SYNOPSYS

Simulator Configuration
Guide for Synopsys Models

Simulator Configuration Guide

Copyright © 2002 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

Synopsys and the Synopsys logo are registered trademarks of Synopsys, Inc. For alist
of Synopsys trademarks, refer to this web page:

http://www.synopsys.com/copyright.html

All company and product names are trademarks or registered trademarks of their
respective owners.

Synopsys, Inc. April 2002

http://www.synopsys.com/copyright.html

Simulator Configuration Guide Contents

Contents

Preface e 13
About ThisManual e 13
Related DOCUMENESot 13

Some HyperlinksMay Not Work i 14
Manual OVEIVIBW ... e e 14
Typographical and Symbol Conventions 15
GEiNG HE D oo 16
The SynopsysWebSIteo 17
COMMIENES? . 17

Chapter 1

Using Synopsys Modelswith Simulators 19
OV IV BV . e e 19
Using SmartModels with SWIFT Simulatorsoou... 20

SmartModel SWIFT Parameters 20
Instantiating SmartModels 22
The SWIFT Command Channel i, 23
Fault SImulationso 25
Using FlexModelswith SWIFT Simulators, 26
flexm_setup Command Reference i 27
Instantiating FlexModels with C-only CommandMode 28
Using MemPro Modelswith VHDL and Verilog Simulators 31
Using MemPro Modelswith VHDL Simulators 33
Using MemPro Modelswith Verilog Simulators 33
Instantiating MemProModels 34
Controlling MemProModel Messagesco it 35
Controlling MemPro Message QUEPUL 36
MessageLevel CoNStantsoiiiiit i 36
Using Hardware Models with Different Smulators 37
Linking Other Supported Simulators i 37

Chapter 2

Using VCSwith SynopsysModels i 39
OV IV BV e e e e 39
Setting Environment Variables 40
Using SmartModelswithVCS 41

April 2002 Synopsys, Inc. 3

Contents Simulator Configuration Guide

Using FlexModelswithVCS 43
VCSHexModel Examples ... 48
Script for Running FlexModel ExamplesinVCS 51
Example Smulator Run Script ... 53
Using MemPro ModelswithVCS 53
Using MemPro Models with VCS with Verilog Testbenches 53
Using MemPro Modelswith VCSwith C Testbenches 55
Using Hardware ModelswithVCS 57
ExampleUsing Runtime Option 59
Example Using DelayRangeParameter 59
VCSULIItIES . 60
Chapter 3
Using Verilog-XL with SynopsysModels 61
OV IV BV et e e e 61
Setting Environment Variables 61
Using SmartModelswith Verilog-XLo 63
Verilog-XL Usage Notesfor SmartModels 64
Using FlexModelswith Verilog-XL i 79
Using MemPro Modelswith Verilog-XL 81
Using MemPro Models with Verilog-XL with Verilog Testbenches 81
StaticLinkingwWithLMTV ... e 82
Using Hardware Modelswith Verilog-XL 82
PrereqUISITES . ..o e 83
Using Hardware Models e 84
$Im_log_test_ vectorsCommand Reference 93
$Im_loop_instance Command Reference 94
$Im_timing_information Command Reference 95
$Im_timing_measurements Command Reference 96
$Im_unknowns Command Reference 96
Imvsg Command Reference 98
Chapter 4
Using NC-Verilog with SynopsysModels it 101
OV IV BV Lttt e e e e 101
Setting Environment Variables 101
Using SmartModelswith NC-Verilog o o 103
Static LinkingwWithLMTV ... 104
Using FlexModelswith NC-Verilog i, 104
Static LinkingWithLMTV ... 106
Using MemPro Modelswith NC-Verilogon UNIX 107

4 Synopsys, Inc. April 2002

Simulator Configuration Guide Contents

Static LinkingWith LMTV ... 107
Using Hardware Modelswith NC-Verilog oo, 108
NC-Verilog UtIlItieso e 109
Chapter 5
Using MTI Verilog with SynopsysModels, 111
OV VI BV .o e 111
Setting Environment Variables 111
Using SmartModelswith MTI Verilog oo 113
Static LinkingWithLMTV ... 114
Using FlexModelswith MTI Verilog ... 114
Static LinkingwWith LMTV ... e 117
Using MemPro ModelswithMTI Verilog 117
Static LinkingWithLMTV ... 119
Using Hardware Modelswith MTI Verilog 119
MTI Verilog Utilities i e e 121
Chapter 6
Using Scirocco with SynopsysModels 123
OV IV BV .ttt e e e e e 123
Setting Environment Variables 123
Using SmartModelswith Scirocco ... 124
create_smartmodel_lib Command Reference 126
Using FlexModelswith Scirocco ... 127
Using MemPro Modelswith Scirocco i 130
Using Hardware Modelswith Scirocco ... 132
SCirocCo UtIItIeS . ..o 133
VHDL Model Genericswith SCIroccoo 133
Chapter 7
Using VSSwith SynopsysModels i 139
OV IV BV .ttt e e e 139
Setting Environment Variables 139
Using SmartModelswithVSS 141
create_ smartmodel_lib Command Reference 142
Using FlexModelswithVSSo 143
Using MemPro ModelswithVSS 146
Using Hardware ModelswithVSS i, 148
VSS Example with TILS299 HardwareModel 148
VSSULIITIES . 149
VHDL Model GenericswithVSS i 149

April 2002 Synopsys, Inc. 5

Contents Simulator Configuration Guide

Chapter 8
Using MTI VHDL with SynopsysModels 153
OV VI BV L 153
Setting Environment Variables 153
Using SmartModelswithMTIVHDL o o 155
sm_entity Command Reference 158
Using FlexModelswithMTIVHDL ... 158
Using MemPro ModelswithMTIVHDL i, 161
Using Hardware ModelswithMTI VHDL oo, 162
MTI VHDL Example Using TILS299 HardwareModel 163
hm_entity Command Reference 164
MTIVHDL UtIlIties ... o e e 166
Chapter 9
Using Cyclonewith SynopsysModels 167
OV IV BV ettt e e e 167
Setting Environment Variables 167
Using SmartModelswithCyclone 169
Using FlexModelswithCyclone i 169
Using MemPro ModelswithCyclone 169
Using Hardware ModelswithCyclone 170
Model Source System Hardware and Software 171
LM-1400/LM-family System Hardware and Software 171
Configuration OPtioNSottt e e 171
Cyclone User SEtUD . ..ot e e 174
Using Hardware Models with Cycle-Based Simulators 178
geninterface Command Reference i 182
Cyclone SImulation i e 184
Cyclonegeninterface Setup Files i 186
Cyclonegeninterface Processing, 187
Chapter 10
Using Leapfrog with SynopsysModels i 191
OV VI B Lo 191
Setting Environment Variables 191
Using SmartModelswith Leapfrog i 193
Using FlexModelswith Leapfrogo 194
Using MemPro ModelswithLeapfrog 194
Using Hardware ModelswithLeapfrog o, 197
Leapfrog Example with TILS299 HardwareModel 197
Leapfrog Utilities e e 198

6 Synopsys, Inc. April 2002

Simulator Configuration Guide Contents

Chapter 11
Using NC-VHDL with SynopsysModels it 201
OV VI BV L 201
Setting Environment Variables 201
Using SmartModelswith NC-VHDL 202
Using FlexModelswith NC-VHDL et 204
Using MemPro ModelswithNC-VHDL 207
Using Hardware ModelswithNC-VHDL oo, 209
NC-VHDL Examplewith TILS299 HardwareModel 210
NC-VHDL UtIlItIEeS ... e e 210

Chapter 12
Using QuickSim I with SynopsysModels 213
OV VI BV o 213
Setting Environment Variables 213
Using SmartModels and FlexModelswith QuickSim Il 215
Installing the QuickSim I SWIFT Interface 215
Using SmartModels/FlexModelswith QuickSim Il 217
Schematic Capture ...t 217
Logic Simulation 224
Custom Symbols 235
Using Hardware Modelswith QuickSim Il 240
Setting up Hardware Modelsin QuickSim 11 241
Using Hardware Modelsin QuickSim Il 243
Model Registration 245
RegisteringaModel withIm_model 246
ModifyingaHardwareModel 251
Simulating with Hardware Modelsin QuickSim Il 252
Im_model Command Reference i 260
tmg to tsCommand Reference 263

Chapter 13
Using VERA with SynopsysModels i i 265
OV VI BV L 265
Using VERA withFlexModels 265
Using FlexModels with the VERA UDF Interface 266
CreatingaVERA Testbench i 268
VERA TestbenchExample it 269
Incorporating FlexModelsinaVERA Testbench 271
Using VERA WIthVCS e 273
Using VERA withMemProModels i, 276

April 2002 Synopsys, Inc. 7

Contents Simulator Configuration Guide

Mempro-VERA OVEIVIEW e e e 276
Adding MemPro Commandsto the VERA Testbench 283
Building the VERA UDF DynamicLibrary, 287
Compilingthe VERA SourceFiles 288
Building the Simulator Executable 289
RunningtheSimulation i i 290
Appendix A
LMTV Command Reference ..., 291
OV VI BV .o e e e e 291
LMTV Command LineSwitches 291
LMTV Commandst e 293
$Im_command() or $lai_command() i 294
$Im_dump _file() or $lai_dump file() 295
BIM help() .o 296
$Im_load file() or $lai_load file() i 297
$Im_monitor_enable() or $lai_enable monitor() 298
$Im_monitor_disable() or $lai_disable monitor() 298
$Im_monitor_vec_map() and $Im_monitor_vec_ unmap() 300
$Im_status() or Blai_status()o 302
INOEX . e 303
8 Synopsys, Inc. April 2002

Simulator Configuration Guide

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

April 2002

Figures
Figures

run_flex_examples in_vespl Script ... 52
Verilog-XL Design Flow 67
Concept Design Flowo oo 69
Thema verilog Software Tree 83
SFI CommunicationwithPLI 84
Cyclone Configuration Guidelines 173
ModelAccessfor Cyclone Installation Tree 174
ProcessFlow Charto e 176
Slang Hardware Model Conceptual Diagram 179
Default synopsys Im_hw.setupFile 180

Sample System-Dependent
Setup File (.synopsys _Im_hw.setup.hp700) 187
SamplePinandBusSymbols oL 218
Visible Symbol Properties i 219
National Semiconductor DP8429 DRAM Controller 238
Busand PinSymbols 240
Sample Component Interface for aHardwareModel 244
Hardware Model Registration 246
The MemPro-VERA Interface 277
VERA Model ClassHierarchy 278
Mempro-VERA DesignFlow i 282
Synopsys, Inc. 9

Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21
Table 22:
Table 23:
Table 24.
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:

10

Simulator Configuration Guide

Tables

SmartModel SWIFT Parameters 21
FlexModel SWIFT Parameterst 26
FlexModel C-only Command ModeFiles 29
MemPro Generic/Parameter Descriptions ..., 32
MemPro Supported Simulators 33
MemPro Message Constant Descriptions, 36
VCS SmartModel Explanation 43
FlexModel VCS VerilogFiles i 44
VCS With One FlexModel On Solaris Model Explanation 49
VCSMemPro Model Explanation 56
Characteristics of Historic and SWIFT SmartModel Modes 65
Model.v DIrectories e 66
LMTV/SWIFT and Verilog-XL-specific Libraries 76
FlexModel Verilog-XL Files i 79
Test Vector Symbols 92
FlexModel NC-VerilogFiles i 104
FlexModel MTI VerilogFiles 114
FlexModel SciroccoVHDL Files 128
FlexModel VSSVHDL Files 144
FlexModel MTI VHDL Files 159
Rulesfor Special Character Mappingcoiviinnnnan... 188
FlexModel NC-VHDL Files 205
Symbol Propertiesused by SWIFT Models 219
Symbol Properties Required for Simulation 220
Optional Symbol Propertiesc.co i, 221
Signal State Values 225
QuickSim Il Command Interactionc.civiueno... 227
ElementsinaTIBPAL22V10Deviceovriiiiinnenannnn 233
Mentor Graphics Vendor CPU Operating System Suffixes 241
Sample Component DIreCtory 247
Shell Software to Technology File Conversion 250
Signal Instance Command Summary ..., 253
FlexModel Files Used with the VERA UDF Interface 266
Link LineObjectFiles i 267
VERA Header Fileso e 268
FlexModel VERA Files e 271

Synopsys, Inc. April 2002

Simulator Configuration Guide

Table 37: Key MemPro-VERA Files

April 2002

Tables

Synopsys, Inc. 11

Tables Simulator Configuration Guide

12 Synopsys, Inc. April 2002

Simulator Configuration Guide Preface

Preface

About This Manual

This manual contains procedures for using Synopsys models with the most widely used
simulators. The scope includes the following types of models:

« SmartModels (including FlexModels)
« MemPro Models
« Hardware Mod€els

Note that this manual containsillustrations of third-party software files solely to
demonstrate the end user modifications needed to get Synopsys models working with
thesetools. Third-party software changes frequently. Refer to the third-party tool
vendor's documentation for definitive information about their licensed software.

Related Documents

For more information about SmartModels (including FlexModels), or to navigate to a
related online document, refer to the Guide to SmartModel Documentation. For
information on supported platforms and simulators, refer to SmartModel Library
Supported Smulators and Platforms.

For detailed information about specific SmartModels (including FlexModels), use the
Browser tool ($LMC_HOME/bin/d_browser) to access the online model datasheets.

For more information about MemPro, or to navigate to arelated online document, refer
to the Guide to MemPro Documentation.

For more information about hardware models, or to navigate to arelated online
document, refer to the Guide to Hardware Model Documents.

April 2002 Synopsys, Inc. 13

Preface Simulator Configuration Guide

Some Hyperlinks May Not Work

Because this manual is included with multiple product documentation sets, some
hyperlinks do not work properly in all cases. For example, hyperlinks from this manual
to other books in the hardware model documentation set will only work from ahardware
model installation tree. Similarly, hyperlinks to other booksinstalled in $SLMC_HOME
will only work in that location.

To work around this limitation, you can visit the Synopsys Web site and navigate to the

latest documentation for all Synopsys models:

http://www.synopsys.com/products/designware/docs

Manual Overview

This manual contains the following chapters:

Preface

Chapter 1
Using Synopsys Modelswith
Simulators

Chapter 2
Using VCSwith Synopsys M odels

Chapter 3
Using Verilog-XL with Synopsys
Models

Chapter 4
Using NC-Verilog with Synopsys
Models

Chapter 5
Using MTI Verilog with Synopsys
Models

Chapter 6

Using Scirocco with Synopsys
Models

Chapter 7
Using VSSwith Synopsys Models

14

Describes the manual and lists the typographical
conventions and symbols used in it. Tells how to get
technical assistance.

Basic information for configuring and instantiating
SmartModels, FlexModels, MemPro models, and
hardware models for use in hardware simulators.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
VCS. Includes a script that you can useto run
FlexModel example testbenchesin VCS.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Verilog-XL.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-Verilog.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI Verilog.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Scirocco. Includes a script that you can use to run
FlexModel example testbenchesin Scirocco.

How to configure SmartModels, FlexModels,

MemPro models, and hardware models for use with
VSS.

