
1 Introduction
This application note covers the operation and use of a flash
resident bootloader for the MPC5748G microcontroller.

The bootloader can be a convenient way to support
programming during production or “in-system”, where support
for the dedicated JTAG interface may not be available. Users
must pre-program the MPC5748G with the bootloader during
pre-production or at a programming vendor. The bootloader
resides in the MCU for further use.

This bootloader implementation allows user software to be
downloaded into the MCU flash memory using the serial
(UART) interface.

The bootloader described in this document is only an example
and comes with no guarantees and no support.

2 Used SW and HW tools
The software and hardware tools used are:

• SW IDE: Green Hills MULTI IDE v6.1.4
• Debugger: Lauterbach Trace32 In-Circuit debugger
• EVB: Main board MPC574XG-MB Rev.C and

expansion board MPC574XG-324DS Rev.A
• MCU: PPC5748GMMN6A, mask set 1N81M
• Terminal emulator: Tera Term, version 4.76

(SVN#5085)

NXP Semiconductors Document Number: AN5319

Application Note Rev. 0, 08/2016

Serial Bootloader for MPC5748G
by: Lukas Zadrapa

Contents

1 Introduction..1

2 Used SW and HW tools.......................... 1

3 Creating of projects......................... 2

3.1 Boot header......................... 2

3.2 Project for bootloader............... 2

3.3 Project for user application.........3

4 Bootloader.............................. 3

4.1 Initialization, serial communication
interface, and user interface 5

4.2 Flash programming.................5

5 User application...6

5.1 S-record format.. 6

6 User interface guide........................ 6

7 Content of zip file.............................. 11

8 References.............................. 11

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mcus-for-automotive-and-industrial-control-and-gateway:MPC574xB-C-G?utm_medium=AN-2021

3 Creating of projects
It is recommended to use two independent projects for bootloader and user application in order to avoid possible cross
references (typically when using libraries). The projects must be configured to use only selected flash address range without
overlapping. Both projects will take an advantage of several possible locations of boot header. Both projects will have own
boot header and reset vector placed at different locations, so that projects can be developed, debugged, and executed
independently without any modifications. Once the bootloader is ready, it can be linked to user application in a binary form,
so only one image is downloaded to flash in production.

3.1 Boot header
The BAF searches the flash memory for the boot header, checking the first word location at the addresses mentioned in the
table below. The blocks are searched in the order shown in the following table. Once a Boot Header is found, no further
blocks are searched.

The first header found that contains the value 005Ah in the first halfword is valid for booting.

Table 1. Locations of boot headers

Search order Block Address

1 16KB Code Flash block 00F8_C000

2 32KB Code Flash block 00FC_0000

3 32KB Code Flash block 00FD_8000

4 64KB Code Flash block 00FE_0000

5 16KB Code Flash block 00F9_0000

6 16KB Code Flash block 00F9_4000

7 16KB Code Flash block 00F9_8000

8 16KB Code Flash block 00F9_C000

9 16KB Code Flash block 00FA_0000

10 16KB Code Flash block 00FA_4000

11 16KB Code Flash block 00FA_8000

3.2 Project for bootloader
Create a project for bootloader and open its linker file (standalone_romrun.ld). This is default definition of flash memory
segments:

Example 1. Default memory segments

 flash_rsvd1 : ORIGIN = 0x00400000, LENGTH = 0x00b8c000
 flash_memory : ORIGIN = 0x00f8c000, LENGTH = 0x005f4000
 flash_rsvd2 : ORIGIN = ., LENGTH = 0

Creating of projects

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

2 NXP Semiconductors

Now it is necessary to allocate flash memory that will be used only for bootloader. Let’s say that we will use first two 16 KB
blocks: 0x00F8_C000 – 0x00F8_FFFF and 0x00F9_0000 – 0x00F9_3FFF. The bootloader will use boot header at address
0x00F8_C000. Change the flash_memory segment as follows:

Example 2. Modified memory segments for bootloader

 Example 2. Modified memory segments for bootloader
 flash_memory : ORIGIN = 0x00f8c000, LENGTH = 0x00008000
 flash_rsvd2 : ORIGIN = ., LENGTH = 0

The rest of flash memory will be used for user application.

3.3 Project for user application
Create a project for user application and open its linker file. User application will use flash memory range 0x00F9_4000 –
0x0157_FFFF. Boot header at address 0x00F9_4000 will be used. Change the flash_memory segment as follows:

Example 3. Modified memory segments for user application

 flash_rsvd1 : ORIGIN = 0x00400000, LENGTH = 0x00b8c000
 flash_memory : ORIGIN = 0x00f94000, LENGTH = 0x005ec000
 flash_rsvd2 : ORIGIN = ., LENGTH = 0

Now we have two projects which works independently. In default linker file, the boot header is placed at the beginning of
flash_memory segment:

Example 4. ROM sections

 //
 // ROM SECTIONS
 //
 .boot_header: > flash_memory
 .text: > flash_memory
 .vletext: > .

