port NP CPRC programs to
communicate with the XPRC program in two situations:

• When loading and reloading of CPRC takes place

• When CPRC program debugging is taking place

To work with the C-Ware Software Toolset as provided, you need not edit the RC Interface
Code source code, nor attempt to manipulate this executable’s behavior at run-time. It is
described here only because the dcpPackage tool always embeds it in every NP package.

Inclusion in a NP Package
File

An RC Interface Code image must be included in each package file that you create using
the dcpPackage tool. In a package description file you can specify an ‘INTERFACE’
statement to identify where dcpPackage should look for an RC Interface Code image file.

If the package description file does not specify an ‘INTERFACE’ statement, dcpPackage
expects to find the file rcInterface.dcp in the directory that contains the primary boot
descriptor file that is also incorporated into the same package. If dcpPackage’s attempt to
find this file is not successful, dcpPackage produces an error message and exits.

Run-Time Activity After the NP leaves reset and as the CPRCs are being loaded, the RC Interface Code image
is loaded into each CPRC’s high IMEM and reserves memory in each CPRC’s high DMEM.
The RC Interface Code is the first code executed on the CPRC after its IMEM is loaded.

Use the C-Ware Software Toolset’s cport-objdump tool to identify the IMEM and DMEM
resources that the RC Interface Code image uses.

The RC Interface Code enters its interface loop, which continues executing until the CP is
stopped or the NP is reset. In this loop the code polls its DMEM region for “command”
notifications received from the XP. For the details see the source file:

services\boot\chip\c5\xprc\src\rcInterface.S

When you use the C-Ware Debugger to conduct a debugging session on a given CPRC
program, the act of setting a breakpoint in that program image causes the XPRC’s
infrastructure software to send a “command” to that CPRC that, in turn, causes that CPRC’s
RC Interface Code to insert a ‘break’ instruction in the program image.

When the target CPRC program again executes and encounters that breakpoint, the
interrupt is triggered and causes a jump to an RC Interface Code interrupt handler. By
default, this handler causes the RC Interface Code to notify the XP program that a
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

94 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
breakpoint has been encountered and also causes the RC Interface Code to enter its
“interface loop” to await the next “command” from the XP.

As the Debugger user issues GDB commands in response to reaching the breakpoint,
additional sets of interactions occur between the XPRC’s infrastructure code and the
target CPRC. In this manner, the RC Interface Code interacts with the XPRC program’s
infrastructure to make possible a C-Ware Debugger session targeted at a CPRC program
image.

How the XP Starts When the NP is released from reset by some outside agent, only the XP begins executing.
The CPs stay in reset until they are individually released.

The XP (more specifically, the XPRC) begins execution in its IROM at location 0x10000, the
XP start address. The contents of the XP IROM are different from the CPRC IROMs, and they
cause code to be copied into memory from somewhere. The pointer to this “somewhere”
is in location 0xBD808300 (the XP Configuration Register for Debug Counter 0 Start
Value). The contents of this location at reset time are 0xBFC00000, which is a pointer to
the boot PROM.

It is possible for an outside agent to change the value in location 0xBD808300 (using the
PCI interface) before releasing reset on the NP, thus causing the XP to boot from some
other location (presumably mapped onto the PCI bus). Whatever the source, we hereafter
refer to the area pointed to by the contents of location 0xBD808300 as “the boot PROM.”

To model this behavior, the C-Ware Simulator supports this configuration variable:

XpBootFileName filename

If an ‘XpBootFileName’ entry is present in the Simulator configuration file, it names a disk
file that must contain an exact image of the boot PROM. The contents of this file are
mapped to memory starting at location 0xBFC00000. The XP IROM will load from the
PROM.

If there is no ‘XpBootFileName’ entry, nothing is mapped into memory at location
0xBFC00000. In this case, the Simulator supplies a dummy IROM image that consists of a
small infinite loop. In this case, when the Simulator ‘go’ command is given, the XP
executes but does no useful (and no damaging) work. This allows CP-only utilization
under the Simulator.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

How the XP Starts 95
If the Simulator user issues a ‘load’ command directed to the XP, the specified
‘XpBootFileName’ entry argument’s file is loaded, and the XP starts executing at the entry
point of the file rather than at the XP start address. This effectively disables the IROM.
Thus, if there is an ‘XpBootFileName’ entry in the config file, you probably should not
explicitly load the XP (that is, you should not include an ‘XpIROMFileName’ entry in the
config file).