Synopsys, Inc.

April 2002

http://www.synopsys.com/products/lm/doc

Simulator Configuration Guide

Chapter 8
Using MTI VHDL with Synopsys
Models

Chapter 9
Using Cyclone with Synopsys
Models

Chapter 10

Using L eapfrog with Synopsys
Models

Chapter 11
Using NC-VHDL with Synopsys
Models

Chapter 12
Using QuickSim Il with Synopsys
Models

Chapter 13

Using VERA with Synopsys Models

Appendix A
LMTV Command Reference

Preface

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI VHDL.

How to configure MemPro models and hardware
models for use with Cyclone.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with

Leapfrog.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-VHDL.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
QuickSim II.

How to configure FlexModels for use with Vera.
Includes a separate procedure for using FlexModels
with Veraand VCS.

Reference information for LM TV commands used
with SmartModels and FlexModels on Verilog-XL,
NC-Verilog, and MTI Verilog.

Typographical and Symbol Conventions

« Default UNIX prompt

Represented by a percent sign (%4).

« User input (text entered by the user)

Showninbol d type, asin the following command line example:

% cd $LMC_HOME/ hdl

. System-generated text (prompts, messages, files, reports)

Shown asin the following system message:

No M snatches: 66 Vectors processed: 66 Possible

April 2002

Synopsys, Inc. 15

Preface Simulator Configuration Guide

« Variablesfor which you supply a specific value

Shown initalic type, asin the following command line example:
% setenv LMC HOMVE prod_dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

Command syntax

Choice among alter nativesis shown with avertical bar (|) asin thefollowing
syntax example:

-effort_level low | medium | high

In this example, you must choose one of the three possibilities: low, medium, or
high.

Optional parameters are enclosed in square brackets ([]) asin the following
syntax example:

pinl[pin2 ... pinN]

In this example, you must enter at least one pin name (pinl), but others are optional
([pin2 ... pinN]).

Getting Help

If you have a question while using Synopsys products, use the following resources:

16

« Product documentation installed on your network or located at the root level of your

Synopsys CD-ROM.

« Product documentation for the latest version of all products on the Web:

http://www.synopsys.com/products/designware/docs

« Datasheetsfor al verification models and Design Ware Implementation | P available

using the IP Directory:
http://www.synopsys.com/products/designware/ipdir.html

Synopsys, Inc. April 2002

http://www.synopsys.com/products/designware/docs
http://www.synopsys.com/products/designware/ipdir.html

Simulator Configuration Guide Preface

« Theonline Support Center available at one of the following URLSs:

o DesignWare Macrocells, DesignWare Foundation Library, or coreBuilder Tools
customers:

http://solvnet.synopsys.com/
o SmartModel, FlexModel, MemPro, VMC, VhMC, and CMC customers:
http://www.synopsys.com/support/lm/support.html

If you still have questions about the following products, you can call a Synopsys support
center:

« DesignWare Macrocells, DesignWare Foundation Library, and coreBuilder Tools

o United States:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific Time, Mon—Fi.

o Canada:
Call 1-650-584-4200 from 7 AM to 5:30 PM Pacific Time, Mon—Fi.

o All other countries:
Find other local support center telephone numbers at the following URL:

http://www.synopsys.com/support/support_ctr/
« SmartModels, FlexModels, MemPro, VMC, and VhMC

o North America:
Call 1-800-445-1888 from 7:00 AM to 5 PM Pacific Time, Mon—Fi.

o All other countries:
Call your local sales office.

The Synopsys Website
General information about Synopsys and its productsis available at this URL :
http://www.synopsys.com

Comments?

To report errors or make suggestions, please send e-mail to:
doc@synopsys.com

To report an error on a specific page, select the entire page (including headers and
footers), and copy to the buffer. Then paste the buffer to the body of your e-mall
message. Thiswill provide us with the information we need to correct the problem.

April 2002 Synopsys, Inc. 17

http://solvnet.synopsys.com/
http://www.synopsys.com/support/lm/support.html
http://www.synopsys.com/support/support_ctr/
http://www.synopsys.com
mailto:doc@synopsys.com

Preface Simulator Configuration Guide

18 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

1

Using Synopsys Models with
Simulators

Overview

There are avariety of different types of models used in the verification process. This
manual covers the following kinds:

« SmartModels (including FlexModels)
« MemPro models
« Hardware models

SmartModels and FlexModels are binary behavioral models that connect to over 30
commercial ssimulators through the SWIFT interface. If you are using a SWIFT
simulator that does not have a separate chapter devoted to it in this manual, refer to this
chapter for the basic information needed to get the models working on your simulator.
For information on SmartModel/FlexModel supported simulators, refer to the
SmartModel Library Supported Platforms and Smulators Manual.

MemPro models are produced in Verilog or VHDL and do not use the SWIFT interface.
They do require simulator-specific PLI/CLI/FLI code that needs to be bound in to the
supported simulator executable. MemPro is supported on the simulators listed in

Table 5.

The hardware modeler uses real silicon in combination with specialized hardware and
software to represent the full functionality of modeled devicesin your simulation. It
does not have a standard interface comparable to SWIFT. Hardware models are a
combination of hardware and software, as follows:

« Thehardware consists of the actual silicon of the device being modeled, installed on
a special-purpose Device Adapter and inserted into the hardware modeling system.

April 2002 Synopsys, Inc. 19

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

« The software consists of a series of ASCI| files containing Shell Software that
describes the device interface and initialization, along with optional information
such astiming delays, state tracking, and timing checks.

For simulator-specific information about using hardware models, refer first to “Using
Hardware Models with Different Simulators’ on page 37 for an overview and then
consult the appropriate simulator-specific chapter in this manual for detailed setup
procedures.

The procedures in this chapter are organized into the following major sections:
« “Using SmartModels with SWIFT Simulators’ on page 20
« “Using FlexModels with SWIFT Simulators’ on page 26
« “Using MemPro Models with VHDL and Verilog Simulators’ on page 31
« “Using Hardware Models with Different Simulators’ on page 37

Using SmartModels with SWIFT Simulators

SWIFT isastandard EDA event-level simulation interface developed by Synopsys. The
SWIFT interface enables multiple simulators with different requirements to use models
from the same SmartMode Library. Each simulator provides a standard model
interface, specified by SWIFT, that allows it to load the same SmartModel Library.

When the simulator encounters a SmartModel during ssmulation, it uses a set of SWIFT
functionsto create and configure the model, map to its ports, initializeit, and set itstime
units. The SWIFT interface also allows participating simulators to integrate the
SmartModel Library into their particular framework, including application-specific
menus. For more information, refer to the documentation provided by your simulator
vendor.

SmartModel SWIFT Parameters

SmartModel attributes or parameters are model-specific values needed by the simulator
to configure amodel. You configure SmartModels when you instantiate them in your
design using these SWIFT parameters. This could take the form of Verilog defparams,
VHDL generics, or symbol properties, depending on the simulator you are using. For
details, refer to the documentation for your simulator.

20 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

Table 1 lists the SmartModel configuration parameters. All SmartModels require an
InstanceName, TimingVersion, and DelayRange. In addition, some SmartModels need a
MemoryFile, JEDECFile, SCFFile, or PCLFile attribute. FlexModels use a dlightly
different set of attributes for configuration, described in “FlexModel SWIFT
Parameters’ on page 26.

Table 1: SmartModel SWIFT Parameters

Parameter Name Used By Description

InstanceName All SmartModels Specifies an instance name
for a particular instance of a
SmartModel. Usedin
messages to indicate which
instance isissuing the
message; also used in user-
defined timing. Can be set
by the simulator from the
hierarchical namein the
HDL description; or can be
set using the InstanceName
property on the symbol.

TimingVersion All SmartModels Specifies the timing version
a SmartModel instance
should use when scheduling
changes on its outputs or
checking setup and hold
times on itsinputs.

DelayRange All SmartModels Specifies a propagation
delay range for a particular
instance of a SmartModel.
The allowed values are
“min,” “typ,” and “max.”

MemoryFile SmartModelswith internal | Specifies amemory image
memory such as RAMS, file (MIF) to load for a
ROMss, and processors particular instance of a
and controllersthat have | SmartModel.

on-chip RAM or ROM.

JEDECFile JEDEC-based PAL and Specifiesa JEDEC fileto
PLD models load for aparticular instance
of a SmartModel.
SCFFile FPGAsand CPLDs Specifiesamodel command

file (MCF) to load for a
particular instance of a
SmartModedl.

April 2002 Synopsys, Inc. 21

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

Table 1. SmartModel SWIFT Parameters (Continued)

Parameter Name Used By Description
PCLFile Processor models (for Specifies a compiled PCL
example, microprocessors | program file to load for a
and microcontrollers); particular instance of a
these are usually hardware | SmartModel.
verification models.

T3> Note
To determine the required configuration file (i.e., MemoryFile, JEDECFile,
SCFFile, or PCLFile) for any SmartModel, refer to the model’s datasheet.

Instantiating SmartModels

If you are using an HDL -based simulator, generate a model wrapper file (model.v or
model .vhd) using your ssmulator vendor’s procedure. Use the model wrapper to
instantiate the model in your design. The model wrapper must map the model’s ports to
signalsin your design. Modify SWIFT parametersin the model wrapper as needed. Here
are some parameter examples for a SmartModel memory model:

VHDL:

Ul: cyc7150
CGENER C NVAP(
Ti m ngVersi on => "cy7c¢150",
el ayRange => "NAX',
MenoryFile => "nmenl";

Verilog:
def par am
ul. Ti m ngVersi on = "cy7c150",
ul. Del ayRange = "NAX',
ul. MenoryFile = "nmeml";

You can aso instantiate SmartM odel s in schematic-capture based systems by using
model symbols and attaching values to symbol properties. For details on instantiating
SmartModels using symbols with QuickSim 11, refer to “Using QuickSim I with
Synopsys Models’ on page 213.

22 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

The SWIFT Command Channel

The SWIFT interface specification requires that simulator vendors include a minimal
command interface to the SmartModel Library. Thisinterfaceis called the command
channel. The command channel supports several types of commands:

« “Model Commands’ on page 23
o “SmartBrowser Commands for SmartCircuit Models” on page 23
« “Session Commands’ on page 24

Model Commands

Model commands affect only a selected model instance. Following isalist of the
model commands:

DumpM emory output_file
Dumps the current memory image of amodel to the specified output file. If
output_file exists, it is overwritten; otherwise, anew fileis created.

ReportStatus
Prints a message that describes the configuration status of a model.

SetConstraints ON | OFF
Enables or disables timing constraint checksfor amodel. By default, models check
for and warn of timing constraints.

T3> Note
Some simulator vendors supply additional interfaces to the DumpMemory,
ReportStatus, and SetConstraints capabilities.

SmartBrowser Commands for SmartCircuit Models

In addition to the model commands which apply to al SmartModels, the command
channel also supports the following SmartBrowser commands for SmartCircuit models:

« Anayze Commands

« Assign Commands

« Examine Commands

« List Commands

« Set and Show Commands
« Trace Commands

« General Commands

April 2002 Synopsys, Inc. 23

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

For more information about these SmartBrowser commands, refer to the SmartModel
Library Users Manual.

Session Commands

Session commands act on all models in the simulation session. You can enable session
commands by setting the LMC_COMMAND environment variable. Hereisan example
that enables tracing of timing files and model versions, followed by alist of al the
Session commands.

% set env LMC_ COWAND " TraceTi neFil e on; TracePath QN
I3 Note

The session command strings are case-insensitive, asillustrated above
(ON and on are equivalent).

TraceTimeFile ON | OFF
Enables or disables trace messages that list the timing files loaded at simulation
startup. The default is OFF.

TracePath ON | OFF
Enables or disables tracing of paths to files used to determine versions of models.
The default is OFF.

Verbose ON | OFF
Enables or disables the generation of error messages when a SmartModel instance
cannot be created. The default is OFF.

NoL icenseFatal ON | OFF
When set to ON, causes the SWIFT session to send afatal error message to the
simulator and terminate if any SmartModel in the ssmulation fails to authorize. The
default is OFF.

& Attention
You must invoke the TraceTimeFile, TracePath, and NoLicenseFatal
commands before the start of the simulation run if you want them to take
effect for that session.

24 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

Fault Simulations

The SmartMode Library fault simulation capability is folded into the logic simulation
SmartModel Library so that only one set of directories and utilities need to be installed
and maintained. Fault simulation availability depends on the:

« Model—Note that the following types of models are incompatible with fault
simulation:

o Hardware verification (HV) models are driven by PCL commands rather than
machine instructions and do not respond adequately to propagated faults. Fault
simulation results may not be as accurate when HV models are present in the
circuit.

o FlexModels do not support fault simulation.
o SmartCircuit models do not support fault simulation.

« Simulator—Fault analysisis supported by Mentor’s QuickFault 11, VEDA's
VerdictFault, and Teradyne's LASAR. For more information about fault simulation
support, refer to your simulator documentation.

In most cases you can use the same circuit description for both logic and fault
simulation. However, you may need to supply different circuit stimuli for each type of
simulation. All model messages except version, copyright, and configuration error
messages are suppressed in fault simulation. Usage and timing messages are suspended
because they are meaninglessin afault simulation. In order to work efficiently during a
fault simulation, each model manages its own diverge and converge operations.

April 2002 Synopsys, Inc. 25

Chapter 1: Using Synopsys Models with Simulators

Simulator Configuration Guide

Using FlexModels with SWIFT Simulators

Regardless of which simulator you are using, you must configure FlexModels by
defining the required SWIFT parameters or attributes shown in Table 2 for each
FlexModel instance in your design. You configure FlexModels when you instantiate
them in your design using these SWIFT parameters. This could take the form of Verilog
defparams, VHDL generics, or symbol properties, depending on the simulator you are

using.

Table 2: FlexModel SWIFT Parameters

Parameter?

Data Type

Description

FlexTimingMode

FLEX_TIMING_MODE_OFF
(defaullt)
FLEX_TIMING_MODE_ON

FLEX_TIMING_MODE_CYCLE

Disables/enables timing simulation.
(For Verilog, prepend a back quote
(*) to the constant.)

Note: C-only Command Mode users
can set this parameter to:

- *0” for timing mode off
- “1” for timing mode on
- “2" for cycle-based timing

TimingVersion

Model timing version

The FlexModel timing version. Refer
to the individual FlexModel
datasheets for available timing
versions.

DelayRange “MIN”, “TYP", “MAX” (default) If you set FlexTimingMode to on,
you can select MIN, TYPR, or MAX
delay values with this parameter.

FlexModelld “instance_name’ A unique name that identifies each

FlexModel instance. Thisnameis
also used by theflex_get_inst_handle
command to get an integer instance
handle.

Note: Used only with _fx models

FlexModelld_cmd_stream

“instance_name’

A unique name that identifies each
FlexModel instance or command
stream. Thisnameisalso used by the
flex_get_inst_handle command to
get an integer instance handle. For
information on cmd_stream names,
refer to the individual FlexModel
datasheets.

Note: Used only with _fz models.

26

Synopsys, Inc.

April 2002

Simulator Configuration Guide

Chapter 1: Using Synopsys Models with Simulators

Table 2: FlexModel SWIFT Parameters (Continued)

Parameter?

