
How to Increase the Analog-to-Digital 

Converter Accuracy in an Application 

1. Overview

This document explains the analog-to-digital converter 

(ADC) basics and the key parameters. The document 

also lists the ADC errors sources and how to increase 

ADC accuracy from system point of view. 

This application note uses the ADC embedded in the 

Kinetis microcontroller as an example. However the 

same principles are applied to other ADCs too. The 

accuracy of analog to digital conversion has an impact 

on overall system quality and efficiency. 

To be able to improve ADC accuracy, understand which 

factors affect errors. The ADC itself, can’t fully ensure 

the accuracy of results, it depends on the overall system 

design. 

For this reason, carefully prepare before starting your 

development. Many factors including voltage reference, 

PCB layout, I/O switching, and analog source 

impedance and so on can affect the ADC accuracy 

depending on the application. 

2. ADC basics

2.1. Defining ADC 

An analog-to-digital converter, or ADC, is a device or 

peripheral that converts analog signals into digital 

signals. 
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In the real world, signals mostly exist in analog form. You can use the ADC of the microcontroller to 

sample such signals, so that the signals can be converted to the digital values. The application software 

can then process the digital outputs and make decisions depending on the actual requirements. 

The limitation imposed by the finite number of digital outputs decides how close the output is to the 

analog input. In order to get closer between digital result and analog signal, the higher resolution of 

ADC is needed. 

2.2. ADC block description 

There are several types of popular ADC blocks like SAR (successive approximation Register) ADC, 

successive ADC, and SD (Sigma-Delta) ADC, and so on. 

SAR ADC is used commonly in NXP Kinetis series products, and includes voltage reference, 

conversion trigger control, SAR controller, calibration block, and conversion result processing. This 

application note explains NXP SAR ADC. 

The A/D conversion of SAR starts by forcing the MSB (Most Significant Bit) high. For example, in an 

8-bit ADC it becomes 1000 0000, and the DAC converts it to VAREF/2. The analog comparator

compares the input voltage with VAREF/2. If the input voltage is greater than the voltage corresponding

to the MSB, the bit is left set, otherwise it is reset.

VAREF is the reference voltage used by ADC for conversions. After this comparison is done, the next 

significant bit is set (=VAREF/4) and a comparison is done again with the input voltage. The procedure 

is followed until all the bit positions are compared. The SAR ADC illustration is depicted as below 

Figure 1. 

Figure 1. SAR ADC illustration 

At the end of all the comparisons you get the corresponding digital output for the analog input. The 

successive approximation steps are shown in Table 1. The digital output obtained from the ADC is D5h 

when the analog input is 2.75 V. 
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Table 1. ADC conversion table 

Steps Vin-2.75 V, VREF=3.3 V 

 Digital code DAC output Comparator output Digital output 

1 1000 0000 1.65 V 1 1000 0000 

2 1100  0000 2.475 V 1 1100  0000 

3 1110  0000 2.8875 V 0 1110  0000 

4 1101 0000 2.68125 V 1 1101 0000 

5 1101 1000 2.784375 V 0 1101 0000 

6 1101 0100 2.7328125 V 1 1101 0100 

7 1101 0110 2.75859375 V 0 1101 0100 

8 1101 0101 2.745703125 V 1 1101 0101 

    Final output =D5h 

 

For ADC end user, it is important to note the ADC inputs and multiplex logic, conversion speed and 

triggering logic, calibration logic, and conversion result processing, as described in Figure 2. 
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Figure 2. Kinetis SAR ADC block 

2.3. ADC terminology 

This section explains reference voltage, resolution, quantization, and sampling frequency. 

2.3.1. Reference voltage 

The ADC requires a reference voltage to which the analog input is compared to produce the digital 

output. The digital output is the ratio of the analog input with respect to this reference voltage. 
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Digital value = (Analog input voltage)/ VAREF) * (2
n
-1) 

Where n = number of bits of ADC digital output. 

For example, for 12-bit ADC, VIN=1V, VAREF=3.3 V 

Digital value = (1 V/3.3 V) *4095 = 1240d = 4D8h 

2.3.2. Resolution 

The ADC resolution is defined as the smallest incremental voltage that can be recognized and thus 

causes a change in the digital output. It is expressed as the number of bits output by the ADC. Therefore, 

an ADC which converts the analog signal to a 12-bit digital value has a resolution of 12 bits. 