The XP IROM expects that the boot PROM will contain one or more boot-loadable
sections. A boot-loadable section consists of:

• A 32-byte package header, whose structure is defined in the header file named
dcpPackage.h (See Table 14.)

• Data to load (length rounded up to a multiple of four)

• Text to load (rounded up)

• String (null-terminated) with the original file name that contained the text and data

• Identification string (null-terminated) that is supplied to the dcpPackage tool

• Filler if needed to make the section a multiple of four bytes long

The XP IROM copies the text from the boot-loadable section into the address specified in
the header, then transfers to the routine at the start address. It passes the address of the
boot PROM as a parameter to that routine. The IROM requires that the boot-loadable
section it loads have a zero-length data section. (The dcpPackage tool enforces this
restriction.)

Table 14 Contents of the Package Header

OFFSET CONTENTS

0 “XPU1”

4 Size of text section

8 Address of text section in IMEM

12 Number of data sections

16 Total size of data

20 Starting address

24 Total size of header, text, data, and ID information

28 Unused
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

96 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
The code loaded by the IROM is usually a routine called the primary boot sequence,
supplied by the CST in the XpPrimaryBoot.dcp file. It must be coded to coordinate with
the XP IROM.

XpPrimaryBoot.dcp sets up the stack pointer, copies the next boot-loadable section
from the PROM, and executes it. This section may contain both code and data, and is
usually the full XPRC application.

The primary boot passes a pointer to the next section in the PROM as the first parameter
to the XPRC application. This is the location in the boot PROM just after the section it
loaded. Usually this is a package header pointer, suitable for passing to the loader
services.

At this point, the XPRC application starts executing. The application should use the
C-Ware API Kernel Services routines to enable and initialize the respective CPs.

Loading and Reloading the
CPRCs

CPRC executables cannot be overlaid in the same manner as XPRC executables. However,
just as t he XPRC program causes the CPRCs to be loaded with software and to start, the
XPRC program can also direct any CPRC to stop and to be reloaded with another
executable image.

The XPRC program calls the API routine ksProcStop() to stop one CPRC (or ksProcStopCps()
to stop one or more CPRCs). The XPRC program calls the API routine ksLoadCps() to load
one or more CPRCs with a given executable.

To support this functionality, it is possible to include in a NP package any number of CPRC
executable images in addition to those that are first loaded into the CPs. We recommend
that you declare these executables in uniquely labeled ‘CODE’ statements at or near the
end of the package description file. These statements must be labeled so that the XPRC
can specify a given executable in the package by its label string.

CPRC Life Cycle Consult the topic “CPRC Program Life Cycle,” which is presented in the C-Ware API User
Guide document in its “Kernel Services” chapter and within the major topic “Processor
Operations.”
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Loading and Reloading the CPRCs 97
State of Channel
Processor DMEM After

Reloading the CPRC

Consult the topics “Preserving Data For Use After a Channel Processor Reload” and
“Preserving Data For Use After Multiple Channel Processor Reloads,” which are presented
in the C-Ware API User Guide document in its “Kernel Services” chapter and within the
major topic “Processor Operations.”
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

98 CHAPTER 4: BUILDING AND PACKAGING AN APPLICATION
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
CSTADBG-UG/D

REV 01
Appendix A
OFFLINE TABLE BUILDING LIBRARIES
Using Offline Table
Building Libraries

The C-Ware Software Toolset (CST) provides Offline Table Building Libraries (OLTBLs)
targeted for the C-Port Network Processors (NP). Library files are provided for each of the
C-5/C-5e/C-3e NPs on Windows 2000/XP, Sun SPARC Solaris, and Linux platforms. The
libraries support building code for simulated and actual systems; most commonly, they
are used for testing/debugging an application before the target hardware is available.

The OLBTLs allow the initial state of the NP’s Table Lookup Unit (TLU) and of C-Ware API
Table Services’ data structures to be generated and captured once. Those results can
subsequently be loaded into the (actual or simulated) C-5/C-5e/C-3e for each new run of
the application. This significantly reduces the simulated application’s cycle count between
the point of the application’s load and startup and the point of starting payload
throughput.