Data Type

Description

FlexCFile

“path_to C file-u|-c”

Specifies the path to an executable C
program and whether to start up in
coupled (-c) or uncoupled (-u) mode.
Uncoupled mode is the defaullt.

Note: Used only with _fx modelsfor
C-only Command Mode.

FlexModelSrc_cmd_stream

“path_to C file-u|-c”

If you want to control a FlexModel
using C-only Command Mode,
change the default value for
cmd_stream (HDL) to the name of
the command stream defined in the
individual FlexModel datasheets.

Usethis parameter to specify the path
to an executable C program and
whether to start up in coupled (-c) or
uncoupled (-u) mode. Uncoupled
mode is the defaullt.

Note: Used only with _fz modelsfor
C-only Command Mode.

a. Some FlexModels have additional SWIFT parameters that need to be specified to configure internal
memory (for example, the usbhost_fz). For details, refer to the individual FlexModel datasheets.

flexm_setup Command Reference

In addition to specifying SWIFT parameters, you must run the flexm_setup utility each
timeyou instal a new or updated FlexModel into your 3LMC_HOME tree. This
ensures that you pick up the latest package files for that version of the model.

Syntax

flexm_setup [-help] [-dir path] model

Argument
model

Switches
-help

April 2002

Pathname to the FlexM odel you want to set up.

Prints help information.

Synopsys, Inc.

27

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

-d[ir] path Copies the contents of the FlexModel’s versioned src/verilog
and src/vhd directoriesinto path/src/verilog and path/src/vhdl.
The directory specified by path must already exist.

Examples

When run without the -dir switch, flexm_setup just prints the name of the versioned
directory of the selected model’s source files

Lists nane of versioned directory containing source files
% fl exmsetup npc860_f x

When run with the -dir switch pointing to your working directory, flexm_setup copies
over all the versioned package files you need to that working directory.

Oreates copy in ‘flexnodel’ directory of nodel source files
% nkdi r wor kdi r
% flexmsetup -dir workdir npc860_fx

Instantiating FlexModels with C-only Command Mode

C-only Command Mode is how you use FlexModels on SWIFT simulators with
standard FlexModel integrations. With C-only Command Mode, all model commands
come from an external compiled C program that you point to using the FlexCFile
SWIFT parameter. For usersfamiliar with Synopsys Hardware Verification models, this
issimilar to setting the PCLFile parameter to point to the location of a compiled PCL
program. In addition, you must also set the FlexModelld parameter, which does not have
adefault value. To generate model wrappers and instantiate models, you use the same
simulator-specific procedures as you would for traditional SmartM odels.

Note that the individual FlexModel datasheets document the command syntax and
examples for issuing model commands from Verilog, VHDL, VERA, or C. However,
only simulators with custom integrations allow you to issue FlexModel commands from
Verilog, VHDL, VERA, C, or some combination of these. SWIFT simulators with
standard integrations must stick to C-only Command Mode for issuing commands to
FlexModels.

To use C-only Command Mode, follow these steps:

1. If you are using an HDL -based simulator, generate a model wrapper file
(model_fx.v or model _fx.vhd) using your simulator vendor’s procedure. Use the
model wrapper to instantiate the model in your design. Add the FlexCFile
parameter to the model instantiation and point it to the location of
your_compiled C file that you create to drive commands into the model. Modify
other SWIFT parameters in the model wrapper as needed. Here are some examples
for how to instantiate a model for use with C-only Command Mode:

28 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

VHDL:

UL: pci mast er

GENER C MAP(
Fl exModel I1d => "nodel Id_1",
HexCFile => "./tb.o",
Fl exTi m nghbde => "1",
Ti m ngVer si on => "pci naster",
Del ayRange => " NAX'

Verilog:

def par am
ul. Fl exModel Id = "nodel 1d_1",
ul. FlexCFile = "./tbh.o",
ul. Fl exTi m nghbde = "1",
ul. Ti m ngVersion = "pci master"”,
ul. Del ayRange = "NAX';
For both of these examples, the C testbench file must have the same instance name,
asfollows:

int 1d 1, status;
char *slnstName = "nodel Id_1";

/* Get the instance handl e */
flex_get _inst_handl e(sl nst Nanme, & d_1, &status);

2. Create aworking directory and run flexm_setup to make a copy of the model’sC
object file there, as shown in the following example:

% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 3 lists the files that flexm_setup copies to your working
directory.

Table 3: FlexModel C-only Command Mode Files

File Name Description L ocation
model _pkg.o M odel-specific functions for UNIX. | workdir/src/C/
model _pkg.obj M odel-specific functions for NT. workdir/src/C/

April 2002 Synopsys, Inc. 29

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

3. Compile the C object filesin with the C program that you write to drive commands
into the model (represented in the following examplesasyour C file.c). Notethat
these examples include creation of aworking directory (workdir) and running
flexm_setup, as explained in the previous step. The compile line differs based on
your platform:

a. On HP-UX, you need to link in the -LBSD library as shown in the following
example:

% nkdi r wor kdi r

%flexmsetup -dir workdir model fx

%/ bi n/c89 -0 executabl e_name \

your Cfile.c \

wor kdi r/ src/ d hp700/ nodel _pkg. o \

$LMC_ HOWEH | i b/ hp700. I'i b/ f1 exnodel _pkg. o \
-1 $LMC HOWE/ sim T src \

-lworkdir/src/C\

-1 BSD

b. On Solaris, you need to link in the -Isocket library as shown in the following
example:

% nkdi r wor kdi r

%flexmsetup -dir workdir nodel fx

% cc -0 executabl e_name \

your_C file.c \

wor kdi r/ src/ d sol ari s/ nodel _pkg. o \

$LMC HOWEH | i b/ sun4Sol ari s. |i b/ fl exnodel _pkg. o \
-1 $LMC HOWE simi T src \

-lworkdir/src/C\

- | socket

c. AIX:

% nkdi r wor kdi r

%flexmsetup -dir workdir model fx

%/ bin/cc -0 executabl e_name \

your_C file.c \

wor kdi r/ src/ d i bnrs/ model _pkg. o \
${LMC_HOME} /i b/ibmrs. ib/flexnodel _pkg.o \
-lworkdir/src/C\

-1 ${LMC HOME}/sim T src \

-1 dl

30 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

d.

Linux;

% nkdi r wor kdi r

%flexmsetup -dir workdir model fx

% egcs -0 execut abl e_nare \

your_C file.c \

wor kdi r/ src/ C x86_1i nux/ nodel _pkg. o \
${LMC_HOME}/ i b/ x86_1 i nux. |i b/ fl exnodel _pkg. o \
-lworkdir/src/C\

-1 ${LMC_ HOME}/ sim T src

e. On NT, you need to link in aWindows socket library as shown in the following
example.
> md wor kdi r
> flexmsetup -dir workdir model _fx
>cl - -MD -DVBC - DWVN32 - Feexecut abl e_nane
your_C file.c
wor kdi r\ src\ Q pcnt\ nodel _pkg. obj
%MC_ HOME% | i b\ pent . | b\ fl exnmodel _pkg. obj
-1%MC HOVESA si M Qi src
-lworkdir\src\C
wsock32. i b
I Note

The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

The C executable file that you created in this step is the program that you point to using
the FlexCFile SWIFT attribute for the model instance in your design.

Using MemPro Models with VHDL and
Verilog Simulators

Regardl

ess of which simulator you are using, you must configure MemPro models by

defining the required parameters or attributes shown in Table 4 for each MemPro model
instance in your design. You configure MemPro models when you instantiate them in
your design using these generics or parameters.

April 2002

Synopsys, Inc. 31

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

Table 4: MemPro Generic/Parameter Descriptions

Name

Data Type

Description

model_id

Integer

model_alias

String

Either the model_id or model_alias generic or parameter
specifies a unique user handle for a specified model instance.
This user handle is used to address a memory model using
testbench commands.

Note: You do not have to assign all MemPro model instances
amodel _id or model_alias, only those instances on which you
wish to use the testbench interface. However, each model with
amodel_id or model_alias must be assigned a unique handle.

memoryfile

String

Specifies the file name of the memory image file to preload
during model initialization. If memoryfileisset to anull
string (memoryfile =""), memory image preloading during
initialization is disabled. Supported files formats are
SmartModel Memory Image, Motorola S-Record, Intel Hex,
and Verilog $readmemh. Memory models can also be loaded
using the mem_load command.

default_data

String

Specifies the default data returned from all uninitialized
memory addresses.

Note: Modelsin non-volatile memory classes may not have
their Default Memory Value set to anything except all ones.
Any other setting isignored and MemGen issues an warning.

message _|evel

Integer

Specifies the type or types of messages returned by the
model. For a detailed description of message types, refer to
“Controlling MemPro Model Messages’ on page 35

32

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

MemPro models are supported on the smulators listed in Table 5.
Table 5: MemPro Supported Simulators

Verilog Smulators VHDL Simulators
VCS Scirocco
Verilog-XL VSS
NC-Verilog Cyclone
MTI Verilog Leapfrog
MTI VHDL
NC-VHDL

Each of the ssmulatorsin Table 5 has its own chapter in this manual that explains the
simulator-specific procedure for using MemPro models in those environments.

Using MemPro Models with VHDL Simulators

This section describes how to include MemPro memory models and testbench interface
commands in your design. The MemPro VHDL interface code is contained in the
following files:

sim_hdlc.vhd Simul ator-specific HDL-to-C interface code.

mempro_pkg.vhd MemPro-specific module containing the VHDL
implementation of the MemPro testbench interface.

rdramd_pkg.vhd RDRAM -specific module.
All of thesefiles are located in the SLMC_HOME/sim/simulator/src directory.

Using MemPro Models with Verilog Simulators

This section describes how to include MemPro memory models and testbench interface
commandsin your design. The following files define MemPro PLI routines and
interface commands:

sim_pli.o PLI routines. Thisfileislocated inthe
$LMC_HOMFE/lib/platform.lib directory.
mempro_pkg.v Verilog testbench task definitions for MemPro interface

commands. Thisfileislocated in the
$LMC_HOME/sim/pli/src directory.

April 2002 Synopsys, Inc. 33

Chapter 1: Using Synopsys Models with Simulators

Simulator Configuration Guide

mempro_c_tb.h C testbench function definitions for MemPro interface
commands. Thisislocated inthe SLMC_HOMFE/include
directory.

Instantiating MemPro Models
You instantiate MemPro models just like any other HDL models, as shown in the

following DRAM examples.

MemPro Verilog Instantiation

dr anilx64 bankl

(.ras (rasr),
.ucas (ucasr),
.lcas (lcasr),
.we (wer),

. oe (oer),
.a (adrr),
. dq (dataw));

def par am bank1. nodel _id
bankl. nenoryfile
bankl. nessage | evel
bankl. defaul t _data

"t bench. bank1",

"dram dat ",

* SLM XHANDLI NG |

64' hxxx;

MemPro VHDL Instantiation

UL : dranilx64
generic map (nodel _id
menoryfile
nmessage | eve
default _data
port nap
(a
dq
ras
| cas
ucas
we
oe

34

=>
=>
=>

10,
"dram dat ",

"SLMTIMNG | " SLM WARN NG

(SLM.TI M NG + SLM XHANDLI NG + SLM WARN NG,

13000 ;

adrw,
dat aw,
rasw,

| casw,
ucasw,
wew,
oew);

Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

Controlling MemPro Model Messages

MemPro model messages are grouped into categories that you can individually enable
or disable for each model instance. Several message categories are applicable to all
models; additional categories may be defined for specific models or model types. The
general categories are:

Fatal

Fatal messages are always enabled. When afatal error is detected, the ssmulation stops
immediately after reporting the message. For example, referencing an unknown
MemPro model instance handle causes afatal error.

Error

Error messages apply to incorrect situations from which the model is able to recover,
allowing simulation to continue. For example, MemPro generates an error message
when the model receives acommand that would put it in anillegal state.

Warning

Warning messages apply to situations that users may want to check, but are not
obviously wrong. For example, MemPro generates a warning message when significant
bits of an address are ignored.

Info

Info messages inform you of the status or behavior of the model. MemPro generates
info messages infrequently. For example, when a memory model isinitialized from a
file, MemPro issues an info message.

Timing
MemPro uses timing messages to report timing constraint violations. Typica situations
that cause timing messages are setup or pulse-width violations.

X-Handling

MemPro generates X-handling messages if amodel samples unknowns on input ports
when valid data was expected.

April 2002 Synopsys, Inc. 35

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

Controlling MemPro Message Output
There are three ways to control messaging for MemPro models:

1. Set individual Message Settings when you specify the model message categories
(except Fatal).

2. Use the message _level generic or parameter. For more information, refer to
“Message Level Constants” on page 36.

3. Use acommand stream or testbench command.

By default, MemPro models display all the general message categories (Fatal, Error,
Warning, Info, Timing, and X-handling). If you set a generic or parameter for a model
instance, that setting overrides the default behavior. In turn, if the command stream or
testbench interface is used, it overrides the generic or parameter value.

Message Level Constants

MemPro provides constants for setting message levels on each instantiated model. The
constants described in Table 6 are defined in mempro_pkg.v (for Verilog simulators) and
mempro_pkg.vhd (for VHDL simulators).

Table 6: MemPro Message Constant Descriptions

Constant Value? | Description

SLM_ERROR 1 | Fatal and error messages generated.
SLM_WARNING 2 | Fatal and warning messages generated.
SLM_TIMING 4 | Fatal and timing messages generated.
SLM_XHANDLING 8 Fatal and X-handling messages generated.
SLM_INFO 16 | Fatal and info messages generated.
SLM_ALL_MSGS 228_1 | All message types generated.

SLM_NO MSGS 0 | Only fatal messages generated.

a. Note that bits 5 through 27 are unused but reserved.

You can combine these constants to get any combination of messages you desire. The
following Verilog and VHDL code fragments define a model instantiation having
timing, X-handling, and warning (as well as fatal) messages enabled.

36 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

Verilog
bankl. nessage level = "SLMXHANDLING | "SLMTIMNG | ~SLM WARN NG

VHDL
nmessage _level => (SLM TIM NG + SLM XHANDLI NG + SLM WARN NG,

Using Hardware Models with Different

Simulators

After you install your hardware modeling system, the final task isto link your simulator
with the Synopsys Simulator Function Interface (SFI). Procedures for linking the
simulator with the SFI are specific to the particular simulator.

Synopsys provides four Model Access products, supporting QuickSim I, Cyclone,
Verilog-XL, and NC-Verilog. For usage information, refer to the following sectionsin
this book:

« “Using Hardware Models with QuickSim 11" on page 240
« “Using Hardware Models with Cyclone” on page 170

« “Using Hardware Models with Verilog-XL"” on page 82

« “Using Hardware Models with NC-Verilog” on page 108

Linking Other Supported Simulators

Because many hardware modeling features are provided through the SFI software, the
functionality of your environment is determined by the version of the SFI that is
integrated with your simulator. Some simulators can be dynamically or statically linked
on site with the most recent SFI. For the current list of simulators and versions that are
supported for dynamic or static linking on site with the SFI, refer to Hardware Modeling
Supported Platforms and Smulators.

