[image: image1.png]Dynamic HTTP server with simple Flash File System[image: image2.png]
Written By Eric Gregori

The dynamic HTTP server with simple flash file system is a application written for the Interniche lite TCP/IP stack. This version also takes advantage of the Interniche Real Time Operating System. The server executes as a task, and supports multiple sessions. The server supports two separate file systems: the static file system uses a custom PC utility to convert web pages and binaries (jpeg, wav, swf, …) files into a C array for being compiled into the build. The dynamic file system uses a custom PC utility to convert the web pages and binaries into a compressed image. A custom PC download utility is then used to download the compressed image into the flash of the target system.
The dynamic file system allows the user to build and download web pages without the use of a compiler, from a remote location.

HTTP stands for HyperText Transfer Protocol. This server has been written per RFC 2616 (HTTP/1.1). It is in no way guaranteed to be 100% compliant. The dynamic feature of the server is a custom method of dealing with dynamic content within the context of HTML.
HTML stands Hypertext Markup Language. HTML is the language used to describe a web page. The purpose of a HTTP server is to transfer HTML pages (web pages) from the server to the client (Internet Explorer, Netscape, Firefox). Standard HTML is static, and does not support dynamic content (sensor values, real-time data, system variables). This is a problem for embedded systems. A solution to this problem is to embed tags in the HTML that are replaced with the dynamic data. This is the solution chosen for this implementation.

The server supports a variable array. Each entry in the array is 32 bits (long word) the depth of the array is user configurable at build time. The array is updated when a web page containing dynamic tags is requested. The user chooses what data goes into the array at compile time. For instance, the user may choose to put A/D channels 0 through 8 into array positions 0 through 8.

Each tag is followed by a index. The index chooses which variable in the array will replace the token when the HTML is actually sent to the client. There are two types of tokens, replacement tokens and conditional replacement tokens. Replacement tokens ‘~’ are always replaced with either the data in the variable indexed, or a dash mark to indicate the variable is not up to date. Conditional tokens ‘^’ are used for string replacement based on the result of the conditional compare and a constant.

// Process sensor data request

// ~IIF;

// where

//

I
= Variable Index

//

F
= Format (H=hex, D=decimal)
Replacement token example:

<HTML> ~00D; </HTML>

The server will replace the characters ~00D; with the decimal value in variable 00.

// Process conditional sensor read

// ^II>C|true||false|;

// where

//

I
 = Variable Index

//

C
= hex value for comparison

//

>
= variable value greater then C

//

=
= variable value equal to C

//

&
= variable value and C

//

!
= !variable value and C

//

"true" = ascii string to replace if true

//

"false" = ascii string to replace if false

Conditional token example:

<HTML> ^00&01| replacement string if true | replacement string when false |; </HTML>

The server will replace the whole conditional statement with the true string if the variable 00 and 0x01 is true, else the false string will be used to replace the conditional statement.

Conditional statements can be equal, greater than, bit and, or not equal. The constant can be any value from 0 to 0xFFFFFFFF.

There are two ways to get web pages into the target system. The user can compile the web pages into the target system using a custom PC utility that converts web pages and binaries into a C compatable format, or the user can load the web pages and binaries into the target system remotely (over Ethernet) after compressing them using another custom PC utility.
D:\home_automation\emg_kirin2e_release1\release1\static_web_page_example>emg_static_ffs

Static Flash File System Generator (Rev:0.3)

 Written by Eric Gregori

Correct format: <input filename> <output filename>

Where input filename = file containing list of filenames

Where output filename = generated filename
The input file list contains the list of files to be included in the static file system.

The output file is of type *.c, and is built into the target system at compile time.

D:\home_automation\emg_kirin2e_release1\release1\dynamic_web_page_example>emg_dynamic_ffs

Dynamic Flash File System Generator, Revision 2.0

 Written by Eric Gregori

Correct format: <input filename> <output filename>

Where input filename = file containing list of filenames

Where output filename = generated filename
The input file list contains the list of files to be included in the static file system.

The output file is a compressed binary that is downloaded via Ethernet using the uploader utility described below.

D:\home_automation\emg_kirin2e_release1\release1\dynamic_web_page_example>emg_web_uploader

Web page / Firmware Uploader for EMG HTTP server

 Written by Eric Gregori

Usage: emg_https_uploader <ip address> <filename> <key>

Where: ip address = ip address of http server

 filename = filename of data to upload (.egw or .egf)

 key = key string to unlock flash on target
The filename is the name of the file to download to the target. This file is generated with the dynamic flash file utility described above.

The key is a user defined string that is required to gain access to the target flash. The target will only accept the upload if the key string matches the user defined key string in the target. The key string can be up to 32 characters in length (both upper and lower case). This provides 52^32 possible combinations.

Sample List of Files

* emg static web page description file

* The files listed below will be concantenated into a

* single C compatable file.

readme.htm

CFCORESEMBLEM.gif

Sample Static Build

D:\home_automation\emg_kirin2e_release1\release1\static_web_page_example>emg_static_ffs filelist.txt staticout.ffs

Static Flash File System Generator (Rev:0.3)

 Written by Eric Gregori

reading file: readme.htm

reading file: CFCORESEMBLEM.gif
Sample Dynamic Build
filelist.txt

* emg dynamic web page description file

* The files listed below will be concantenated into a

* single compressed downloadable image.

* The first file in the list is the default file

home_page.htm

block_diagram.jpg

evb_board.jpg

uart.jpg

under_construction.htm

D:\home_automation\emg_kirin2e_release1\release1\dynamic_web_page_example>emg_dynamic_ffs filelist.txt dynamic.ffs

Dynamic Flash File System Generator, Revision 2.0

 Written by Eric Gregori

header size = 153

reading file: home_page.htm file size = 1700

header size = 155

reading file: block_diagram.jpg file size = 52979

header size = 155

reading file: evb_board.jpg file size = 64308

header size = 154

reading file: uart.jpg file size = 8531

header size = 152

reading file: under_construction.htm file size = 303

filename header length = 0x50

copying file: home_page_htm.htp to output

copying file: block_diagram_jpg.htp to output

copying file: evb_board_jpg.htp to output

copying file: uart_jpg.htp to output

copying file: under_construction_htm.htp to output

Sample Download

D:\home_automation\emg_kirin2e_release1\release1\dynamic_web_page_example>emg_web_uploader 192.168.1.99 dynamic.ffs joshua

Web page / Firmware Uploader for EMG HTTP server

 Written by Eric Gregori

Sending Erase Command

Sending Unlock Key

Waiting for Erase ACK

Erasing Flash 0x24000 block address

Erasing Flash 0x28000 block address

Erasing Flash 0x2C000 block address

Erasing Flash 0x30000 block address

Erasing Flash 0x34000 block address

Erasing Flash 0x38000 block address

Erasing Flash 0x3C000 block address

Erasing Flash 0x40000 block address

Erase Complete

Sending File dynamic.ffs to 192.168.1.99

128762 bytes sent

128764 bytes successfully sent

Transmission Complete