The smallest incremental voltage that can be recognized is expressed in terms of LSB. 

1 LSB = (VAREF - VSS)/2
n
 

Where LSB = Least-significant bit 

n = Number of digital bits output by the ADC 

VAREF = Reference voltage 

VSS    = Analog ground 

An ADC which has ‘n’ bit digital output provides 2
n 
digital values. It includes both 0 and 2

n
-1. 

With a 3.3 V reference voltage, the resolution is 3.3/212 = 3.3/4096 = 0.805 (mV). 

2.3.3. Quantization 

The quantization of an analog signal by the ADC can be processed only in the finite number of steps 

which can be produced by the ADC. 

The quantization error is the error introduced by the process of quantization. Ideally, any analog input 

voltage can be maximum of 1/2 LSB away from its nearest digital code. Therefore, the quantization 

error is 0.5 LSB for the ADC. 

2.3.4. Sampling Frequency 

The sampling frequency stand outs the speed to convert the analog signal to digital result. Therefore, the 

ADC sampling frequency must be at least twice the analog signal frequency.  

Sampling the signal at twice the analog signal frequency will not result in a loss of information. 

If sampling frequency is less, then the information will be lost. This is a standard theorem that applies to 

ADCs in general. 

For example, an ADC with a conversion time of 10 μs can be used to sample an analog signal with a 

time period of 20μs, i.e., 50 kHz. 
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3. ADC errors 

This section lists the ADC errors related to itself and the whole system. 

3.1. ADC errors related to itself 

The ADC errors related to itself include: offset error, gain error, differential linearity error, integral 

linearity error, and total unadjusted error.  

3.1.1. Offset error 

Offset error represented as EO is the difference between the actual and ideal first transition voltages as 

described in Figure 3. This is the same definition as Zero-Scale Error. 

Ideally, when the analog input is between 0.5 LSB and 1.5 LSB, the digital output should be ideally still 

until the first transition occurs at 0.5 LSB. Offset error can easily be calibrated by the application 

firmware. 

Digital Output

VAIN

Ideal transfer curve

Actual transfer curve
1

2

0.5LSB

Eo > 0

 

Figure 3. Offset error 

 

3.1.2. Gain error 

Gain error represented as EG is defined as the deviation between the last actual transition and the last 

ideal transition described in Figure 4. The last actual transition is the transition from FFEh to FFFh. 

Ideally, there should be a transition from FFEh to FFFh, when the analog input is equal to VAREF – 0.5 

LSB. For VAREF = 3.3 V, the last ideal transition should be at 3.299597 V. If the ADC provides the 

FFFh reading for VAIN < VAREF – 0.5LSB, then there is a negative gain error. 

 



ADC errors 

How to Increase the Analog-to-Digital Converter Accuracy in an Application, Application Note, Rev. 0, 01/2016 

Freescale Semiconductor, Inc.  7 

  

0.5LSB

EG > 0

Ideal transfer curve

Actual transfer curve

4094.5LSB

Digital Output

VAIN

4095

 

Figure 4. Gain error 

3.1.3. Differential linearity error 

The differential linearity error (DLE) is defined as the maximum deviation between the actual and ideal 

steps described in Figure 5. Here ‘ideal’ is not used for the ideal transfer curve but for the resolution of 

the ADC. The DLE is denoted by ED and is represented in Figure 5.  

ED = Actual step width – 1LSB. Ideally, an analog input voltage change of 1 LSB should cause a 

change in the digital code. If an analog input voltage greater than 1 LSB is required for a change in 

digital code, the ADC has a differential linearity error. The DLE therefore corresponds to the maximum 

additional voltage that is required to change from one digital code to the next. The DLE is also known as 

the differential non-linearity (DNL) error. 

 

Ideal transfer curve

Actual transfer curve

Digital Output

VAIN

Actual step 

width

ED < 0

Actual step 

width

ED > 0

1LSB

 

Figure 5. Differential linearity error 
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3.1.4. Integral linearity error 

The integral linearity error (ILE) is the maximum deviation between any actual transition and the 

endpoint correlation line as described in Figure 6. The ILE is denoted by EL and is represented in 

Figure 6. The endpoint correlation line can be defined as the line on the A/D transfer curve that connects 

the first actual transition with the last actual transition. EL is the deviation from this line for each 

transition. The endpoint correlation line thus corresponds to the actual transfer curve and has no relation 

to the ideal transfer curve. The ILE is also known as the integral non linearity error (INL). The ILE is 

the integral of the DLE over the whole range. 