If you use one of the simulators on this|list, you can link your simulator with the most
recent version of the SFI libraries on the distribution media, allowing you to take
advantage of the latest hardware modeling system software enhancements and bug fixes.
Some simulators have additional requirements. For information, refer to your simulator
vendor’s documentation.

April 2002 Synopsys, Inc. 37

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

If you use a simulator that is not on the list, consult your ssmulator vendor about which
version of the SFI has been integrated with your simulator. Depending on the version of
the SFI, you should be able to install and use the most recent Runtime Modeler
Software, although you may not be able to take advantage of all hardware modeling
system software enhancements and fixes.

IKOS Voyager

For information on thisinterface, refer to the Voyager/LM Hardware Interface chapter of
the Voyager Series User’s Guide, Volume 4.

Do not install the hardware modeling system software under the $VOYAGER_HOME
directory, or files could be overwritten and the install ation corrupted. The IKOS-created
smsdirectory (under $VOYAGER_HOME) and the Synopsys-created sms directory
must be kept separate.

Teradyne LASAR

You can dynamically link the SFI with LASAR. For complete Teradyne-specific
installation information, refer to Teradyne's LASAR Manager Guide for UNIX Systems.

VEDA Vulcan

You can dynamically link the SFI with Vulcan at simulator runtime. For current linking
information, please contact VEDA technical support directly.

Viewlogic Fusion ViewSim

You can statically link the SFI on-site with ViewSim. For information, refer to the
Viewlogic Fusion ViewSim manual or contact Viewlogic technical support directly at 1-
800-223-8439. In addition, Synopsys provides a SOLV-IT! article with some
information. For instructions on accessing SOLV-IT!, refer to “ Getting Help” on

page 16.

38 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

2

Using VCS with Synopsys Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VCS. These procedures are centered on VCS v5.1, but contain
notes about other versions of VCS as well. The procedures are organized into the
following major sections:

« “Setting Environment Variables’ on page 40

« “Using SmartModels with VCS’ on page 41

« “Using FlexModelswith VCS’ on page 43

« “Using MemPro Models with VCS’ on page 53
« “Using Hardware Modelswith VCS’ on page 57

J° Hint
~ Thischapter includes a script that you can use to run any FlexModel
examples testbench with minimal setup required. You can cut-and-paste the

script right out of this PDF file. Refer to “ Script for Running FlexM odel
Examplesin VCS’ on page 51.

April 2002 Synopsys, Inc. 39

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOMVE path_to_nodel s_install ation

2. SettheLM_LICENSE _FILE or SNPSLMD_LICENSE FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpsimd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal | _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris;

% setenv LD LI BRARY PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% set env LD LI BRARY_PATH $LMC_HOVE/ 1 i b/ x86_I i nux. | i b: $LD LI BRARY_PATH

40 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

AlX:

% set env LI BPATH $LMC HOWE/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_ PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

5. Setthe VCS _HOME variableto the location of your VCSinstallation tree, as shown
in the following example, and make sure that VCSis set up properly in your
environment:

% setenv VCS HOME VCS install _path
6. Set the VCS_SWIFT_NOTES variable to 1, as shown in the following example:
% setenv VCS SWFT_NOTES 1

VCS_SWIFT_NOTES enables the printf Processor Control Language (PCL)
command.

Using SmartModels with VCS

To use SmartModels with VCS, follow this procedure:

1. Synopsys provides atool, vcs_sg, that allows you to generate multiple model
wrapper files. You must select VCS as your Verilog simulator during the
SmartModel installation in order to have vcs sg available. It will be installed as

$LMC_HOVH bi n/ ves_sg

Thevcs sgtool also extends the usefulness of the model wrapper files generated by
VCSin two ways:

o it adds statements that alow the DelayRange to be controlled by the VCS
command line +define parameters (or a defparam in your testbench)

o it adds a check for the VCS command line +define+SwiftChecksOff parameter
that turns constraints off.

You can change the default name of the generated wrapper files (<model>.swift.v),
as well as the location that the generated wrappers are written to. Invoke

$LMC_HOVE bi n/ ves_sg -h
to return the usage message for the vcs_sg tool.

April 2002 Synopsys, Inc. 41

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

2. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on the required SWIFT parameters and SmartModel
instantiation examples, refer to “ SmartModel SWIFT Parameters’ on page 20.

3. Invoke the VCS simulator as shown in the following examples:

Solaris:

% $VCS_HOWE/ bi n/vcs -1 nt-swi ft nodel . swift.v nodel _tb.v \
-1 ves_simlog \

- Mipdat e \

-R

HP-UX:

% $VCS_HOWE/ bi n/vcs -1 nt-swi ft nmodel . swift.v model _tb.v \
-1 vecs_simlog \

- Mupdat e \

-R\

-LDFLAGS "-a shared -Im-1lc -a archive"

AlX:

% $VCS_HOWE/ bi n/vcs -1 nt-swi ft nodel . swift.v nodel _tb.v \
-1 ves_simlog \

- Mupdat e \

-R O\

-LDFLAGS -IId

Linux:

% $VCS_HOWE/ bi n/vcs -1 nt-swi ft nodel . swift.v nodel _tb.v \
-1 ves_simlog \

-Mipdat e \

-R O\

- LDFLAGS -rdynam c

where model.swift.v is the template you created in the previous step and model_tb.v
IS the testbench where the model is instantiated. Each model instantiated in the
testbench must have a model .swift.v wrapper file listed on the VCS invocation line.

42 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 2: Using VCS with Synopsys Models

VCS SmartModel Explanation
Table 7 lists each line in the invocation examples above, aong with explanations for

what each one does.

Table 7: VCS SmartModel Explanation

Line Reference

Description

$VCS_HOWH bi n/ vcs
-l mc-swift nodel .swift.v nmodel _tb.v

Path to the file that starts the VCS simulator, a
switch that causes VCSto load the SWIFT
interface, and then the specified model wrapper and
Verilog testbench files.

-1 ves_simlog

Specifies alog file where VCS writes compilation
and simulation messages.

- Mipdat e This specifies incremental compilation, which
causes VCS to compile only the modules that have
changed since the last run.

-R This makes VCS run interactively. VCS invokes the

XVCS GUI after compilation and pauses the
simulator at time zero.

- LDFLAGS swi t ches

Additional platform-specific switches that may be
needed.

Using FlexModels with VCS

To use FlexModels with VCS, follow this procedure. VCS links the external PLI
routines that contain the custom FlexModel integration code during compilation of your
design. This procedure covers users on UNIX and NT. If you are on NT, substitute the
appropriate NT syntax for any UNIX command line examples (percent signs around

variables and backslashes in paths).

1. Synopsys provides atool, vcs sg, that allows you to generate multiple model
wrapper files. You must select VCS as your Verilog simulator during the
SmartModel installation in order to have vcs_sg available. It will be installed as

$LMC_HQOVH bi n/ ves_sg

Thevcs_sgtool also extends the usefulness of the model wrapper files generated by

VCSin two ways.

o it adds statements that alow the DelayRange to be controlled by the VCS
command line +define parameters (or a defparam in your testbench)

o it adds a check for the VCS command line +define+SwiftChecksOff parameter

that turns constraints off.

April 2002 Synopsys, Inc. 43

Chapter 2: Using VCS with Synopsys Models

Simulator Configuration Guide

You can change the default name of the generated wrapper files (<model>.swift.v),
aswell asthe location that the generated wrappers are written to. Invoke

$LMC_HOWH bi n/vcs_sg -h
to return the usage message for the vcs_sg tool.

TI°5> Note

The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 8), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:

% $LMC_HOVE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 8 lists the files that flexm_setup copies to your working

directory.
Table 8: FlexModel VCS Verilog Files
File Name Description L ocation
model _pkg.inc Verilog task definitions for FlexModel | workdir/src/verilog/

interface commands. Thisfile also
references the flexmodel _pkg.inc and
model_user_pkg.inc files.

model _user _pkg.inc

Clock frequency setup and user
customi zations.

workdir/src/verilog/

model_fx_vcs.v

A SWIFT wrapper that you can use to
instantiate the model.

wor kdir/examples/verilog/

model.v A bus-level wrapper around the SWIFT wor kdir/examples/verilog/
model. This alows you to use vectored
ports for the model in your testbench.

model_tst.v A testbench that instantiates the model and | wor kdir/examples/verilog/
shows how to use basic model commands.

44 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

3. Update the clock frequency supplied inthe model _user_pkg.inc fileto correspond to
the CLK period you want for the model. Thisfileislocated in:

wor kdi r/ src/veril og/ model _user _pkg.inc

where workdir is your working directory.

4. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

“include "nodel pkg.inc"

5= Note
Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel _pkg.inc and
model _user pkg.inc, you don’t need to add flexmodel _pkg.inc or
model_user_pkg.inc to your testbench.

5. Instantiate FlexModelsin your design, defining the ports and defparams as required
(refer to the exampl e testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vcs.v).

Example using bus-level wrapper (model.v) without timing:

nodel UL (nodel ports)
def par am
UL. Fl exModel Id = “TMB_ | NST1”;

Example using bus-level wrapper (model.v) with timing:

nodel Ul (nodel ports)
def par am
UL. Fl exTi m ngMbde = " FLEX_TI M NG MCDE_QN
UL. Ti m ngVersi on = “ti m ngversi on”,
UL. Del ayRange = “range”,
UL. Fl exMbdel | d= “TMS_| NST1”;

6. Invoke VCS to compile and simulate your design as shown in the following
examples:

April 2002 Synopsys, Inc. 45

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

Solaris

% vcs -0 sinv workdir/exanpl es/ veril og/ model . v \
wor kdi r/ exanpl es/ veri | og/ nodel _fx_vcs. v \
$LMC HOWE/ | i b/ sund4Sol aris.lib/slmpli.o \
testbench. v \

-P $LMC HOWE sinipli/src/slmpli.tab \
-Ine-swift \
+i ncdi r+$LMC HOVE/ sinipli/src \
+i ncdi r+wor kdi r/src/veril og
% si nv

HP-UX

%vcs -0 sinv workdir/exanpl es/ veril og/ model . v \
wor kdi r/ exanpl es/ veri | og/ nodel _fx_vcs. v \
$LMC_ HOWE | i b/ hp700. 1ib/slmpli.o \
testbench. v \

-P $LMC HOWE sinipli/src/simpli.tab \
-lne-swift \

+i ncdi r+$LMC HOVE/ sinmipli/src \

+i ncdi r+wor kdi r/src/verilog \

-LDFLAGS "-a shared -Im-1lc -a archive"

% si nv

AlX

%vcs -0 sinv workdir/exanpl es/verilog/ nodel . v \
wor kdi r/ exanpl es/ veri | og/ nodel _fx_vcs. v \
$LMC HOW/ i b/ibms.lib/sImpli.o \
test bench. v \

-P $LMC HOWE sinipli/src/simpli.tab \
-Ine-swift \
+i ncdi r+$LMC_ HOME/ simipli/src \
+i ncdi r+wor kdi r/src/verilog \
- LDFLAGS -11d
% si nv

Linux

%vcs -0 sinv workdir/exanpl es/verilog/ nmodel . v \
wor kdi r/ exanpl es/ veri | og/ nodel _fx_vcs. v \
$LMC HOWE/ | i b/ x86_|inux.lib/slmpli.o\
test bench. v \

-P $LMC HOWE/ simipli/src/sImpli.tab \
-Inc-swift \
+i ncdi r+$LMC_ HOME/ simipli/src \
+i ncdi r+workdir/src/verilog \
- LDFLAGS -rdynam c
% si nv

46 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

NT

> vcs -0 sinv . \exanpl es\veril og\ nodel . v
wor kdi r\ exanpl es\ veri | og\ nodel _fx_vcs. v
+i ncdi r +%MC_ HOME% simpli\src

+i ncdi r +wor kdi r\'src\veril og

t est bench. v

-Inc-swift -P

%MC HOMB% simplilsrc\simpli.tab

% MC HOMEA i b\pent.lib\sImpli_ves.lib

> sinv. exe

T3> Note
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

April 2002 Synopsys, Inc. 47

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

VCS FlexModel Examples

First we present a basic one-model example and then show you how to use more than
one FlexModel in the same simulation in the following sections:

« “OneFexModel on Solaris’ on page 48
« “Two FlexModels on Solaris’ on page 50
o “Three FlexModels on HP-UX” on page 50

One FlexModel on Solaris

To use one FlexModel with VCS on Solaris, invoke the smulator as shown in the
following example:

% $VCS_HOWE bi n/ vcs \
"$LMC_HOWE bi n/ fl exm set up nodel _fx" / exanpl es/ veril og/ model _tst.v \
" $LMC_HOME/ bi n/ f1 exm set up nodel _f x"/ exanpl es/ veri | og/ nodel . v \
"$LMC_HOWE bi n/ fl exm set up nodel _f x™ / exanpl es/ veril og/ nodel _fx_vcs.v \
+i ncdi r+$LMC HOME/ sinmipli/src \
+i ncdi r+ $LMC_HOVE bi n/ f1 exm setup nmodel _fx /src/verilog \
-P $LMC_ HOW/ simipli/src/slmpli.tab \
$LMC HOWH i b/ sund4Sol aris.lib/slmpli.o \
+i ncdi r+$LMC HOME/ sinmipli/src \
-1 vecs_simlog \
- Mipdat e \
-R\
-l nc-swi ft
where model is the name of the FlexModel you are using.

48 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 2: Using VCS with Synopsys Models

Table 10 lists each line in the invocation example above, along with explanations for

what each one does.

Table 9: VCS With One FlexModel On Solaris Model Explanation

Line Reference

Description

$VCS_HOWH bi n/ vcs

Path to the file that starts the VCS simulator.

"$LMC HOWE bi n/ f | exm set up nodel _f x°
/ exanpl es/ veril og/ nodel _tst.v

Specifiesthe path to the model testbench file.

*$LMC_HOME/ bi n/ f 1 exm set up nodel _fx°
/ exanpl es/ veri | og/ model . v

Specifies the path to the model Verilog
wrapper file.

"$LMC HOWE/ bi n/ f | exm set up nodel _f x°
/ exanpl es/ veril og/ model _fx_vcs. v

Specifiesthe path to the model VCStemplate
file.

+i ncdi r+$LMC_ HOVE/ sinmipli/src

Includes the path to the flexmodel_pkg.inc
file, which contains Verilog task definitions
for general FlexModel interface
commands.

+i ncdi r+ $LMC_HOWE bi n/ f | exm set up
nodel _fx /src/verilog

Includes the path to the model-specific
Verilog task files, including model _pkg.inc.

-P $LMC HOWE/ sinmipli/src/simpli.tab

Specifies the FlexModel/MemPro PLI table
entry file.

$LMC HOME | i b/ sund4Sol aris.lib/sImpli.o

Specifies the platform-specific PLI object
file.

-1 ves_simlog

Specifiesalog file where VCS writes
compilation and simulation messages.

- Mipdat e

This specifiesincremental compilation,
which causes VCS to compile only the
modules that have changed since the last run.

This makes VCS run interactively. VCS
invokesthe XV CS GUI after compilation and
pauses the ssimulator at time zero.