The OLTBLs serve these main purposes:

• For a hostless C-5/C-5e/C-3e application or system:

– These libraries provide a way to create and populate the C-Ware complex table
types (for example, Index/Vp-Trie/Data) that cannot be created and populated by
C-5/C-5e/C-3e XPRC and/or CPRC programs.

– These libraries allow the initial state of the TLU and of the data structures used
internally by the C-Ware API Table Services to be generated and captured, then
subsequently loaded into the C-Ware Simulator (or C-5/C-5e/C-3e hardware) on a
hostless system.

• For a C-Ware application developer working with the C-Ware Simulator, by partitioning
the application’s table-building code into a distinct program that can be run once and
whose results can be saved for subsequent loading at application startup time, the
developer can load and run the table-reliant portion of a simulated C-5/C-5e/C-3e
application more conveniently and efficiently.
CSTADBG-UG/D REV 01

100 APPENDIX A: OFFLINE TABLE BUILDING LIBRARIES
The CST provides the OLTBLs in source code form (with the exception of source code for
the TLU reference model) along with the Makefiles for building those libraries.

The Offline Table Building Libraries continue to undergo as table building functionality
is integrated into the C-Ware Software Toolset’s host application development
environment. These tools are provided to give developers another option for building
and analyzing TLU tables.

Workflow to Build a
Program that Uses the

OLTBLs

1 Write a C language program, called the “client program,” that creates and populates a
set of C-5/C-5e/C-3e resident tables that your C-5/C-5e/C-3e application requires. This
program calls the C-Ware API Table Services routines.

2 Compile the client program on your CST development workstation and link it with the
OLTBL version for your combination of C-5/C-5e/C-3e and workstation platform (that
is, Windows or Solaris).

3 Run the client program, which generates up to three output files with the following
default filenames:

– tle_restore.h — This C language header file contains a ‘static inline’ function that
initializes Table Services internal data structures to their state at the end of the
execution of the client program. This function must be called from the last phase of
a multi-phase XPRC program. It must be called only if the last phase of the
multi-phase XPRC program subsequently makes Table Services calls. Use this file to
support a “hostless” C-5/C-5e/C-3e application targeted to the C-Ware Simulator or
to actual hardware.

– Tlu.State — This binary file captures the state of the C-5/C-5e/C-3e TLU SRAM at
the end of the execution of the client program. Use this file when running the
C-5/C-5e/C-3e application under the C-Ware Simulator to load the TLU SRAM and
configuration registers.

– tle_writes.h — This C language header file defines the “captured” C-5/C-5e/C-3e
Ring Bus transactions that initialized the TLU’s SRAM and config registers as the
client program was run. This file is most commonly used to support a hostless
C-5/C-5e/C-3e application running on actual hardware.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using Offline Table Building Libraries 101
4 If running the C-5/C-5e/C-3e application under simulation:

– Insert a call to tsRestoreTLU() (an inline function defined in the generated
tle_restore.h) in the initialization section of the application’s XPRC program. This
call should be conditionalized so that it is executed only when the XPRC program is
run under simulation.

– Rebuild the application targeted for the C-Ware Simulator.

– When the application next runs under the C-Ware Simulator, direct the Simulator to
perform these two commands:

c5sim> cd tlu
c5sim> restore ./Tlu.State

Doing so updates the state of the simulated TLU SRAM to that at the end of
execution of the client program.

If running the C-5/C-5e/C-3e application on actual hardware:

– Insert a call to offlineTableConfig() (an inline function defined in the file
apps/components/tableUtils/chip/np/xprc/tableConfig.h file), which sends
the C-5/C-5e/C-3e Ring Bus messages “captured” (that is, encoded) in the
generated tle_writes.h file to the Ring Bus in the application.

– Rebuild the application targeted to the appropriate hardware environment.

Hardware-Targeted NP
Applications That Use

OLTBL

For a hardware-targeted C-5/C-5e/C-3e application whose XPRC program uses the OLTBL
techniques, be aware that use of these techniques consumes some XP IMEM and XP
DMEM resource and that more of the saved TLU state resides in XP DMEM than IMEM.

Depending on how your application’s XPRC program utilizes XP IMEM and DMEM to
support functionality distinct from table building operations, you might have the need to
take additional care in partitioning and building the XPRC program’s executable(s).
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

102 APPENDIX A: OFFLINE TABLE BUILDING LIBRARIES
Structure of an OLTBL
Client Program

You can code the OLTBL client program any way that you choose. However, the sample
applications provided in the CST use OLTBL client programs that have a common
structure, as described in this section.