550 uV

EL

Actual transfer curve

3.298435V

Digital Output

VAIN

4095

1

2

 

Figure 6. Integral linearity error 

3.1.5. Total unadjusted error 

The total unadjusted error (TUE) is defined as the maximum deviation between the actual and the ideal 

transfer curves described in Figure 7. It is a parameter that specifies the total errors that may occur, 

causing maximum deviation between the ideal digital output and the actual digital output. It is the 

maximum deviation recorded between the ideal expected value and the actual value obtained from the 

ADC for any input voltage. The TUE is not the sum of EO, EG, EL, ED. The offset error affects the 

digital result at lower voltages whereas the gain error affects the digital output for higher voltages. 
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Ideal transfer curve

Actual transfer curve

Digital Output

VAIN

ET

 

Figure 7. Total unadjusted error 

3.2. ADC errors related to the whole system 

The ADC errors related to the whole system includes: reference-voltage noise, analog-input signal noise, 

ADC dynamic range, analog-signal source resistance, and temperature influence. 

3.2.1. Reference-voltage noise 

The ADC output is the ratio between the analog-signal voltage and the reference voltage. Any noise on 

the analog reference causes a change in the converted digital value. For example, with an analog 

reference of 3.3 V (VAREF = VDDA) and a 1 V signal input, the converted result is (1/3.3) × 4095 = 

4D9h. 

With a 40 mV peak-to-peak ripple in the analog reference, the converted value becomes (1/3.34) × 4095 

= 4CAh (with VAREF   at its peak).  

Error = 4D9 – 4CA = 15 LSB. The SMPS (switch-mode power supply) normally has internal fast-

switching power transistors.  

This introduces high-frequency noise in the output. The switching noise is in the range of 15 kHz to 1 

MHz 

3.2.2. Analog-input signal noise 

Small but high-frequency signal variation can result in big conversion errors during sampling time. This 

noise is generated by electrical devices. For example, power lines and the transformers affect the source 

signal (for example a sensor) by adding an unwanted signal. As a consequence, the conversion results of 

the ADC are not accurate. 

From below Figure 8, you can see the actual analog input signal have some inducted 5mV Vpp noise, 

which loses 2 LSB for 10-bit resolution ADC. 
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Figure 8. Analog input signal 

3.2.3. ADC dynamic range 

To have the maximum ADC conversion precision, it is preferable that the ADC dynamic range matches 

the maximum amplitude of the signal. Assume that the signal to be converted varies between 0 V to 2.5 

V and that VAREF is equal to 3.3 V. The maximum signal value converted by the ADC is 3102 (2.5 V) 

as shown in Figure 9. In this case, there are 993 unused transitions (4095 – 3102 = 993). This implies a 

loss in the converted signal accuracy especially if the ADC lineaty performance is not ideal. 

V

t

Unused ADC translation range

2.5V

(3102h)

Vref = 3.3V

(4095h)

 

Figure 9. ADC dynamic range 

3.2.4. Analog-signal source resistance 

The impedance of the analog-signal source or series resistance (RIN) between the source and the pin 

causes a voltage drop across it because of the current flowing into the pin. 



ADC errors 

How to Increase the Analog-to-Digital Converter Accuracy in an Application, Application Note, Rev. 0, 01/2016 

Freescale Semiconductor, Inc.  11 

  

The charging of the internal sampling capacitor Csh is controlled by switches with resistance Rsh. With 

the addition of source resistance (with RIN), the time required to fully charge the hold capacitor 

increases. 

Figure 10 shows the analog signal source resistance effect. The effective charging of CADC = CIN+ Csh is 

governed by RIN+ Rsh, so the charging time constant becomes tc = (RIN+Rsh) × CADC. The required 

settling time to be safe to sample the input is tc x multiplier, where the multiplier is 11, 8.3, 6.93 

respectively for ADC resolution of 16-bit, 12-bit, and 10-bit. If the sampling time is less than the settling 

time required, the digital value converted by the ADC is less than the actual value. Therefore, ensure 

that the analog signal source resistance be within the ADC specification. 