-l nc-swift

This switch causes VCS to load the SWIFT
interface.

April 2002

Synopsys, Inc. 49

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

Two FlexModels on Solaris

This example shows how to use the mpc740 _fx and mpc750 |2 fx FlexModels together
with VCS on Solaris. Invoke the simulator as shown in the following example:

% $VCS_HOME bi n/ ves \

SLMC_HOME/ bi n/ f1 exm set up npc750_1 2_fx/ exanpl es/ veril og/ npc750_12 tst.v \
$SLMC_HOME/ bi n/ f 1 exm set up npc750_1 2_fx/ exanpl es/ veril og/ npc750_12.v \
$SLMC_HOME/ bi n/ f 1 exm set up npc750_1 2_fx/ exanpl es/ veril og/ mpc750_12 fx_vcs.v \
“$LMC_HOME/ bi n/ f 1 exm set up npc740_f x™ / exanpl es/ veri | og/ npc740. v \
*SLMC_HOME/ bi n/ f1 exm set up npc740_f x™ / exanpl es/ veri | og/ npc740_fx_vecs. v \

+i ncdi r+$LMC_ HOME/ simipli/src \

+i ncdi r+ $LMC_HOME/ bi n/ f1 exm set up nmpc750_1 2 fx /src/verilog \

+i ncdi r+ $LMC_HOME bi n/ f1 exm set up npc740_fx /src/verilog \

-P $LMC HOME/ sinmipli/src/simpli.tab \

SLMC HOME/ li b/ sun4Sol aris.lib/slmpli.o \

+i ncdi r+$LMC_ HOME/ simipli/src \

-1 ves_simlog \

-Mipdat e \

-R\

-l me-swift

Three FlexModels on HP-UX

This next example shows how to use the PCI system testbench and the pcimaster_fx,
pcislave fx, and pcimonitor_fx FlexModelstogether with VCS on HP-UX. Follow these

steps:
1. Set up the PCI system testbench as shown in the following example:

% nkdir pci_tb

%cp -rf “$LMC_HOWE bi n/ fl exm setup pci master _fx'/* pci_tb
%cp -rf “$LMC_HOME bi n/ fl exm setup pcinonitor_fx'/* pci_tb
%cp -rf “$LMC_HOWE bi n/ fl exm setup pcislave fx /* pci_tb

2. Invoke the VCS simulator as shown in the following example:

% $VCS_HAOVE/ bi n/ ves \

./ pci _tb/exanpl es/ verilog/ pcisys tst.v \

./ pci _tb/exanpl es/ veril og/ pci master.v \

./ pci _tb/ exanpl es/ veril og/ pci master_fx_vcs. v \
./ pci _t b/ exanpl es/ veril og/ pci sl ave. v \

./ pci _tb/exanpl es/ veril og/ pcislave fx vcs.v \
./ pci _tb/exanpl es/ verilog/ pcinmonitor.v \

./ pci _tb/exanpl es/ verilog/ pcimonitor fx ves.v \
+i ncdir+./pci _tb/src/verilog \

+i ncdi r+$LMC_ HOVE/ simi pli/src \

$LMC HOME i b/ hp700.1ib/sImpli.o \

-P $LMC HOW/ simipli/src/slmpli.tab \

-1 vecs_simlog \

-Mipdat e \

-R\

50 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

-lme-swift \
-LDFLGS "-a shared -Im-lc -a archive"

Script for Running FlexModel Examples in VCS

On page 52 is a Perl script (Figure 1) that you can use to run VCS on a FlexM odel
examples testbench. You can use this script on any installed FlexModel because each
one comes with a prebuilt testbench example that shows how to use the model
commands and all the Verilog wrapper and task definition filesthat you need. This script
runs on HP-UX, Solaris, and NT.

To invoke VCS on a FlexModel and its example testbench, follow these steps:

1. Use the Acrobat Reader’s text selection tool to select the script shown in Figure 1
and copy the contentsto alocal file named run_flex_examples in_vcs.pl.

2. Save thefile and change the permissions so that thefile is executable (chmod 775 in
UNIX).

3. If you areon NT, you also need to copy the following line to afile named
run_flex_examples in_vcs.cmd and put it in your working directory:

%MC HOME% I i b\pent. l1ib\sl _perl.exe run_flex_exanpl e_in_vcs.pl %
On NT you invoke this cmd wrapper, which subinvokes the Perl script.
4. Invoke the script as shown in the following examples:
UNIX
% run_fl ex_exanpl es_i n_vcs. pl nodel _fx
NT

> run_fl ex_exanpl es_i n_vcs. cnd nodel _fx
where model_fx is the name of the FlexModel you want to run.

April 2002 Synopsys, Inc. 51

Chapter 2: Using VCS with Synopsys Models

I3 Note

Simulator Configuration Guide

This script was developed for internal use and is made available for user
convenience. It is not actively maintained as part of the licensed software.

#!'/usr/1 ocal / bi n/ per|

$Revi si on$

$out put _file = "Exanpl e_Si mul at or_Run_Script";

die "\nERRCR running $0: ", "No Fl exMdel name given\n\n", unl ess($ARG/0]);
$LncHone = SENV{ LMC HOME }; die "ERRCR running $0: ", "The LMC HOME envi r onnent

vari abl e must be set.\n" unless($LnctHone);
$Vestone = $ENV{ VCS_HOME };

die "ERROR running $0: ", "The VCS HOMVE environnent variable nust be set.\n" unl ess(

$VesHone) ; $VesSni ft Notes = $ENV{ VCS_SW FT_NOTES };

die "ERROR running $0: ", "The VCS_SWFT_NOTES environment variable nust be set.\n",

"\nSet VCS SWFT _NOTES to the value 1\n\n", unless($VcsSwiftNotes);
requi re "$LncHore/ i b/ bi n/1i bndl 01003. pl *;

$Platform= GetPl atforn();

$Platformlib = PlatfornToLibD r($MP atfornj;

#%l atformsuffix = (hp700 => "0", solaris => "0", pcnt => "lib");
$suffix = $platformsuffix{ $Pl atform}; $fl exnodel _nane = $ARGV O] ;

$nodel _path = $LncHone . "/nodel s/" . $fl exnodel _nane;

if (-e $nodel _path) {}

else { die "\nERRCR running $0: ", "Fl exMhdel $flexnodel nane Does not Exist in
Library\n\n"; }$version_path = " $LncHone/ bi n/ fl exm setup $fl exnodel _nare”;
chonp($ver si on_pat h) ;

if ($flexnmodel _name =~ /_fx/) { $flexnodel _name =~ s/ _fx//g; $flex_or_c ="_fx"

el sif ($fl exmodel _name =~/ _fz/) {
$f | exnodel _name =~ s/ _fz//g;
$flex_or_c =" _fz";}

else { die "\nERRCR running $0: ", "$flexnodel _nane is not a Fl exMbdel . Model mnust

have an _fx or fz to be a F exMdel\n\n";}

$execut e_command = $VcsHone . "/bin/vcs -Mipdate -R -l vcs_simlog "

. $version_path . "/exanpl es/veril og/"

. $flexnodel _nane . "_tst.v +incdir+"

. $version_path . "/src/verilog +libext+.inc "

. $version_path . "/exanples/verilog/" . $flexnmodel _name . ".v "

. $version_path . "/exanples/verilog/"

. $fl exnmodel _name . $flex_or_c . "_ves.v "

if ($Patformeq "pcnt") {

$execut e_command = $execute_command . $LncHome . $P atformlib . "sIlmpli_vecs." .
$suf fi x; }

el se {

$execut e_conmand = $execute_conmmand . $LncHone . $P atformlib . "sImpli.o" .
$suf fix;}

$execute_conmmand = $execute_conmand . " -P " . $LncHome . "/sinmipli/src/simpli.tab"

. " -lne-swift +incdir+" . $LncHone . "/simpli/src"; print "$execute_command\ n";
open(CFI LE, "> $output_file") || die " Could not create file : $output file\n";
print CFILE ("# This is an exanple of VCS command line to run the\n");

print CFILE ("# supplied Fl exMbdel testbench.\n");

print CFILE ("# Note: The nodel version was cal cul ated using the flexmsetup
command\ n") ; print CFI LE ("\n$execute_comand\n");

cl ose(CFI LE); systen($execut e_conmand);

'}

52

Figure 1: run_flex_examples_in_vcs.pl Script

Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

Example Simulator Run Script

Therun_flex_examples in_vcs.pl script aso creates an example simulator run scriptin
your current working directory for the specified model. You can use this run script to
invoke V CS after running the run_flex_examples_in_vcs.pl script. The following
example shows the contents of the “Example_Simulator_Run_Script” after running the
run_flex_examples_in_vcs.pl script using the mpc860_fx model.

This is an exanple of VCS command line to run the supplied F exMdel
t est bench.

Note: The nodel version was cal cul ated using the fl exmsetup comrand

/ d/ ves501/ vesh. 0. 1A/ bi n/vecs -Mipdate -R -1 ves_siml og

/d/'l mgga2/instal |l /1 nmc_hone/ nodel s/ npc860_f x/ npc860_f x02009/ exanpl es/ veri
| og/ npc860_tst.v

+i ncdir+/ d/ 1 ngga2/instal | /1 mc_hone/ model s/ npc860_f x/ npc860_f x02009/ src/ v
erilog +libext+.inc

/d/'l mgga2/instal |l /1 nmc_hone/ nodel s/ npc860_f x/ npc860_f x02009/ exanpl es/ veri
| og/ npc860. v

/d/'l mgga2/instal | /1 nmc_hone/ nodel s/ npc860_f x/ npc860_f x02009/ exanpl es/ veri
| og/ npc860_fx_vcs.v /d/lmgga2/install /I nc_honme/lib/hp700.1ib/sImpli.o -
P /d/lmgga2/install/lnmc_hone/simpli/src/simpli.tab -1 nmc-swift

+i ncdir+/d/ 1 ngga2/install/lnmc_hone/simpli/src

Using MemPro Models with VCS

To use MemPro modelswith VCS, use the following procedures for Verilog testbenches
and for C testbenches. VCS links external PLI routines during compilation of your
design. You do not need to rebuild the VCS simulator.

Using MemPro Models with VCS with Verilog
Testbenches

1. If you are using MemPro HDL testbench interface commands in your design, add
the following line to your Verilog testbench; otherwise, skip to step 2.

“include "rmenpro_pkg. v"

For more information on using the MemPro HDL testbench interface, refer to the
“HDL Testbench Interface” chapter in the MemPro User’s Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’” on page 34.

3. Invoke VCS to compile your design:

April 2002 Synopsys, Inc. 53

Chapter 2: Using VCS with Synopsys Models

54

Solaris:;

Simulator Configuration Guide

If you are using the MemScope Dynamic Data Exchange feature:

% vcs

Veril og_nodul es MenPro_nodel files \
+vcs+H i c+twait \

-Xstrict=0x01 -syslib “-Ipthread” \

$LMC HOWE | i b/ sun4Sol aris.lib/simpli.o \
-P $LMC_ HOW/ simipli/src/slmpli.tab \

+i ncdi r+$LMC HOVE/ sinipli/src -R

If you are not using the MemScope Dynamic Data Exchange feature:

% vcs

Veril og_nodul es MenPro_nodel files \
$LMC HOWE | i b/ sund4Sol aris.lib/sImpli.o \
-P $LMC HOW/ simipli/src/slmpli.tab \

+i ncdi r+$LMC HOME/ sinipli/src -R

Solaris example:

% vcs

HP-UX:

Linux:

NT:

% vcs

% vCs

> VCS

tbench.v nydramv nysramv \

$LMC HOWE | i b/ sun4Sol aris.lib/simpli.o \
-P $LMC_ HOW/ simipli/src/slmpli.tab \

+i ncdi r+$LMC HOVE/ sinipli/src -R

Veril og_nodul es MenPro_nodel files \

$LMC HOME |i b/ hp700. 1ib/slmpli.o \

-P $LMC_ HOW/ simipli/src/slmpli.tab \

+i ncdi r+$LMC HOME/ sinmipli/src -R '\

-LDFLAGS "-W, -a,default -1dld -Ic -Im-1BSD

Veril og_nmodul es MenPro_nodel _files \
SLMC HOVE/ i b/ x86_linux.lib/sIlmpli.o \
-P $LMC HOW/ simipli/src/slmpli.tab \
+i ncdi r+$LMC HOVE/ sinipli/src -R '\

- LDFLAGS -rdynanic

Veril og_nodul es MenPro_nodel files
%MC HOMB% I ib\pent.lib\simpli_vecs.lib
-p %MC_HOVE% simplilsrc\simpli.tab
+i ncdi r +%MC_ HOME% simplilsrc -R

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

& Attention
If you areusing VCS 5.0 or earlier, add the “-Zp4” switch to your VCS
command and replace the “sim_pli_vcs.lib” library with the
“dm_pli_v4vcslib” library. If you are using VCS 5.1 or later, add the “-IdI”
switch to your VCS command.

4. Invoke VCS and simulate your design:

% si nv

Using MemPro Models with VCS with C Testbenches

If you are using the MemPro C testbench interface functions in your design, use the
following procedure.

1. Develop a C testbench with your own C routines that call MemPro C interface
functions. For more information on using the MemPro C testbench interface, refer
to the “ C Testbench Interface” chapter in the MemPro User’s Manual.

2. Add the following line to your C testbench.

#i ncl ude "nenpro_c_tbh. h"

3. Make alocal copy of sSim_pli.tab by copying from
$LMC_HOME/sim/pli/src/sim_pli.tab and adding the following line for each C
routine you have devel oped:

$your _task_nane cal | =your _f unc_nane

4. Instantiate MemPro modelsin your Verilog design. Define ports and generics as
required. For information on generics used with MemPro models, refer to
“Instantiating MemPro Models’ on page 34.

5. Add callsto the Verilog tasks that correspond with your C routines, from your local
sim_pli.tab file, to your Verilog design. For example:
$Syour _t ask_nane();
6. Invoke VCS to compile your design:

Solaris:;

%vcs Veril og_nodul es MenPro _nodel files \
$LMC HOME | i b/ sund4Sol aris.lib/sImpli.o \
-Plocal _slmpli.tab your_testbench.c \

- CFLAGS “- 1 $LMC HOW i ncl ude” \
+i ncdi r+$LMC HOME/ sinipli/src -R

April 2002 Synopsys, Inc. 55

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

HP-UX:

%vcs Veril og_nodul es MenPro _nodel files \

Linux:

$LMC HOME i b/ hp700.1ib/sImpli.o \

-Plocal _slmpli.tab your_testbench.c \

- CFLAGS “- 1 $LMC HOW i ncl ude” \

+i ncdi r+$LMC HOVE/ sinipli/src -R '\

-LDFLAGS “-W, -a,default -1dld -lIc -Im-|BSD

%vcs Veril og_nodul es MenPro_nodel _files \

NT:

$LMC HOVE | i b/ x86_linux.lib/slmpli.o\
-Plocal _slmpli.tab your_testbench.c \
- CFLAGS “- 1 $LMC_ HOW i ncl ude” \

+i ncdi r+$LMC HOME/ sinmipli/src -R '\

- LDFLAGS -rdynam c

> vcs Veril og _nodul es MenPro_nodel files

2SN .
@ Attention

%MC HOMEA i b\pent.lib\sImpli_ves.lib
-P local _slmpli.tab your_testbench.c

- CFLAGS “- 1 %.MC HOME%A i ncl ude”

+i ncdi r +%AMC HOME% simplilsrc -R

If you areusing VCS 5.0 or earlier, add the “-Zp4” switch to your VCS
command and replace the “sim_pli_vcs.lib” library with the
“dm_pli_v4vcslib” library. If you are using VCS 5.1 or later, add the “-Idl”
switch to your VCS command.