Source Files
The client programs for the CST ‘s sample applications use two C .language source files:

• tables.c — Contains calls to C-Ware API Table Services routines to initialize, create,
and populate the tables required by the NP application. Typically, this code is identical
to code that might run in a production C-5/C-5e/C-3e application or C-Ware host
application.

• offline.c — Contains code to parse the command-line arguments passed to the client
program and calls to OLTBL functions that cause those files to be opened, written to,
and closed. The command-line arguments specify which OLTBL output files will be
generated by the client program.)

Command Line Parsing
The syntax of the client program’s command line can be fully determined by the
application developer. However, the sample applications provided in the CST use the
following command-line syntax:

client_program_name [rb_record_file [ts_state_file] [tlu_sram_file]]]

Where:

• rb_record_file defaults to “tle_writes.h”

• ts_state_file defaults to “tle_restore.h”

• tlu_sram_file defaults to “Tlu.State”
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using Offline Table Building Libraries 103
Routines Defined in the OLTBL Library
Table 15 lists the routines defined in the OLTBL library file, where each is defined, and the
purpose of each routine.

These functions are found in the libraries:

services\table\offline\$(CPORT_BUILDENV)\tsOffline.a

where “$(CPORT_BUILDENV)” is "c5-winnt" (or “cxe-winnt”) or "c5-unix" (or “cxe-unix”).

Sample Offline Table Building Programs
Most of the applications provided with the CST use offline table building. Examples can be
found in this directory:

apps\AppName\offline\c5\

or:

apps\AppName\offline\cxe\

Table 15 Offline Table Building Library Routines

DEFINED IN THIS HEADER FILE ROUTINE AND SIGNATURE PURPOSE

services\table\host\offline\inc\tsOfflineSvcs.h tsOfflineRingBusRecordStart()
void
tsOfflineRingBusRecordStart(char* infile)

Begins recording NP Ring Bus
traffic to the specified infile.

tsOfflineRingBusRecordEnd()
void
tsOfflineRingBusRecordEnd(void)

Ends recording of NP Ring Bus
traffic.

tsOfflineTableSvcsSave()
TsStatus
tsOfflineTableSvcsSave(char* infile)

Saves the internal state of the
Table Services data structures to
the specified infile.

services\table\host\offline\inc\tsOfflineTlu.h tsOfflineTluInit()
void
tsOfflineTluInit(void)

Initializes the TLU model. Must be
called before any TLU operations
are performed in the client
program.

tsOfflineTluStateSave()
void
tsOfflineTluStateSave(char* filename)

Saves the state of the NP TLU
SRAM to the specified filename.
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

104 APPENDIX A: OFFLINE TABLE BUILDING LIBRARIES
The gbeOc12Sar application is a good example of building data, H-T-K, and LPM tables
offline. One caveat is that, because of machine endianness dependencies, you must take
care when using the C-Ware API Table Services to insert entries in the table. For best
results, structure the data as an array of 32-bit words. This is especially important on
little-endian machines.

Structure of OLTBL Client Program
This is the general structure for an OLTBL client program :

#include "tsOfflineSvcs.h"
#include "tsOfflineTlu.h"

void main()
{
 tsOfflineTluInit();
 tsOfflineRingBusRecordStart("tle_writes.h");

 /* Table creation/initialization/entry insertion code here. */
 ...

 tsOfflineRingBusRecordEnd();
 tsOfflineTableSvcsSave("tle_restore.h");
 tsOfflineTluStateSave("Tlu.State");
}

The code shown in Figure 10 on page 105 is typical for performing table building, and is
suitable to be included in an OLTBL client program.
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using Offline Table Building Libraries 105
Figure 10 Typical Code to Perform Table Building