That means no other setting are needed because the boot header will be moved to base address of bootloader or user
application automatically.

4 Bootloader
As mentioned in Boot header, if more valid boot headers is available in flash memory, the first one is used. If both bootloader
and user application are programmed in flash memory, the bootloader will be always executed because the boot header at
address 0x00F8_C000 is first in order. The startup code of bootloader must make a decision if bootloader or user application
will be executed. The decision can be made on the basis of state of GPIO pin, content of flash memory, command received
via a communication interface or other condition which is required by application. This example uses GPIO pin for decision.

If fast start up of user application is required, the startup condition should be checked immediately after reset by assembler
code before executing startup code of bootloader project. Jumping at reset vector of user application can take only a few tens
of cycles.

Project created in Green Hills MULTI IDE uses file crt0.ppc as a default startup file. This code is added at the beginning of
_start() function:

Bootloader

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

NXP Semiconductors 3

Example 5. ROM sections

;**
; Check if Bootloader or User Application is supposed to be executed
; Pin PA[1] is used. PA[1] signal is routed to SW3 on EVB board.
; If PA[1] == 0 - execute User Application
; If PA[1] == 1 - execute Bootloader

 ;configure pin PA[1] as input - write SIUL2.MSCR[1].R = 0x00080000
 ;load address of SIUL2.MSCR[1] to r12
 e_lis r12,0xFFFC
 e_or2i r12,0x0244

 ;load immediate value to r11 which will enable the buffer
 e_lis r11,0x0008

 ;write the value to SIUL2.MSCR[1]
 e_stw r11,0(r12)

 ;check if SW3 is pushed down - if SIUL.GPDI[1] == 0x01
 ;load address of SIUL.GPDI[1] to r12
 e_lis r12,0xFFFC
 e_or2i r12,0x1501

 ;read the SIUL.GPDI[1] register
 e_lbz r0,0(r12)

 ;compare the values - is the SW1 pushed?
 se_cmpli r0,0x01

 ;execute bootloader or user application
 ;if pushed,executed bootloader
 e_beq bootloader

 ;otherwise jump to user application

 ;but first check, if there's valid boot header at address 0xF9_4000
 ;load address of boot header to r12
 e_lis r12,0x00F9
 e_or2i r12,0x4000

 ;load upper half of boot header word to r0
 ;(lower half is application dependent)
 e_lhz r0,0(r12)

 ;boot header should be 0x005A
 e_cmpl16i r0,0x005A

 ;if the boot header is not valid, execute bootloader
 e_bne bootloader

 ;if the boot header is valid, execute application
 ;load address of reset vector to r12
 e_lis r12,0x00F9
 e_or2i r12,0x4010

 ;load reset vector to r0
 e_lwz r0,0(r12)
 ;move reset vector to link register
 mtlr r0
 ;branch to address in link register
 se_blrl

;**
bootloader:
;**
 ; When bootloader is going to be executed, disable Software watchdog 0

Bootloader

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

4 NXP Semiconductors

 ; The watchdog is kept enabled if user application is executed.

 ;SWT_0.SR.R = 0xc520;
 e_lis r12,0xFC05
 e_li r0,0xC520
 e_stw r0,0x10(r12)
 ;SWT_0.SR.R = 0xd928;
 e_li r0,0xd928
 e_stw r0,0x10(r12)
 ;SWT_0.CR.R = 0xFF00010A;
 e_lis r0,0xFF00
 e_or2i r0,0x010A
 e_stw r0,0x0(r12)

 ;below is default startup code - continue the execution...
;**

4.1 Initialization, serial communication interface, and user
interface

The bootloader initializes system frequency to maximum, it initializes interrupts and LINFlexD_2 module which is used for
serial communication.

The EVB board for MPC5748G incorporates a USB RS232 serial interface providing RS232 connectivity via a direct USB
connection between the PC and the EVB. Read the user guide for the EVB for more details about drivers and connection.

If custom design is used, RS232 level shifter is necessary to communicate with PC.

Serial communication is set to format:
• 8-data bits
• One start bit
• One stop bit
• No parity
• Baud rate 115200 bit/s
• XOn / XOff flow control

As a user interface, we can use any terminal emulation program like Tera Term or Microsoft HyperTerminal. The program
must support:

• Format described above
• Xon / XOff flow control
• Text file transfers

User interface guide provides more details about user interface.

4.2 Flash programming
It is recommended to use Standard Software Drivers (SSD) for flash that are available on website www.nxp.com. MPC5xxx
devices implement several versions of flash module. SDD drivers for selected device can be found on its summary page
under “Sofware & Tools” tab.

This example uses MPC5700 C55FG Flash Standard Software Driver (REV 1.1.0): http://www.nxp.com/files/product/
software/C55_JDP_SSD.exe.

Flash memory on MPC5748G is divided to partitions. Read-while-write operation is supported only between partitions. It is
not possible to access partition which is currently being programmed or erased. The code for flash programming must be
executed from RAM memory or from another partition.