7. Invoke VCS and simulate your design:

% si nv

VCS MemPro Model Explanation

Table 10 lists each line in the invocation examples above, aong with explanations for
what each one does.

Table 10: VCS MemPro Model Explanation

Line Reference Description

$VCS_HOWH bi n/ vecs
nenpr o_nodel . v nenpro_nodel _tb.v

Path to the file that starts the VCS simulator,
followed by the specified model and testbench
Verilog files.

-P $LMC HOWE sinmipli/src/sImpli.tab Specifiesthe MemPro PLI table entry file.

56

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

Table 10: VCS MemPro Model Explanation (Continued)

Line Reference Description
$LMC HOWE/ 1i b/ sundSol aris.lib/slmpli.o |Specifiesthe platform-specific MemPro PLI
object file.
- Mupdat e This specifiesincremental compilation, which

causes VCS to compile only the modules that
have changed since the last run.

-R This makes VCS run interactively. VCS invokes
the XVCS GUI after compilation and pauses the
simulator at time zero.

- LDFLAGS swi t ches Additional platform-specific switches that may
be needed.

Using Hardware Models with VCS

To use hardware models with VCS, follow this procedure:

1. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/platform $path)

2. Set the VCS_LMC environment variable to the hm directory in the VCSinstall, as
shown in the following example:

% set env VCS_LMC $VCS HOWH pl at f or i | nt/ hm

3. Setthe LM_SFI environment variable to the SFI directory in the hardware
modeling tree, as shown in the following example:

% setenv LM SFl hardware_nodel er _install _path/sns/1ib/platform

4. Setthe VCS LMC _HM_ARCH environment variable so that you can later use the
-Imc-hm switch. This variable must be set to find the SFI directory in the smg/lib
tree, as shown in the following examples:

Solaris

% setenv VCS LMC HM ARCH sund. sol ari s
HP-UX

% set env VCS_LMC_HM ARCH pa_hp102

5. Create a Verilog HDL template for the hardware model using the Imvc_template
script provided by VCS, as shown in the following example:

%I nvc_tenplate nodel _file

April 2002 Synopsys, Inc. 57

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

T3> Note

58

where model_file is the name of the hardware model's . MDL file.
For example, if your mode isthe TILS299, enter:

%I nvc_tenpl ate TILS299. MOL

This step produces a TILS299.Imvc.v file that contains the module definition with
all the calls, declarations, and assignments necessary to make the fileavalid VCS
module.

The Imvc_template program looks for Shell Software files in the directories
indicated by the LM_LIB environment variable. You can modify the port list
generated by the Imvc_template to match the existing model instantiations
by editing the .NAM file.

6. Compile your description. Make sure to include the hardware model template and

supporting PLI and library files. To interface the hardware modeler to VCS, add the
-Imc-hm switch to the VCS command line, as shown in the following example:

%vcs +plusarg_save -R test.v TILS299.Invc.v -l nc-hm-0 sinv \
+overri de_nodel _del ays +maxdel ays -1 vcs.log &

You can optionally invoke VCS without the -Imc-hm switch by using the -P switch
to point to the 3V CS_LMC/Imvc.tab file and including the $vCS LMC/Imvc.o
object fileand $LM_SFI/Im_sfi.alibrary, as shown in the following example:

%vcs +plusarg_save -R test.v TILS299.Invc.v -P $VCS LMIJ I nvc.tab \
$VCS LMI I nvc. o SLM SFI/Imsfi.a -0 sinv \
+overri de_nodel _del ays +maxdel ays -1 vcs.log &

where:
* vcsisthe compiler
o test.visthefilethat is part of the top level system source files
o TILS299.Imvc.v isthe vcs template for the HW model

* Imvc.tab isthe VCSfilefor Imvc calls for vector logging, and timing
measurement

* Imvc.oisthe object code for LMC C file (Imvc.c), which contains the
definitions for all the Imvc tasks/functions.

» Im_sfi.aisthe simulator function interface software that links the VCS
simulator to the hardware modeler.

» +override_model_delaysisaswitch that allows you to specify timing other
than typical.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

5= Note
the -RI option is not required to generate the simv file. It isused to have the

simulator automatically execute after compilation and to use the xvcs
debugger.

For more information on using the .tab/.c files and options with VCS, refer to the VCS
Users's Guide.

Note that in the previous VCS releases, the hardware model could only be simulated
with typical delays. The VCS 5.2 release has removed this restriction, so you can now
either use a runtime option on the command line or make the change in the delayrange
parameter. Note that the runtime option does override any delayrange parameter
specification. The following excerpt is from the VCS 5.2 Release Notes:

VCS 5.2 has a new runtime option, +override_ model_delays that enables
you to use the +mindelays, typdelays, or +maxdelays runtime option to
specify timing in SWIFT SmartModels or Synopsys hardware models and
in so doing override the DelayRange parameter in the template files for
these models that otherwise specifies the timing for the model.

Example Using Runtime Option

Here is an example using the runtime option:

%vcs +plusarg_save -R test.v TILS299.Invc.v -P $VCS LMJ I nvc.tab \
$VCS LM I nvc. o $LM SFI/I msfi.a -o sinv +override_nodel _del ays \
+maxdel ays -1 vcs.log &

Example Using DelayRange Parameter

Here is an example using the DelayRange parameter:

TILS299 hwnl (.\SL (shift_left), .\QLK (clock), .\SR
(shift_right), .\NCLR (clear),
NA-QR (9g2), .\-GL (gl), .\Sl1 (select_1), .\S0O

(sel ect_0),

ADQ (bit_4), .\F/ Q@ (bit_6), .\B@ (bit_2),
AT Q (bit_3),

AANQ (bit 1), NG (bit_7), .\EHCE (bit_5),
AHQH (bit_8),

ANQA (high_bit), .\H (lowbit));
“ifdef MAX
def par am hwm 1. Del ayRange = " MAX'
“endi f

Run your ssimulation as usual. After running the vcs compiler, you should see a
compiled ssimv file. To run your simulation, type in simv.

April 2002 Synopsys, Inc. 59

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

You need an additional passcode to use the hardware model interface. If you do not have
a passcode, contact VCS Simulation Support at 800-837-4564.

VCS Utilities

If you want to turn on test vector logging or timing measurement, you can invoke tasks
'Im_log', 'Im_log_off', 'Im_measure_time', or 'lm_measure_time_off".

i nstance_nane. | m neasure_ti me;
i nstance_nane. | mneasure_time_off;

where instance_nameisastring that is the hierarchical path name of the instance for the
hardware model. For example, assuming that our instance is top.hwm_1 with these
features, it would look like the following example:

nodul e t op;
TILS299 hwm 1();
initial begin
top. hwm 1. | m neasure_ti ne;
top.hwml.Imlog ("file_nane");
#7000;

top. hwm 1. | m nmeasure_tine_off;

top. hwm 1.1 ml og_off;
end

60 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

3

Using Verilog-XL with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Verilog-XL. The procedures are organized into the following
major sections:

« “Setting Environment Variables’ on page 61

« “Using SmartModels with Verilog-XL"” on page 63

« “Using FlexModels with Verilog-XL” on page 79

« “Using MemPro Models with Verilog-XL"” on page 81
« “Using Hardware Models with Verilog-XL” on page 82

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOVE path_to_nodel s_install ation

April 2002 Synopsys, Inc. 61

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

2. SettheLM_LICENSE _FILE or SNPSLMD_LICENSE FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpsimd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _install _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

TI°5= Note
On NT, these hardware modeler environment variables are set automatically
when you install the software.

4. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,
as shown in the following example, and make sure that Verilog-XL is set up
properly in your environment:

% setenv CDS I NST_DI R pat h_to_Cadence_install ati on

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in 3LMC_HOME, as shown in the following examples:

Solaris:

% set env LD LI BRARY PATH $LMC HOME/ | i b/ sun4Sol ari s. 1i b: $LD LI BRARY PATH
Linux;

% set env LD LI BRARY PATH $LMC_HOME/ | i b/ x86_1 i nux. | i b: $LD_LI BRARY PATH

62 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

AlX:

% set env LI BPATH $LMC HOWE/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_ PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

Using SmartModels with Verilog-XL

SmartM odels work with Verilog-XL using a PLI application called LMTYV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate the SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and a model
Instantiation example, refer to “Using SmartModels with SWIFT Simulators” on

page 20.

2. Thereisno need to build a Verilog executable. You can use the one that Cadence
provides at $CDS _INST_DIR/tools/bin by adding it to your path variable.

3. To use the swiftpli shared library, invoke the Verilog simulator to compile and
simulate your design as shown in the examples bel ow:

UNIX

%verilog testbench nodel.v + oadplil=swiftpli:sw ft_boot \
+i ncdi r+$LMC_ HOVE/ sinmipli/src

NT

> verilog testbench nodel.v + oadplil=swi ftpli:swft_ boot
+i ncdi r +%MC HOME% si M plilsrc

T3> Note
For information on LM TV commands that you can use with SmartModels
on Verilog-XL, refer to “LMTV Commands’ on page 293.

April 2002 Synopsys, Inc. 63

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Verilog-XL Usage Notes for SmartModels

This section describes the Synopsys Logic Models To Verilog (LMTV) interface. You
canuse LMTYV to instantiate and work with SmartModelsin Verilog-XL, asdescribed in
the following sections:

« LMTV Modes of Operation

« Capturing and Simulating the Design

« Using SmartModel Windows with Verilog-XL
« Customizing Model Timing

« Simulating an Older Design Using LMTV

« Using FlexModels with Verilog-XL

LMTV Modes of Operation

To take advantage of the SWIFT SmartModel Library while maintaining compatibility
with the older Verilog-XL-specific SmartModel Library, the LMTV interface has two
modes of operation, SWIFT SmartModel Mode and Historic SmartModel Mode.

SWIFT SmartModel Mode

In SWIFT SmartModel mode, the modelsyou instantiate are SWIFT SmartModels. This
Isthe mode intended for primary use. Use this mode if you are implementing a new
design using the SWIFT SmartModel Library, if you are anew Verilog-XL user, or if
you want to transition your existing design into this mode.

Two sets of v shells support SWIFT SmartModel mode: swift and swift-uc. With
swift-uc, module names and attribute names are provided in all uppercase. The two sets
of v shells provide compatibility with most third-party tools.

Historic SmartModel Mode

In Historic SmartM odel mode, the models you instantiate have the characteristics of the
Verilog-XL-specific SmartModels. Historic SmartModel mode is provided only for
backward-compatibility for designs that use models from the Verilog-X L-specific
SmartModel Library. Usethe Historic SmartModel mode only if you are continuing
with an older design that was captured using the Verilog-X L-specific SmartModel
Library.

T3> Note
You must use the same mode throughout a design. You cannot mix modes
within adesign.

64 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 3: Using Verilog-XL with Synopsys Models

Table 11 lists the different characteristics of the SWIFT and Historic SmartM odel

modes.

Table 11: Characteristics of Historic and SWIFT SmartModel Modes

SWIFT SmartModel M ode

Historic SmartModel

Differences swift swift-uc Mode

Model Attributes TimingVersion TIMINGVERSION | COMPONENT
Model Type MODELTY PE MODELTY PE
DelayRange DELAYRANGE RANGE
MemoryFile MEMORYFILE MEMORYFILE
JEDECFile JEDECFILE JEDECFILE
SCFFile SCFFILE CGAFILE
PCLFile PCLFILE PCLFILE

Module Names Alphabetic Alphabetic Alphabetic characters are
characters are characters are uppercase
lowercase uppercase

Port Ordering

Numeric—for example, ports of bus
A[0:11] areinthisorder: AQ, Al, A2, A3,
. A9, A10, A1l

Alphanumeric—for
example, ports of bus
A[0:11] areinthis order:
AO,A1,A10,ALL, ..., A8,
A9)

Command Names Begin with $Im_ Begin with $lai_
Switch Names Begin with +Im Begin with +lai
M essage Format Refers to model names and timing version | Refers only to timing
names. Timing units are in nanoseconds | version names. Notiming
(ns). units specified.
Ignored +laiobj ignored +laiobj ignored
LAI_OBJignored LAl_OBJignored
User-defined model.v files do not have to be modified model.v files must be
Windows modified
Resistive Strength Reports true resistive strength of outputs | Maps resistive strength of
outputsto “strong”
Memory Windows Supports memory windows Does not support memory
windows.
April 2002 Synopsys, Inc. 65

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Implementing SWIFT Mode or Historic SmartModel Mode

Both the SWIFT and the Historic SmartM odel modes reference the SWIFT SmartM odel
Library, but they use different sets of model.v files (vshells) to invoke the models. For
each mode, thereis a specific directory, shown in Table 12, that contains model.v filesto
be referenced by that mode. You determine the mode that will be used both during
design capture and when you invoke Verilog-XL, asfollows:

1. During design capture, use the appropriate model attributes, port ordering,
command channel, memory access, user-defined windows, module names, and
resistive strength output expectations shown in Table 11.

2. When you invoke Verilog-XL, reference the appropriate model.v directory using the
-y switch, as described in “ Concept Design Capture” on page 68.

Table 12: model.v Directories

Mode Directory

SWIFT SmartModel Mode $LMC_HOME/special/cds/verilog/swift

SWIFT SmartModel Mode - Uppercase $LMC_HOME/special/cds/verilog/swift-uc
Historic SmartModel Mode $LMC_HOME/special/cds/verilog/historic

Capturing and Simulating the Design

Capturing and simulating the design in Verilog-XL involves the following steps, each of
which is described in detail in this section:

« “Verilog-XL Design Flow” on page 66

« “Preparing to Use Verilog-XL” on page 67
o “Verilog-XL Design Capture’ on page 68
« “Concept Design Capture” on page 68

« “Concept Procedure” on page 69

Verilog-XL Design Flow

Figure 2 shows the Verilog-XL design flow, with two paths. You choose one path or the
other based on the task at hand:

e LMTV SWIFT SmartModel mode—recommended for new designs

o LMTV Historic SmartModel mode—recommended for older designs that use the
Verilog-XL-specific SmartModel Library

66 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

You can create adesign file (design.v) textually with an HDL description or graphically
using Concept. FlexModel users should also use the appropriate Verilog wrapper file
from the model_fx/examples/verilog directory. Thisfile is copied to your working
directory using the flexm_setup tool. For information on flexm_setup, refer to
“flexm_setup Command Reference” on page 27.

When Verilog-XL simulates the design, it references either the SWIFT SmartM odel
mode model.v files or the Historic SmartModel mode model.v files. You must specify
one of these directories when you invoke Verilog-XL. A design cannot reference both
directories.