TS_TABLE_DATA(myTable);
#define NUM_ENTRIES 4
static int32u tableData[NUM_ENTRIES][8] = {
 { 1, 0x12345678, 0x11111111, 0x55555555, 0, 0, 0, 0},
 { 2, 0x12345678, 0x22222222, 0x55555555, 0, 0, 0, 0},
 { 3, 0x12345678, 0x33333333, 0x55555555, 0, 0, 0, 0},
 { 4, 0x12345678, 0x44444444, 0x55555555, 0, 0, 0, 0}
};

void tableCreate()
{
 /* Init table structure: table, type, numEnt, entrySize, keySize */
 tsTableInit(&myTable, tsTableData, 64 * 1024, 32, 4);
 tsTableCreate(&myTable, &myTableId);
}

void tableSetup()
{
 int i;

 for (i = 0; i < NUM_ENTRIES; i++) {
 tableInsert(myTableId, &tableData[i][0], &tableData[i][0], 32, 0);
 }
}

TsStatus tableInsert(TsTableId tableId, void* keyData, void* data, int length, int maskLen)
{
 TsEntry entry;
 TsKey key;

 key.keyData = (int8u*) keyData;
 key.maskLenBits = maskLen;

entry.data = data;
 entry.length = length;
 entry.offset = 0;
 entry.reqTag = 0;
 entry.reqTag = tsRequestTag(0);
 entry.respTag = 0;

 while (!tsLookupRequestReady(entry.reqTag));
return tsEntryInsert(tableId, &key, &entry);

}

FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

106 APPENDIX A: OFFLINE TABLE BUILDING LIBRARIES
Preempting Automatic Assignment
To support compatibility with existing C-Port NP microcode, the offline Table Services
allow you to specifiy the table ID, preempting the API’s automatic assignment. For
efficiency, some of the microcode hardcodes the table ID used in the Ring Bus launch
pads. Placing code similar to the following (immediately before calling tsTableInit()) allows
the user to choose a table ID:

#ifdef BUILD_OFFLINE
myTable.tableId = 8;
myTable.table[2].tableId = myTable.tableId;

#endif

Note that choosing an invalid table ID results in the default action by the API of
auto-assignment.

Calling tsRestoreTLU()
The C-Ware API function tsRestoreTLU() should be called in the last phase of the
C-5/C-5e/C-3e application’s multi-phase XPRC program after a call to tsTableInitialize(), but
before any other C-Ware API Table Services calls. The header file tle_restore.h must be
included to declare tsRestoreTLU().

Calling this function is appropriate for both C-Ware Simulator and hardware targets and is
only necessary if further Table Services calls are going to be made in the XPRC program.

Package Components The OLTBL package includes:

• For the C-5, on the CST’s Windows and Sun SPARC Solaris platforms:

– services\table\offline\c5-cst-platform\tsOffline.a — A library that contains
routines used to create an offline table-building program for the C-5 NP chip

Where cst-platform can be either “winnt” or “unix”

• For the C-5e or C-3e, on the CST’s Windows and Sun SPARC Solaris platforms:

– services\table\offline\cxe-cst_platform\tsOffline.a — A library that contains
routines used to create an offline table-building program for the C-5e or C-3e NP
chip

Where cst-platform can be either “winnt” or “unix”
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

Using Offline Table Building Libraries 107
Table 16 summarizes the location of other files in the OLTBL package.

When building an OLTBL client program, this directory:

services\table\host\offline\inc\

must appear before other include directories in your search path. This directory contains
several files (dcpTableSvcs.h and others) that, when building an OLTBL client program,
must be used in place of the “standard” C-Ware include file of the same name.

Table 16 Locations of Files in OLTBL Package

COMPONENT LOCATION IN THE C-WARE SOFTWARE TOOLSET

Library files services\table\host\offline\c5-{unix,winnt}\tsOffline.a
services\table\host\offline\cxe-{unix,winnt}\tsOffline.a

Header files services\table\host\offline\inc\

Sample OLTBL client program apps\gbeSwitch\offline\c5\ (C-5 NP version)
apps\gbeSwitch\offline\cxe\ (C-5e/C-3e NP version)
FREESCALE SEMICONDUCTOR CSTADBG-UG/D REV 01

108 APPENDIX A: OFFLINE TABLE BUILDING LIBRARIES
CSTADBG-UG/D REV 01 FREESCALE SEMICONDUCTOR

FREESCALE SEMICONDUCTOR
CSTADBG-UG/D

REV 01
INDEX
A
address resolution

among XPRC, CPRC, and XP primary bootstrap programs 39
aggregation 24

queue sharing 24
shared DMEM-resident data structures 25

code examples 25
costs and benefits 25

ALIGNED128 macro 38, 78
ALIGNED16 macro 78
ALIGNED64 macro 38, 78
API routines

valid to call from init phase programs 42
applications

building 68
configuring 80
CPRC executables 80
examples of configuration 80
XPRC executables 80