+

-
+ +

RIN Rsh
SW(S/H)

CIN Csh

(Vcin0) (Vcsh0)
VIN Vcsh(t)

External Components AD Converter Components
 

Figure 10. Analog signal source resistance 

3.2.5. Temperature influence  

The temperature has a major influence on ADC accuracy. Mainly it leads to two major errors: offset 

error drift and gain error drift. Sometimes, those errors can be compensated in the microcontroller 

firmware with efforts. 

The ADC reference voltage changes with the temperature change, irrespective of the MCU internal or 

external voltage reference used.   

3.2.6. I/O pin crosstalk 

Switching the I/Os may introduce some noise in the analog input of the ADC due to capacitive coupling 

between I/Os. Crosstalk may be introduced by PCB tracks that run close to each other or that cross each 

other. Internally switching digital signals and I/Os introduces high-frequency noise.  

Switching high-sink I/Os may induce some voltage dips in the power supply caused by current surges. A 

digital track that crosses an analog input track on the PCB may affect the analog signal (see Figure 11). 
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Figure 11. I/O pin crosstalk 

 

3.2.7. EMI-induced noise 

Electromagnetic emissions from the nearby circuits may introduce high-frequency noise in an analog 

signal because the PCB tracks may act like an antenna (see Figure 12) and impacts the analog signal 

input line. 

Electro-

magnetic noise

I/O coupled 

noise

Internal noise
Noise induced 

from PCB tracks

Kinetis SOC

ADC

 

Figure 12. EMI-induced noise 

4. How to increase the ADC accuracy 

To increase the ADC accuracy, you need to reduce the effects of the ADC-related errors and minimize 

the ADC errors related to the external environment. 

4.1. Reduce the effects of the ADC-related errors  

The TUE is not the sum of all the errors EO, EG, EL, ED. It is the maximum deviation that can occur 

between the ideal and actual digital values. It can result from one or more errors occurring 

simultaneously.  
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As the ILE is the integral of the DLE, it can be considered as the indicator of the maximum error. Do not 

add the DLE and ILE together to calculate the maximum error that may occur at any digital step.  

The maximum error values specified in the datasheet are the worst error values measured in laboratory 

test environment over the given voltage and temperature range. 

The ILE and DLE are dependent on the ADC design. It is difficult to calibrate them. They can be 

calibrated by the measured ADC curve stored in the microcontroller memory but this needs calibration 

of each individual device in final application.  

Offset and gain errors can be compensated using the Kinetis ADC self-calibration feature or by 

microcontroller firmware. 

4.2. Minimize the ADC errors related to the external environment 

To minimize the ADC errors related to the external environment, take care of the reference voltage and 

power supply, eliminate the analog-input signal noise, match the ADC dynamic range to the maximum 

signal amplitude, and match analog-source resistance. Additionally, minimize the I/O pin crosstalk, 

check temperature effect compensation, reduce EMI-induced noise, make recommended PCB layout 

changes, and use software methods to improve precision. 

4.2.1. Reference voltage and Power supply 

The power supply should have a good line, load regulation, and temperature drift since the ADC uses 

VAREF  or VDDA as the analog reference. Also, the digital value is the ratio of the analog input signal 

to this voltage reference.  

Thus, it is essential for VAREF to remain stable at different loads. Whenever, the load is increased by 

switching on a part of the circuit, the increase in current should not cause the voltage to decrease.  

If the voltage remains stable over a wide current range, the power supply has good load regulation. For 

example, for the SPX3819 voltage regulator, the line regulation is 0.04 % typical when VIN varies from 

VOUT + 1 V to 16 V , and the load regulation is 0.05 % when the load varies from 0.1 mA to 500 mA. 

The lower the line regulation value, the better the regulation.  

Similarly, the lower the load regulation value, the better the regulation and the stability of the voltage 

output. It is also possible to use a reference voltage for VAREF  , for instance the AD780, which is a 

high precision voltage reference of 2.5 V. 

Temperature drift is another important factor to consider voltage reference, especially in some 

application, the ADC accuracy is specified within full temp range. 

4.2.2. Analog-input signal noise elimination 

Eliminate the analog-input signal noise by using the averaging method or by adding an external filter.  
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4.2.2.1. Averaging method 

Averaging is a simple technique where you sample an analog input several times and take the average of 

the results by software. This technique is helpful to eliminate the effect of noise on the analog input in 

case of an analog voltage that does not change frequently.  