Historic
model.v files

Figure 2: Verilog-XL Design Flow

Preparing to Use Verilog-XL

Before you use Verilog-XL in either mode, make sure that your executable search path
points to the Verilog-X L executable that contains the LM TV interface.

April 2002 Synopsys, Inc. 67

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Verilog-XL Design Capture

You instantiate models from the SWIFT SmartModel Library by creating HDL
descriptions for Verilog-XL. The following example shows the Verilog-XL code for
instantiating asimple NAND gate (ttl00) in adesign.v file for the LMTV SWIFT
SmartModel mode. For instance U1, the TimingVersion and DelayRange parameter
values have both been changed from the defaults. For instance U2, only the DelayRange
attribute value has been changed from the default.

top_nod cont ai ns:
nodul e TCP_MD,
def par am

UL. Ti m ngVersi on = "54F00- FAl ",

UL. Del ayRange = "nin",

W2. Del ayRange = "typ";
tt100 UL(.11(clk), .12(enable), .CQl(output));
tt100 W2(.11(clk), .12(enable), .COl(output));

endnodul e

Thefollowing example showsthe Verilog-XL codefor the same instantiation, but for the
LMTV Historic SmartModel mode. Notice that the attribute names are different and
that the alphabetic characters in the model name are upper case.

top_nod cont ai ns:
nodul e TOP_MD,

def par am

UL. COVPONENT= " 54F00- FAI ",
UL. RANGE= "m n",

2. RANGE= "typ";

TTLOO UL(.11(clk), .12(enable), .QL(output));
TTLOO W2(.11(clk), .12(enable), .QL(output));
endrmodul e

Concept Design Capture

As an alternative, you can capture a design using the Concept design flow (refer to
Figure 3). First, diagram the design in Concept using a custom symbol library.

Next, execute vlioglink to generate the vlioglink.v file. Finally, for the SWIFT
SmartM odel mode only, execute the mod_param utility provided by Synopsysto convert
model instance parameter names to SWIFT-compliant namesin the vlioglink.v file.

68 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Create Design
Diagram Using Concept

Y

Execute
vloglink

< @ >
design.v file

SWIFT E t
SmartModel Xecute
Mode? mod_param

o T
SWIFT-compliant
vloglink.v file

Figure 3: Concept Design Flow

Concept Procedure
To create adesign file graphically using Concept, follow these steps:

1. Merge thefile into your master.local file.
2. Invoke Concept, instantiate the symbols, and write the schematic.
3. Execute vlioglink.

4. If you are using the SWIFT SmartModel mode, use one of these methods to prepare
vloglink.v for smulation:

o Run verilog with the -u switch
_-Or--
o Run mod_param on the vloglink.v file

This converts parameter names to SWIFT-compliant form. (For more information about
the mod_param utility, run mod_param with the -h to display the usage message.)

April 2002 Synopsys, Inc. 69

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Using SmartModel Windows with Verilog-XL

SmartModel Windows, aso referred to as “Windows,” isa SmartModel Library feature
that allows you to view and change the contents of internal registers during simulation,
for models and simulators (including Verilog-XL) that support this feature. For general
information about SmartModel Windows, refer to the SmartModel Library User’s
Manual. This section provides information about using SmartModel windows with
Verilog-XL.

LMTV SmartModel Windows Commands

The following commands allow you to work with SmartModel Windows during Verilog
XL simulation. Commands are instance-specific, which means that they must be issued
oncefor each instance. These commands are most often placed in the testbench, but can
also beissued at the command line. For details and examples, refer to the specific
command descriptions.

$Im_monitor_enable(), $lai_enable_monitor()

Enables SmartModel Windows for one or more window elements in a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$Im_monitor_disable(), $lai_disable_monitor()

Disables SmartModel Windows for one or more window elementsin a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$Im_monitor_vec_map(), $iIm_monitor_vec_unmap()

Enables or disables a direct mapping between a user-defined variable and a window
element in a specified model instance. The window element can be part of an array.
Can be used only in SWIFT SmartModel mode.

$Im_status(), $lai_status()

Displays the names and values of internal windows for a specified model instance. Can
be used in both Historic and SWIFT SmartModel modes.

Creating User-Defined Window Elements

You can create user-defined window elements only for SmartCircuit FPGA or CPLD
models. The way you create these window elements depends on whether you will
access the window elements using $Im_monitor_enable(), which can be used in either
the Historic or the SWIFT SmartModel mode; or $im_monitor_vec_map(), which can
be used only in SWIFT SmartModel mode.

70 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Both $Im_monitor_enable() and $Im_monitor_vec_map() need to be given the names of
the model’s window elements. However, these two commands receive the window
element names differently, asfollows:

« The $Im_monitor_enable() command expects to find the window element namesin
the model v files. Therefore, before invoking $Im_monitor_enable(), you must use
ccn_report to modify the model.v files so that they contain the window element
names. For details on how to use the ccn_report tool, refer to the SmartModel
Library User’s Manual.

« The $Im_monitor_vec_map(), on the other hand, expects to be passed the window
element names through its own window_element argument, and does not look in the
model.v files. Therefore, you do not need to create modified model.v files before
executing the $iIm_monitor_vec_map() command.

For more information about creating window elements using auto windows, refer to the
SmartModel Library User’s Manual.

In Historic SmartModel Mode

In Historic SmartModel mode, you can access user-defined windows only by using the
$Im_monitor_enable() command. This means that you must create user-defined
windows for SmartCircuit FPGA and CPLD models by creating modified model.v files.

1. If you do not already have acompiled configuration netlist (CCN) file, generate one
by executing smartccn on your design. For details on how to use the smartcen tool,
refer to the SmartModel Library User’s Manual.

2. Generate awindows definition file by executing ccn_report on your CCN file, as
shown in the following example.
%ccn_report ccn_fil ename -m nodel _name - Al wi ndows_file

3. Generate amodified model.v file that contains the window information by executing
ccn_report again, as shown in the following example.

%ccn_report ccn_fil ename -mnodel _name -v -w wi ndows_file \
-y $LMC_HOWE speci al / cds/ veril og/ historic \
-m nodul e_name -0 nodified nodel . v

4. Add the windows definition file to your Model Command File (MCF) in the form of
ado command statement, as follows:

do windows file

5. Make sure that your design references the modified_model.v file.

April 2002 Synopsys, Inc. 71

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

In SWIFT SmartModel Mode

In SWIFT SmartModel mode, you can access user-defined windows either through
$Im_monitor_enable() or iIm_monitor_vec_map(). The $Im_monitor_enable()
command is provided in SWIFT SmartModel mode for backward compatibility. We
recommend that you use this command only for existing designs. The
$Im_monitor_vec_map() command isintended for use with new designs.

Follow the same procedure as described in “Historic SmartModel Mode” on page 64
except that in Step 3, when invoking ccn_report, use this value for the -y argument:

-y $LMC_HOWE speci al / cds/ veril og/ swi ft

Accessing Window Elements

The way you access SmartModel window elements depends on whether you are running
in SWIFT mode or Historic SmartModel mode. The following sections provide
instructions for both modes.

In Historic SmartModel Mode

In Historic SmartModel mode, you can access only scalar window elements. You
cannot access the vectored memory window elements available in SWIFT SmartM odel
mode. You read and write to predefined window elements using the
$Im_monitor_enable() or $lai_enable_monitor() commands. To access window
elements in Historic SmartModel mode, follow these steps.

1. Enable SmartModel Windows for the model instance, either for specific window
elementsor for al window elements. For example, to enable SmartModel Windows
for instance U4 for all window elements, use this command:

$l mnonitor_enable (W);
2. To enable only window elements A_REG and D_REG for U4, use this command:
$Imnonitor_enable (UL, "A REG', "D REG');

3. To read from a specific window element, use the $monitor, $strobe, $write, and
$display Verilog commands. For more information, refer to the Cadence
documentation.

4. To display the contents of all window elements, use $im_status (or $lai_status). For
example, to display all window elements for instance U1, use this command:

$l mstatus("UL");

72 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

The information is returned in the following format:

Note: SmartMdel Wndows Status:
| NREG "I nput Regi ster": 000
QUTREG " Qut put Regi st er" 000
IO INREG "1/0O I nput Register": 000
HREG "H dden Register":0

5. To write to awindow element, assign a value to the window element, in this format:
i nst ance. wi ndow _el enent =val ue

For example, to clear Bit 3 of the window element HREG in the instance Ul
(assuming that HREG has write access), use this command:

UL. HREG 3] =0;

T3> Note
Refer to the individual model datasheets for information about the

read/write capabilities of model window elements.

In SWIFT SmartModel Mode

In SWIFT SmartModel mode, you can use the $iIm_monitor_enable() or
$lai_enable_monitor() commands to monitor scalar windows, in exactly the same way
asdescribed in “In Historic SmartModel Mode” on page 72. However, as before, you
cannot use these commands to access vectored memory windows.

To use memory windows, available in SWIFT but not in Historic SmartModel mode,
you must use the $iIm_monitor_vec_map() command. This command works for both
scalar and vectored windows.

° Hint
" Fors mplicity, when implementing new designsin SWIFT SmartModel
mode, use the $Im_monitor_vec_map() command for both scalar and
vectored windows applications. It is best not to use the
$Im_monitor_enable() or $lai_enable_monitor() commands at all.

To access window elements using the $Im_monitor_vec_map() command, follow these
steps:
1. Define aregister for the window element. You can give the register the same name

as the window element, or adifferent name. For example, to define the register
MY _A_REG to map to the 32-bit register A_REG, you could use this definition:

reg [31:0] MY_A REG

April 2002 Synopsys, Inc. 73

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

2. Enable the window element and map it to the register. For example, to enable the
window element A_REG for instance U1 and map A_REG to the register
MY _A_REG, you could use this command:

$Imnonitor_vec_map (M A REG Ul, “A REG);

3. To read from awindow element, use any appropriate Verilog command to examine
the contents of the register mapped to that window element. For example, to read
the contents of window element A_REG, you could use this command:

$display (“Address is %", W_A REG;

4. To write to awindow element, assign a value to the register mapped to that window
element. For example, to set Bit 4 of the window element A_REG you could use
this command:

MY_A REQ 4] =1;

Example 1

The following example shows the predefined scalar window elements w0 and w2, as
they might appear in atypical testbench.

reg \v_VAR VO; // users can choose descriptive variabl e

reg WW_ VAR V2; // names to fit their applications.

/1 the next two lines map the variable nanes to the

/1 wi ndow el ements and enabl e t he wi ndow el erment s.

$l mnonitor_vec_map(MY_VAR VW, "UL", "w0", 0);

$l mnonitor_vec_map(MY_VAR W, "UL", "w2", 0);
Once these window elements are set up in your testbench, you can use the graphical or
monitoring capabilities of Verilog-XL to read, write, or trace the variables
MY _ VAR WO0and MY_VAR_W2, which now hold the values of the window elements
w0 and w2.

Example 2

The following example illustrates the use of the $im_monitor_vec_map() command to
use memory window elements to track transactions on a memory device. Inthe
example, a4K x 8 bit memory model with instance name U1 has these predefined
memory window elements:

« Memory array window element: MEM 4K x 8 bits
« Memory address window element: Mem_addr 12 bits
« Memory read/write window element: Mem_rw 2 bits

For more information about memory windows, refer to the SmartModel Library User’s
Manual.

74 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

The following example code monitors the memory device. If thereisamemory write,
the code checksto see if the write was to any location in the address range between
‘h100 and ‘h200 (not allowed) and if so, issues an error message.

If the Mem_addr window element (which contains the most recently accessed address)
contains unknown values, no test is performed and another error message is issued.

ram nmodel UL();

[/l Declare registers for the address, rw, and nenory data w ndow
el enent s

reg [11:0] ADDR

reg [1:0] RW

reg [7: 0] DATA

initial

/1 Nap the ADDR and RNregisters to the MEM addr and MEM rw wi ndows
begi n

$l mnonitor_vec_map (ADDR UL, "MEM addr");

$lmnonitor_vec_map (RW UL, "MEMrw');

end

/1 Whenever there is a nenory transaction, check the address

// and the direction for an illegal wite, and the address for

/! unknown val ues.

al ways @RW

begi n
if (ADDR >= 'hl100 && ADDR <= 'h200 & RW 1] == 0 & ADDR ! = ' hx)
begi n

/] There was an illegal wite.

/] Tenporarily rmap DATA register to address pointed to by ADDR
// and enable MEM array wi ndow el ement to get val ue of data

$l mnonitor_vec_map (DATA UL, "MEM, ADDR);

$di splay("Illegal wite of value % at address %", DATA ADDR);
/] Turn off enabling of nenory array

$I m noni tor _vec_unnmap (DATA, Ul);

end
i f (ADDR=="hx)

$di spl ay("Warning! Miltiple similtaneous transactions.");
end

April 2002 Synopsys, Inc. 75

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Customizing Model Timing

You can customize the timing of SmartModels by changing the timescale or creating
custom timing files.

Changing the Timescale

Aswith the Verilog-X L-specific SmartModel Library, you can change the timescale of
SmartM odels from the default of 100 ps (picoseconds) time_units and 100 ps precision,
defined in the module definitions. These values are specified by the first line of the
module definition, as shown in the following example.

‘“tinescale 100 ps / 100 ps

For both the SWIFT and Historic SmartModel modes, to change the timescale, you must
copy the affected model.v filesinto a separate directory. Then modify each ‘timescale
compiler directive to the desired value. When invoking the simulator, use the -y switch
to indicate the path to the directory that contains your modified model.v files.

Creating Custom Timing Files

You can create and use custom timing files in both the SWIFT and Historic SmartM odel
modes. The procedure is the same for both. For more information on User-Defined
Timing, refer to the SmartModel Library User’s Manual.

Simulating an Older Design Using LMTV

If you have an older design that was created using the Verilog-X L-specific SmartModel
Library, you can ssimulate it in either mode:

« Historic SmartModel mode—in this case you do not have to modify the design
o SWIFT SmartModel mode—in this case you must modify the design

In both cases, you must make some modifications to the simulation environment as
described in the following sections.

LMTV/SWIFT and Verilog-XL-Specific SmartModel Libraries

Table 13 lists the differences between the LMTV/SWIFT and Verilog-X L-specific
SmartModel Libraries.

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries

LMTV/SWIFT SmartModel Library Verilog-XL -specific SmartModel Library

Uses simplified search algorithm for user- | Uses complex search algorithm for user-defined
defined timing files. timing files.

76 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries (Continued)

LMTV/SWIFT SmartModel Library Verilog-XL-specific SmartModel Library

In SWIFT SmartModel mode, reportstrue | Always maps resistive strength of outputs to
resistive strength of outputs; a switch strong.

optionally maps all to strong. In Historic
SmartModel mode, mimics Verilog-XL-
specific SmartModel Library.

Supports the Verilog $reset and $restart Does not support the Verilog $reset and $restart
commands. commands.

Always usesonly SLMC HOME tofind | Uses+laiobj, SLAI_OBJ, +lai_lib, SLAI LIB
models; uses no other switches/variables. | aswell as$SLMC VLOG to find models.