B
boot PROM 95
BOOT statement

in a package description file 84
Buffer Services routines

calling from init phase programs 42
building C-Ware applications

overview of 68
building packages 79
building tables offline

using the Table Building libraries package 99

C

C coding recommendations
avoiding branches 11
avoiding file statics 13
avoiding function calls 17
avoiding globals 13
avoiding literal masking of control registers 16
avoiding loads/stores to local DMEM after initiating DMA 17
avoiding pointers to globals 13
avoiding serializing tasks 17
avoiding shared and global DMEM accesses 15
avoiding volatile (keyword) storage qualifier 14
suppressing inlining of functions 10
use maximum of four arguments 17

C-5 Device Driver 7
Channel Processors (CP)

clusters
configuring in a package description file 85

CPRCs
life cycle 96
loading and reloading 96
state of DMEM after reloading 97

clusters, of Channel Processors
configuring in a package description file 85

code examples
queue sharing 25
shared DMEM-resident data structures 25

CODE statement
in a package description file 85

coding
package description file 37

compiling programs
targeted for the CPRC 76
targeted for the XPRC 77, 77

components
of Table Building libraries package 106

configuring C-Ware applications 80
CSTADBG-UG/D REV 01

110 INDEX
CP statement
in a package description file 85

cport-gcc.exe file 74
cport-make.include file 74
cport-objdump tool 93
CPU contexts

multiple 37
C-Ware Compiler

automatic inlining of functions 10
C coding recommendations 10
compiling for the XPRC

special considerations 78
cport-gcc command 74
invoked by make tool 74
-O0 optimization switch 76, 77
object files 69
optimizing programs 76, 77
overview 74
reading the generated code 15
using the Test and Set operation 12

C-Ware Software Toolset
environment variables used by 70
workflow for using development tools 69

D
DCPEXPORT macro 40
DCPEXPORT_VALUE macro 40
DCPIMPORT macro 41
DCPIMPORT_WEAK macro 41
dcpImportExport.h file 39
dcpKernelSvcs.h file 38
DCPmain() function 36, 82
dcpPackage tool 70, 79

building a package 81
-h switch 92
-l switch 92
listing command line switches 92
purpose of package description file 81
reporting contents of package file 92
sample package description file 82
using 81

dcpPackage.h file 95
dcpRegisterDefsXp.h file 78
CSTADBG-UG/D REV 01
development tools
in C-Ware Software Toolset 69

E
environment variables

used by C-Ware Software Toolset 70
exact match tables 31
Executable and Linking Format (ELF) file format

used by C-Ware Compiler object files 69
Executive Processor (XP)

control registers, definitions of 78
how it starts 94
secondary DMEM for 78

extern keyword 38

F
Fabric Services routines

calling from init phase programs 43
FAR_ALIGNED128 macro 78
FAR_ALIGNED16 macro 78
FAR_ALIGNED64 macro 78
FP statement

in a package description file 84

H
-h switch, for dcpPackage tool 92
Host API Host Services 7
host application program 7
host processor 7

I
IMEM optimization 27
indexed storage 31
init phase programs

calling API routines from 42
inline functions 10

suppressing automatic inlining of functions 10
INTERFACE statement

in a package description file 84
FREESCALE SEMICONDUCTOR

INDEX 111
K
Kernel Services routines

calling from init phase programs 42
KS_INIT_DATA macro 38
ksContextCreate() function 37
ksMutexInit() function 13
ksMutexLock() function 13
ksMutexLockTry() function 13
ksMutexUnlock() function 13
ksProcLoadXp() function 36, 37, 90

L
-l switch, for dcpPackage tool 92
life cycle for CPRC 96
loading and reloading the CPRCs 96

state of DMEM after reloading 97

M
macros

ALIGNED128 78
ALIGNED16 78
ALIGNED64 78
FAR_ALIGNED128 78
FAR_ALIGNED16 78
FAR_ALIGNED64 78

make tool 70
makefiles 71

makefiles 71
targets in 72

memory problems 27, 29

O
object files

conform to Executable and Linking Format file format 69
offline table building

using the Table Building libraries package 99
one-cycle delay requirement 13
optimizing programs

using the C-Ware Compiler 76, 77
FREESCALE SEMICONDUCTOR
P
package description file 70, 79