The average is made on several readings that correspond to the same analog-input voltage. Ensure that 

the analog input remains at the same voltage during the time period until the conversions are done. 

Otherwise, you add up digital values corresponding to different analog inputs and can introduce errors. 

4.2.2.2. Adding an external filter 

Adding an external RC filter eliminates the high frequency noise. An expensive filter is not needed to 

deal with a signal that has frequency components above the frequency range of interest. In this case, a 

relatively low cost low pass filter with a cutoff frequency fC just above the frequency range of interest 

will be sufficient to limit the noise. A sampling rate consistent with the highest frequency of interest will 

suffice, typically 2 to 5 times fC. 

4.2.3. Matching the ADC dynamic range to the maximum signal amplitude 

This method improves accuracy by a proper selection of the reference voltage or by using a preamplifier 

stage to obtain the maximum possible resolution using the full ADC output range.  

The reference voltage is selected in the expected range of the signal to be measured. If the measured 

signal has an offset, then the reference voltage should also have a similar offset. If the measured signal 

has defined maximum amplitude, then the reference voltage should also have a similar maximum value.  

By matching this reference voltage to the measurement signal range, we obtain the maximum possible 

resolution using the full ADC output range. 

In Kinetis device, the ADC reference voltage is connected to the external VREFH and VREFL pins that 

should be tied to ground. This makes it possible to match the reference voltage and the measured signal 

range. For example, if the measured signal varies between 0 V and 2.5 V, it is recommended to choose 

VREFH = 2.5 V, possibly using a reference voltage like AD780. 

4.2.4. Analog source resistance match 

The impedance of the analog signal source or series resistance (RAIN), between the source and pin 

causes a voltage drop across it because of the current flowing into the pin. The charging of the internal 

sampling capacitor CADC is controlled by switches with resistance RADC. With the addition of source 

resistance (with RADC), the time required to fully charge the hold capacitor increases.  

Figure 13 shows the analog signal source resistance effect. The effective charging of CADC is governed 

by RADC + RAIN, so the charging time constant becomes tc = (RADC+RAIN) × CADC. The required settling 

time to be safe to sample the input is tc x multiplier, where the multiplier is 11, 8.3, 6.93 respectively for 

the ADC resolution of 16-bit, 12-bit, and 10-bit. If the sampling time is less than the settling time 

required, the digital value converted by the ADC is less than the actual value. The software configures 
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the sampling time to be longer than the settle time. For more information on settling time, see the 

AN4373. Always ensure that the analog signal source resistance be within the ADC specification. 

Kinetis MCU

12-bit ADC

+

RADC

+
- VSSA

RAIN

AINx+

-

VAIN

Vc

ttc

VAIN

 

Figure 13. Analog source resistance match 

4.2.5. Minimizing I/O pin crosstalk 

The noise produced by crosstalk can be reduced by shielding the analog signal by placing ground tracks 

across it. Figure 14 shows the recommended grounding between signals. 

 

Digital and analog signal passing 
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Digital I/O

Analog In
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between signals

Analog In

Digital I/O

Digital and analog signal tracks 

crossing each other on different 

side of the PCB

Analog In

Digital I/O

 

Figure 14. I/O pin crosstalk 

http://fsls.co/doc/AN4373
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4.2.6. Temperature effect compensation 

One method is to fully characterize the offset, gain drift, and provide a lookup table in memory to 

correct the measurements according to temperature change. This calibration involves additional cost and 

takes time.  

So in some cases such as metering, it is very important to provide low temperature drift voltage 

reference, if temperature drift coefficient is too high, to full temp error will be higher accordingly. 

4.2.7. EMI-induced noise reduction 

Reduce EMI-noise by using proper shielding and layout techniques. The possible sources of emission 

must be physically separated from the receptors. They can be separated electrically by proper grounding 

and shielding.  

Shielding technique placing ground tracks alongside sensitive analog signals provides shielding on the 

PCB. The other side of the two-layer PCB should also have a ground plane. This prevents interference 

and I/O crosstalk affecting the signal. See Figure 15. Signals coming from distant locations (like sensors, 

etc.) should be connected to the PCB using shielded cable.  

The shield should not be used to carry the ground reference from the sensor or analog source to the 

microcontroller. A separate wire should be used as ground and the shield should be grounded at only one 

place near the receiver such as the analog ground of the microcontroller.  