Bootloader

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

NXP Semiconductors 5

http://www.nxp.com/files/product/software/C55_JDP_SSD.exe
http://www.nxp.com/files/product/software/C55_JDP_SSD.exe

Bootloader occupy one block in partition 0 and one block in partition 2. In order to be able to program whole flash memory,
the code must be executed from RAM memory. Following functions and resources are moved to RAM in bootloader project:

• FlashProgram_C
• FlashErase_C
• FlashCheckStatus_C
• LINFlexD_2_RX_ISR()
• LINFlexD_2_TX_ISR()
• IVORnTable
• IntcIsrVectorTable

Used C-array drivers are defined as constants by default. C-array drivers are compiled as position independent and they can
be copied to any location. We can either copy the drivers to RAM manually or we can simply re-define them as variables
(just delete “const”) and they will be automatically copied to RAM by startup code.

See the source files and linker file for more details about the relocation of code to RAM memory.

5 User application
There are only two requirements that must be met by user application:

• The linker file must be changed as mentioned in Project for user application.
• The S-record file which will be loaded by bootloader must have specific format as described in S-record format.

5.1 S-record format
All MPC5xxx devices implement Error Correction Code (ECC) in flash memory. ECC is handled on a 64-bit boundary.
Thus, if only 1 word in any given 64-bit ECC segment is programmed, the adjoining word (in that segment) should not be
programmed since ECC calculation has already completed for that 64-bit segment. Attempts to program the adjoining word
results in an operation failure (most likely).Due to ECC, flash memory must be programmed by double-words (64 bits) in a
single step.

S-record files generated by Green Hills MULTI IDE or other IDEs may not be always aligned to 64-bit boundary. It is worth
considering to convert the s-record file of user application to format where all s-records line are aligned to 64-bit boundary
and where the length of each line is constant. This will make the flash programming much easier and safer.

Once the user application is ready to be downloaded by bootloadder, user can use attached tool SRECCONV_v2.exe to
convert the file. It will align all lines to 64-bit boundary and the length of all data fields will be constant 16 bytes. The tool
accepts two parameters:

SRECCONV_v2.exe <input file> <output file>

Example:

SRECCONV_v2.exe core0.run converted.s19

converted.s19 file then can be downloaded by bootloader.

Green Hills MULTI IDE does not generate s-record file by default. It is necessary to turn this feature on in Build Options.

6 User interface guide
Once the bootloader is started, following welcome screen is sent via serial interface to terminal emulation program:

User application

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

6 NXP Semiconductors

Figure 1. Welcome screen

If we press ‘1’ on the keyboard, bootloader will erase all the flash memory except area occupied by bootloader. “Please
wait…” message is displayed. There are 6 MB of flash in MPC5748G, so it may take a couple of seconds.

Figure 2. Erase operation in progress

Once the erase operation is finished, bootloader will inform us if the operation was successful and displays the menu again.

User interface guide

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

NXP Semiconductors 7

Figure 3. Erase successful

Press key ‘2’ to program the flash.

Figure 4. Program flash memory

Bootloader asks us to send the S-record file. Use the menu of terminal emulation program to select the converted S-record
file.

User interface guide

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

8 NXP Semiconductors

Figure 5. Send S-record file

Figure 6. Browse for the S-record file

Once the program operation is finished, bootloader will inform us if the operation was successful and displays the menu
again.

User interface guide

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

NXP Semiconductors 9

Figure 7. Program successful

Last step is to start the user application. It can be done either by pressing key ‘3’ in the terminal or we can reset the device
directly. We have to ensure that the SW3 button on EVB is not pressed.

Figure 8. Start user application

User interface guide

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

10 NXP Semiconductors

7 Content of zip file
All mentioned projects and utilities can be found in a zip file associated with this application note:

• MPC5748G-Serial_Bootloader-GHS614 - Bootloader project written in Green Hills MULTI IDE v6.1.4
• MPC5748G-User_Application-GHS614 – User Application written in Green Hills MULTI IDE v6.1.4
• SRECCONV – Utility for S-record converting. The folder also contains core0.run file of User Application which was

generated by Green Hills MULTI IDE v6.1.4 and converted.s19 file which was converted using the SRECCONV
utility. Converted file can be used to test the bootloader.

8 References
• MPC5748G Reference Manual (document MPC5748GRM, available at nxp.com)
• Serial Bootloader for S12(X) Microcontrollers Based on 180 nm Technology (document AN4258, available at

nxp.com)

Content of zip file

Serial Bootloader for MPC5748G, Rev. 0, 08/2016

NXP Semiconductors 11

http://www.nxp.com
http://www.nxp.com

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2016 NXP B.V.

Document Number AN5319
Revision 0, 08/2016

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Introduction
	Used SW and HW tools
	Creating of projects
	Boot header
	Project for bootloader
	Project for user application

	Bootloader
	Initialization, serial communication interface, and user interface
	Flash programming

	User application
	S-record format

	User interface guide
	Content of zip file
	References