BOOT statement 84
CODE statement 85
coding 37
CP statement 85
FP statement 84
INTERFACE statement 84
PACKAGE statement 84
purpose of 81
sample of 82
SDP statement 85
specifying an XPRC init phase executable 86
specifying an XPRC main phase executable 86
statements 84
USES clause 91
XP statement 84
XPINIT statement 84

package file
inclusion of RC Interface Code 93
reporting contents of 92

PACKAGE statement
in a package description file 84

packages 79
building 79, 81

partitioning an application
design tradeoffs 44
functional distribution 3

partitioning XPRC programs 35, 36
accessing the TLU 37
allocating queues 37
coding the init phase program 36
coding the main phase program 36
multiple contexts in main phase program 37
passing data between 38

passing data
between partitioned XPRC programs 38

PDU Services routines
calling from init phase programs 43

Protocol Services routines
calling from init phase programs 43

Q

CSTADBG-UG/D REV 01

112 INDEX
Queue Services routines
calling from init phase programs 43

queue sharing 24
code examples 25
costs and benefits 24
uses and limitations 24

queues
allocating 37

queueUtils application component 25

R
RC Interface Code 93

inclusion in a package file 93
run-time activity 93
sample source code 93

rcInterface.S file
sample source for RC Interface Code 93

Real-Time Operating System (RTOS) 7
recirculation 20

benefits 21
elasticity 22
scenarios 22
SDP configurations 21

S
SDP statement

in a package description file 85
secondary DMEM

for the XP 78
semaphores

use contrasted with tokens 17
shared DMEM 25, 26

software semaphores 26
software tokens 26

software semaphores 26
software tokens 26
specifying the XPRC init phase program 88
starting the XP 94
statements

in a package description file 84
sv command file 70
CSTADBG-UG/D REV 01
T
table building 31
Table Building libraries package 99

components of 106
table design 31

exact matches 31
indexed storage 31
variable prefix matches 33

Table Lookup Unit (TLU)
accessing 37

Table Services routines
calling from init phase programs 43

targets
in makefiles 72

Test and Set operation
using for lock support 12

tokens
use contrasted with semaphores 17

tsOffline.a library 106, 106

U
USES clause

in a package description file 91

V
variable prefix match tables 33

W
workflow

for using C-Ware Software Toolset development tools 69

X
XP IROM 95
XP primary boot 82, 90
XP statement

example of using 89, 89
in a package description file 84
specific rules for 88

xpcrt0.o object file 78
FREESCALE SEMICONDUCTOR

INDEX 113
XPINIT statement
example of using 89, 89
in a package description file 84
specific rules for 88

XpPrimaryBoot.dcp file 96
XPRC init phase executable

specifying 88
specifying in a package description file 86

XPRC main phase executable
specifying in a package description file 86

XPRC programs 36
partitioning 35, 36

accessing the TLU 37
allocating queues 37
coding the init phase program 36
multiple contexts in main phase program 37
passing data between 38
FREESCALE SEMICONDUCTOR
 CSTADBG-UG/D REV 01

114 INDEX
CSTADBG-UG/D REV 01
 FREESCALE SEMICONDUCTOR

CSTADBG-UG/D

REV 01, 9/2004

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

	C-Ware Application Design and Building Guide
	Table of Contents
	Figures
	Tables
	About This Guide
	Guide Overview
	Using PDF Documents
	Guide Conventions
	References to CST Pathnames
	Revision History
	Related Product Documentation

	CST Application Overview
	Overview
	Functional Distribution
	SDP
	CPRC
	XPRC
	Host Processor

	Application Design and Coding Options
	Overview
	C Coding Recommendations
	Suppress Automatic Inlining of Functions
	Avoid Branches
	Example 1
	Example 2

	Use the Test and Set Operation for Locking Support
	Avoid Globals, File Statics and Pointers
	Avoid ‘Volatile’ Storage Qualifier
	Avoid Shared and Global DMEM Accesses
	Read the Generated Code
	Avoid Literal Masking of Control Registers
	Avoid Function Calls
	Functions Take a Maximum of Four Arguments
	Avoid Loads/Stores to Local DMEM After Initiating DMA
	Avoid Serializing Tasks