Grounding the shield at both ends (source and receiver) might lead to the creation of ground loops, with 

the result of current flowing through the shield. In this case, the shield acts like an antenna and the 

purpose of the shielding is lost.  

The shielding concept also applies to grounding the chassis of the application if it is metallic. And it also 

helps remove EMI and EMC interference. In this case the mains earth ground is used to shield the 

chassis. Similarly DC ground can be used for shielding in case of the earth ground not being available. 

ADC ADC

Sensor Sensor

Shield cable
Not recommended Recommended

Ground Loop

Do not ground the shield at both ends Ground the shield at the receiver end only

 

Figure 15. EMI-induced noise 
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4.2.8. PCB layout recommendations 

The PCB layout recommendations include separating the analog and digital layouts, separating the 

power supplies for the analog and digital circuits, and component placement and routing. 

4.2.8.1. Separating the analog and digital layouts 

It is recommended to separate the analog and digital circuitry on the PCB (see Figure 16). This also 

avoids tracks crossing each other. The tracks carrying digital signals may introduce high-frequency 

noise in analog signals because of coupling.  

The digital signals produce high-frequency noise because of fast switching. Coupling of a capacitive 

nature is formed due to the metal connections (tracks) separated by the dielectric provided by the PCB 

base (glass, ceramic or plastic).  

It is recommended to use different planes for analog and digital grounds. If there is a lot of analog 

circuitry then an analog ground plane is recommended. The analog ground must be placed below the 

analog circuitry. 

BA

CD

A1 B1

C1D1

Digital 

Ground

Analog 

Ground

Analog circuitry

(Affected by noise)

Digital circuitry

(Noise and noise 

generating)

Power supply

Micro 

controller

 

Figure 16. Separate layout 

4.2.8.2. Separating the power supplies for the analog and digital circuits 

It is desirable to have separate analog and digital power supplies in cases where there is a lot of analog 

and digital circuits external to the microcontroller (see Figure 17).  

If you use a switching-type power supply for the digital circuitry, you should use a separate linear 

supply for the analog circuit. Also, if you expect a lot of noise on the DC power supply due to I/O 

switching etc., it is preferable to use a separate supply for the analog circuit. 

Also it is recommended to use star typology to supply power for analog and digital circuits to avoid 

interference between each other. 
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Figure 17. Separate power supply 

4.2.8.3. Component placement and routing 

Place the components and route the signal traces on the PCB so as to shield analog inputs. Components 

like resistors and capacitors must be connected with very short leads. You can use surface-mounted 

device (SMD) resistors and capacitors. You can place SMD capacitors close to the microcontroller for 

decoupling purposes.  

Use wide tracks for power; otherwise the series resistance of the tracks would cause a voltage drop. 

Indeed, narrow power tracks have a non-negligible finite resistance, so that high load currents through 

them would cause a voltage drop across them. 

Quartz crystals must be surrounded by ground/guard ring. The other side of the two-layer PCB below 

the crystal should preferably be covered by the ground plane or even cut off. Most crystals have a 

metallic body that should be grounded. You should also place the crystal close to the microcontroller. 

4.2.9. Software methods to improve precision 

The precision of sampling depends on both software and hardware modules. It is not possible to get an 

ideal precision with only one of them. 

4.2.9.1. Averaging samples 

This averaging decreases speed but can give improved accuracy. 

SAR-ADC provides register settings to do hardware averaging. 

The hardware averaging and software averaging are similar. Hardware averaging is faster, but it does 

not provide more precision than software averaging. 

Digital filtering (50/60 Hz suppression from DC value) – set proper sampling frequency (the trigger 

from timer is useful in this case) – perform software post-processing on sampled data (for example, 

comb filter - for 50 Hz noise and its harmonics suppression). 
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4.2.9.2. Increase over-sampling-rate 

Increase OSR (over-sampling-rate) can improve the precision. 

The OSR can be adjusted in register settings. 

4.2.9.3. Fast Fourier Transform (FFT) for AC measurements 

This is to show harmonic parts in measured signal, which become slower, due to the use of more 

computation power. 

4.2.9.4. Calibration of ADC 

The offset, the gain, and the bit weight calibration decreases the internal ADC errors. However, the 

internal ADC structure must be known. 

4.2.9.5. Minimizing internal noise generated by CPU  

Design firmware to use minimum disturbance from microcontroller during ADC conversion - digital 

silence. Use of ADC internal asynchronous clock as ADC clock will greatly reduce the digital noise 

coupled to the ADC. If possible, let ADC convert samples in low power mode. 

5. References 

Following references are available on www.nxp.com: 

1. MPC57xx SAR ADC Implementation and Use (Document: AN4881) 

2. Filter-Based Algorithm for Metering Applications (Document: AN4265) 

3. FFT-Based Algorithm for Metering Applications (Document: AN4255) 

4. Using the FFT on the Sigma-Delta ADCs (Document: AN4847) 

5. Cookbook for SAR ADC Measurements (Document: AN4373) 

6. Revision history 

Table 2 is the revision history table. 
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Revision number Date Substantive changes 

0 01/2016 Initial release 

 

 

http://fsls.co/doc/AN4881
http://fsls.co/doc/AN4265
http://fsls.co/doc/AN4255
http://fsls.co/doc/AN4847
http://fsls.co/doc/AN4373


 
 
 

 
 
 

Document Number: AN5250 
Rev. 0 

01/2016 

   

 

How to Reach Us: 

Home Page: 

freescale.com 

Web Support: 

freescale.com/support 

Information in this document is provided solely to enable system and software implementers to 

use Freescale products. There are no express or implied copyright licenses granted hereunder to 

design or fabricate any integrated circuits based on the information in this document. 

Freescale reserves the right to make changes without further notice to any products herein. 

Freescale makes no warranty, representation, or guarantee regarding the suitability of its 

products for any particular purpose, nor does Freescale assume any liability arising out of the 

application or use of any product or circuit, and specifically disclaims any and all liability, 

including without limitation consequential or incidental damages. “Typical” parameters that may 

be provided in Freescale data sheets and/or specifications can and do vary in different 

applications, and actual performance may vary over time. All operating parameters, including 

“typicals,” must be validated for each customer application by customer's technical experts. 

Freescale does not convey any license under its patent rights nor the rights of others. Freescale 

sells products pursuant to standard terms and conditions of sale, which can be found at the 

following address: freescale.com/SalesTermsandConditions. 

 

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. 

U.S. Pat. & Tm. Off. All other product or service names are the property of their respective 

owners. ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited 

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. 

© 2016 Freescale Semiconductor, Inc. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 .  

 

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Overview
	2. ADC basics
	2.1. Defining ADC
	2.2. ADC block description
	2.3. ADC terminology
	2.3.1. Reference voltage
	2.3.2. Resolution
	2.3.3. Quantization
	2.3.4. Sampling Frequency


	3. ADC errors
	3.1. ADC errors related to itself
	3.1.1. Offset error
	3.1.2. Gain error
	3.1.3. Differential linearity error
	3.1.4. Integral linearity error
	3.1.5. Total unadjusted error

	3.2. ADC errors related to the whole system
	3.2.1. Reference-voltage noise
	3.2.2. Analog-input signal noise
	3.2.3. ADC dynamic range
	3.2.4. Analog-signal source resistance
	3.2.5. Temperature influence
	3.2.6. I/O pin crosstalk
	3.2.7. EMI-induced noise


	4. How to increase the ADC accuracy
	4.1. Reduce the effects of the ADC-related errors
	4.2. Minimize the ADC errors related to the external environment
	4.2.1. Reference voltage and Power supply
	4.2.2. Analog-input signal noise elimination
	4.2.2.1. Averaging method
	4.2.2.2. Adding an external filter

	4.2.3. Matching the ADC dynamic range to the maximum signal amplitude
	4.2.4. Analog source resistance match
	4.2.5. Minimizing I/O pin crosstalk
	4.2.6. Temperature effect compensation
	4.2.7. EMI-induced noise reduction
	4.2.8. PCB layout recommendations
	4.2.8.1. Separating the analog and digital layouts
	4.2.8.2. Separating the power supplies for the analog and digital circuits
	4.2.8.3. Component placement and routing

	4.2.9. Software methods to improve precision
	4.2.9.1. Averaging samples
	4.2.9.2. Increase over-sampling-rate
	4.2.9.3. Fast Fourier Transform (FFT) for AC measurements
	4.2.9.4. Calibration of ADC
	4.2.9.5. Minimizing internal noise generated by CPU



	5. References
	6. Revision history