	Tokens Versus Semaphores
	Tokens
	Semaphores

	Recirculation
	Benefits
	Scenarios
	Elasticity

	Aggregation
	Queue Sharing
	Uses and Limitations
	Costs and Benefits
	Code Examples

	Shared DMEM-Resident Data Structures
	Costs and Benefits
	Code Examples

	Shared DMEM
	Software Tokens
	Program 1 -- Waiting For Token
	Program 2 -- Owns Token

	Software Semaphores

	IMEM Optimization
	Diagnosing Memory Problems

	Table Design and Table Building
	Indexed Storage
	Exact Matches
	Overview
	Design Tradeoffs and Performance

	Variable Prefix Matches
	VP Trie - Data Table Chain
	8-Bit Index - VP Trie - Data
	16-Bit Index - VP Trie - Data
	Design Tradeoffs and Performance

	Partitioning An XPRC Program For Initialization
	Partitioning the Program
	Coding the Init Phase Program
	Coding the Main Phase Program
	Utilizing Multiple Contexts in Main Phase Program
	Allocating Queues
	Accessing the TLU

	Coding the Package Description File
	Passing User Data From Init Phase Program to the Main Phase Program
	Address Resolution Among XPRC, CPRC, and XP Primary Bootstrap
	Exporting a Value
	DCPEXPORT Macro
	DCPEXPORT_VALUE Macro

	Importing a Value
	DCPIMPORT Macro
	DCPIMPORT_WEAK Macro

	Valid API Routines to Call From an Initialization Phase Program
	Kernel Services
	Buffer Services
	Queue Services
	Protocol Services
	PDU Services
	Fabric Services
	Table Services

	Design Tradeoffs

	Application Directory Structure and Build System Conventions
	Overview
	Application Directory Structure
	Structure Requirements for File and Directory Names
	Directory Keywords
	TAGS Support

	Makefiles
	Directory Example for Applications
	File Placement Guidelines
	Object File Generation
	Object Directory Location
	Environment Variables for Object File Generation
	Variants
	Dependency Checking

	Using the Build System
	Setting Environment Variables
	Setting Variables Manually
	Setting Variables Automatically

	CST’s Provided Application-Level Build Targets
	CST’s Provided Make Include Files
	Additional Makefile Functionality

	Summary of Build System Requirements and Recommendations
	Build System Directory Requirements for Applications
	Naming Conventions
	Build System Checklist

	Building and Packaging An Application
	Overview
	About Building a C-Ware Application
	Environment Variables
	Using the ‘sv’ Script

	Using the ‘make’ Tool
	Makefiles
	Targets
	Current Directory for Running Make

	Using the C-Ware Compiler
	Compiler Support for Different Network Processors
	Compiling a Program Targeted for the CPRC
	Compiling a Program Targeted for the XPRC
	Linker Recommendation
	Packaging and Loading An Application
	About the dcpPackage Tool, Package Description Files, and Package Files
	Understanding NP Application Configurations
	XPRC Executable
	CPRC Executables
	Examples of Application Configuration

	Using the ‘dcpPackage’ Tool
	Building a Package
	Purpose of the Package Description File
	Sample Package Description File
	Package Description Statements
	PACKAGE Keyword
	BOOT Keyword
	XPINIT and XP Keywords
	FP Keyword
	INTERFACE Keyword
	CP, CODE, and SDP Keywords

	Specifying the XPRC Init and Main Phase Executables
	Specific Rules for ‘XPINIT’ and ‘XP’ Statements
	Examples

	No Overlap of Primary Bootstrap
	Specifying a USES Clause

	Reporting the Contents of a Package File
	Listing of Command Line Switches

	RC Interface Code
	Inclusion in a NP Package File
	Run-Time Activity

	How the XP Starts
	Loading and Reloading the CPRCs
	CPRC Life Cycle
	State of Channel Processor DMEM After Reloading the CPRC

	Offline Table Building Libraries
	Using Offline Table Building Libraries
	Workflow to Build a Program that Uses the OLTBLs
	Hardware-Targeted NP Applications That Use OLTBL
	Structure of an OLTBL Client Program
	Source Files
	Command Line Parsing
	Routines Defined in the OLTBL Library
	Sample Offline Table Building Programs
	Structure of OLTBL Client Program
	Preempting Automatic Assignment
	Calling tsRestoreTLU()

	Package Components

	Index