LMTYV interface does not support Cadence | Supports Cadence fault simulation.
fault ssimulation.

Environment Modifications

This section describes environment modifications you need to make if you want to
simulate an existing design in either the LMTV SWIFT or Historic SmartModel mode.

Environment Variables

For both modes, set the LMC_PATH and LMC_HOME environment variables instead
of the LMC_VLOG, LAI_OBJ, and LAI_LIB environment variables, which are ignored
by the LMTYV interface. For more information about user configuration, refer to the
SmartModel Library Administrator’s Manual.

Command Line Switches

TheLMTYV interfaceignores the +laiobj and +lailib switches, regardless of which mode
you are using. However, LM TV does recognize the +laiudtmsg and +Imudtmsg
switches, which are equivalent.

Resistive Strength

For SWIFT SmartModel mode only, the SWIFT interface reports the true resistive
strength of output pins, instead of mapping them all to “strong” asis donein the
Verilog-X L-specific SmartModel Library. You might want to modify your expected
output accordingly. However, if you want only a quick comparison and do not want to
modify your expected output, you can revert to the Verilog-X L-specific behavior by
using the +Imoldstr command switch. For more information about setting switches, refer
to “Using FlexModels with Verilog-XL” on page 79.

April 2002 Synopsys, Inc. 77

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Edits to Design File

This section describes edits you need to make to your design fileif you want to smulate
an existing designinthe LMTV SWIFT SmartModel mode.

175> Note
Notethat lai_* commands are recognized by the LMTV interface, so you do
not have to change command names for either mode.

Model Parameter Names

Change the parameter names to the corresponding SWIFT SmartModel mode entries, as
shown in Table 11 on page 65.

Model Names

Change the alphabetic parts of model namesto all lower case. (If you use SWIFT-UC
mode, this step is not required.)

Port Names

If you have used explicit port naming in your module instantiations (that is, if you have
explicitly mapped each net name to the corresponding port name in the model
Instantiation statement), you do not need to do anything about port names.

If, on the other hand, you have used implicit port naming (that is, if you have listed the
nets in the model instantiation statement in the same order as the ports were declared in
the .v file), you need to ensure that your port names conform to the ordering scheme
used in the SWIFT SmartModel mode, as described in Table 11 on page 65.

78 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 3: Using Verilog-XL with Synopsys Models

Using FlexModels with Verilog-XL

FlexModels work with Verilog-XL using a PLI application called LMTYV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib.

To use the prebuilt swiftpli, follow this procedure:

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:

% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 14 lists the files that flexm_setup copies to your working

directory.
Table 14: FlexModel Verilog-XL Files
File Name Description L ocation
model_pkg.inc Verilog task definitions for FlexModel workdir/src/verilog/

interface commands. Thisfile also references
the flexmodel _pkg.inc and
model_user_pkg.inc files.

model _user_pkg.inc

Clock frequency setup and user customizations.

wor kdir/src/verilog/

model_fx_vxl.v

A SWIFT wrapper that you can use to instantiate
the model.

wor kdir/examples/verilog/

model.v A bus-level wrapper around the SWIFT model. | workdir/examples/verilog/
This allows you to use vectored ports for the
model in your testbench.

model_tst.v A testbench that instantiates the model and shows | wor kdir/examples/verilog/

how to use basic model commands.

2. Thereisno need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding $CDS_INST_DIR/tools/bin to your path

statement.

3. Update the clock frequency supplied inthemodel _user_pkg.inc file to correspond to
the CLK period you want for the model. Thisfileislocated in:

wor kdi r/ src/veril og/ model _user _pkg.inc
where workdir is your working directory.

April 2002

Synopsys, Inc.

79

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

T3> Note

80

4. Add the following line to your Verilog testbench to include FlexModel testbench

Interface commands in your design:

“include "nodel pkg.inc"

Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel _pkg.inc and
model _user pkg.inc, you don’t need to add flexmodel _pkg.inc or
model_user_pkg.inc to your testbench.

. Instantiate the FlexModel in your design, defining the ports and defparams as

required (refer to the example testbench supplied with the model). You use the
supplied bus-level wrapper (model.v) in the top-level of your design to instantiate
the supplied bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

nodel UL (nodel ports)
def par am
UL. Fl exMbdel I d = “TM5 | NST1”;

Example using supplied bus-level wrapper (model.v) with timing:

nodel Ul (nodel ports)
def par am
UL. Fl exTi m ngMbde = " FLEX_TI M NG_MCDE_QN,
UL. Ti m ngVersi on = “ti m ngver si on“,
UL. Del ayRange = “range, “
UL. Fl exMbdel | d= “TM5_| NST1”;

. Invoke the Verilog-XL simulator to compile and simulate your design as shown in

the examples below:
UNIX

%verilog testbench +l oadpli1=sw ftpli:sw ft_boot \
./ wor kdi r/ exanpl es/ veri |l og/ model . v \
. /wor kdi r/ exanpl es/ veril og/ model _fx_vxl.v \
+i ncdi r +$LMC HOME/ simipli/src \
+i ncdi r+wor kdi r/ src/veril og

NT

> verilog testbench + oadpli 1=swiftpli:sw ft_boot
wor kdi r\ exanpl es\ veri | og\ nodel . v
wor kdi r\ exanpl es\ veri | og\ nodel _fx_vxl.v
+i ncdi r+%MC_ HOVE% simpli\src
+i ncdi r+wor kdi r\'src\veril og

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

T3> Note

For information on LM TV commands that you can use with FlexModels on
Verilog-XL, refer to “LMTV Commands’ on page 293.

Using MemPro Models with Verilog-XL

To use MemPro models with Verilog-XL, use the following procedures for Verilog
testbenches and for C testbenches. MemPro models work with Verilog-XL using aPLI
application called LMTV that is delivered in the form of a swiftpli shared library in
$LMC_HOMFE/lib/platform.lib. If you cannot use the swiftpli, refer to “ Static Linking
with LMTV” on page 82.

Using MemPro Models with Verilog-XL with Verilog
Testbenches
To use the prebuilt swiftpli, follow this procedure:

1.
2.

If you are on NT, make sure %LMC_HOME%\bin isin your Path variable.

To include MemPro testbench interface commands in your design, add the
following line to your testbench:
“include "nenpro_pkg. v"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User’s Manual.

. Instantiate MemPro models in your design. Define ports and generics as required.

For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 34. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages’ on page 35.

. Thereis no need to build a Verilog executable. You can use the one from

$CDS_INST_DIR/tools/bin by adding $CDS _INST_DIR/tools/bin to your path
Statement.

. Invoke the Verilog-XL simulator to compile and simulate your design as shown in

the examples below:
UNIX

%verilog testbench Veril og_nodul es MenPro_nodel _files \
+i ncdi r+$LMC_ HOME/ simipli/src \
+H oadpl i 1=swi ftpli:sw ft_boot

April 2002 Synopsys, Inc. 81

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

NT

> verilog testbench Veril og_nodul es MenPro_nodel files
+i ncdi r +%MC_ HOME% simpli\src
+H oadpl i 1=swi ftpli:sw ft_boot

TI°5> Note
If you are also using SmartModels or FlexModelsin your design, you do not
need to load the swiftpli again, since the same library is used to enable all
three types of modelsin Verilog-XL.

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cinthe SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipe shared library (dm_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LM TV
header files as follows:

a. After #include “vxl _veriuser.h” add:

#i ncl ude “ccl I mv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl _| mv_incl ude_code. h”

Using Hardware Models with Verilog-XL

This section describes how to configure Release 3.5a of Model Access for Verilog.
Model Access is the software you use to interface hardware models with the simulator.
To dynamically link the SFI with Verilog-XL, you must have version 2.8 or later of
Verilog-XL on UNIX and version 3.0 on NT. You aso need Release 3.5a of
ModelAccess for Verilog. The hardware modeling information is presented in the
following sections of this chapter:

« “Prerequisites’ on page 83

« “Thema verilog Software Tree” on page 83

« “Using Hardware Models’ on page 84

82 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Prerequisites
If you have not already done so, perform these tasks:

« Install the Verilog-XL simulator according to instructions provided by Cadence
Design Systems, Inc.

« Perform the complete installation and configuration of the hardware modeling
system, including hardware and software (R3.5a or later) as outlined in the Quick
Reference in Chapter 1 of either the Model Source Hardware Installation Guide or
the LM-family Hardware Installation Guide.

« Boot the modeler if it isnot already booted.

The ma_verilog Software Tree

The ModelAccess for Verilog (ma_verilog) directory structureisillustrated in Figure 4.

ma_verilog/
{ | |
lib/ include/ bin/

sun4_5.6/ mav_include.h sun4_5.6/
mav.o mav_include_code.h Imvsg
mav.sl mav.imp

pa_hpl102/ pa_hp102/
mav.o Imvsg
mav.sl

pa_hp1l/ pa_hp1l/
mav.o Imvsg
mav.sl

rs6000_4.1.5/ rs6000_4.1.5/
mav.o Imvsg
mav.so

pent/ pcnt/
mav.lib Imvsg.exe
mav.dll
mav_mti.lib
mav_mti.dll Im_vconfig
mav_static.lib -

Figure 4: The ma_verilog Software Tree

April 2002 Synopsys, Inc. 83

Chapter 3: Using Verilog-XL with Synopsys Models

Generating the Verilog-XL Model Shell

Simulator Configuration Guide

You must use the Logic Modeling Verilog Shell Generator (Imvsg) to generate new
Verilog HDL shells (model.v files) for the hardware models you are using. Note that
you cannot use any model.v files that might have existed prior to your use of
ModelAccess for Verilog. All model.v files must be newly generated.

For each hardware model, both UNIX and Windows NT usersissue this command at the

operating system prompt:

%I nvsg -d destination_nodel . ML

The complete syntax of the Imvsg command is provided in “Imvsg Command

Reference” on page 98.

Using Hardware Models

To instantiate hardware models in Verilog-XL, Model Access for Verilog maps the
Cadence PLI to the Simulator Function Interface (SFI), as shown in Figure 5. For
information about the SFI, refer to the Smulator Integration Manual.

- Synopsys

|:| Cadence

ModelSource
System

SFI
Interface

ModelAccess for
Verilog-XL

PLI
Interface

#

Verilog-XL

Figure 5: SFI Communication with PLI

84

Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

ModelAccess for Verilog Methodology

To simulate with hardware models using Model Access for Verilog consists of these
tasks:

« “Simulation Example” on page 85

« “Creating the Model Shell” on page 85

« “Instantiating the Hardware Model” on page 88

« “Performance Monitoring” on page 88

« “Compiling and Simulating” on page 89

« “Examining the Output verilog.log File’ on page 89

Simulation Example

This simulation example illustrates how to use hardware modelsin a Verilog-XL
simulation using Model Access for Verilog. This example assumes that all Model Access
for Verilog configuration tasks have been accomplished.

Creating the Model Shell

If you use Model Access for Verilog, you cannot use existing model.v files that were
generated by crshell; you must regenerate the model.v files as described.

The task of creating a model shell should have been accomplished by executing Imvsg,
as described in “Generating the Verilog-XL Model Shell” on page 84. For example, to

create the model shell (model.v file) for the TIL S299 hardware model (an 8-bit universal
shift/storage register with 3-state outputs) in the current working directory, execute the
following:

% | nvsg TILS299. ML

(By default, if no destination is specified, the current working directory isthe
destination directory for the TILS299.v file. For complete syntax of the Imvsg script,
refer to “Imvsg Command Reference” on page 98.)

Thefollowing illustration showsthe TILS299.v file that containsalisting of the model’s
pin names, pin declarations, parameter declarations, and the model invocation, which
references the model MDL file (in this case, TILS299.MDL).

/1l Generated by I nvsg 1.000
/1 Copyright (c) 1984-1996 Synopsys Inc. ALL R GHTS RESERVED

‘timescale 1 ns / 1 ns
‘ expand_vect or net s

nodul e TI LS299(
K, AR, d@, &, S0, S1, SL, SR, AA, ~H, A, B,

April 2002 Synopsys, Inc. 85

Chapter 3: Using Verilog-XL with Synopsys Models

86

E, F, G, H);

/! Pin declarations

nput
nput
nput
nput
nput
nput
nput
nput
out put
reg
reg
assign
assign
out put
reg
reg
assi gn
assign
i nout
reg
reg
assi gn
assi gn
i nout
reg
reg
assi gn
assi gn
i nout
reg
reg
assign
assi gn
i nout
reg
reg
assign
assi gn
i nout
reg
reg
assign
assign
i nout
reg
reg

CLK ;

CR;

G ;

& ;

SO ;

Sl

SL;

SR ;

QA

QA PUL ;

QA STRONG ;

(pullO, pulll) QA= QA _PUL ;
QA= QA_STRONG ;

H

H_ _PUL ;

H__STRONG ;

(pullO, pulll) (H= _PUL ;

@H = H_STRONG ;

A,

A PUL ;

A STRONG ;

(pull0, pulll) A
A=A STRONG;
B;

B PUL ;

B _STRONG ;

(pull0, pulll) B
B = B STRONG ;

A _PUL ;

B_PUL ;

C;

C_PUL ;
C_STRONG ;
(pull0, pulll) C
C=C_STRING;
D;

D PUL ;
D_STRONG ;
(pull0, pulll) D
D=D_STRONG;
E;
E PUL ;
E_STRONG ;
(pull0, pulll) E
E=E_ STRONG;
F
F_PUL ;
F__STRONG ;

C_PUL ;

D _PUL ;

E_PUL ;

Synopsys, Inc.

Simulator Configuration Guide

April 2002

Simulator Configuration Guide

assi gn
assi gn
i nout
reg
reg
assi gn
assi gn
i nout
reg
reg
assign
assi gn

/! Paranet
par anet e
par anet e
par anet e

/! 1 nvoke
initial
begi n

$I mhw_

‘T
Mod
“at
“at

ou
b Ou

“io”,
“io”,
“io”,
“io”,
“io”,
“io”,
“io”,
“io”,

end
endnodul e

“ aut oexpan

April 2002

Chapter 3: Using Verilog-XL with Synopsys Models

(pull0, pulll) F= F_PUL ;

F=F_STRONG;
G,

G_PUL ;
G_STRONG ;

(pull0, pulll) G= G_PUL ;

G=G_STRONG ;
H;

H_ PUL ;
H_STRONG ;

(pull0, pulll)y H= H_ PUL ;

H=H_STRONG ;

er decl arati ons
r Model Type = “HARDWARE";

r TimngVersion = “TI LS299. MDL";
r Del ayRange = “Max";

t he nodel

nodel (

LS299. MOL",

el Type,

tr”, “timngversion”, TimngVersion
tr”, “delayrange”, Del ayRange ,
", CLK,

", LR,

A,

@,

" S0,

", Sl ,

", SL,

", SR,

t”, A, QA_STRONG, A PUL ,
t”, H, QH_STRONG, (H_PUL ,
A, A STRONG, A PUL ,

B, B_STRONG, B _PUL ,

C, C_STRONG, C_PUL ,

D, D STRONG, D_PUL ,

E, E_STRONG, E_PUL
F, F_STRONG, F_PUL ,
G, G_STRONG, G_PUL ,
H, H STRONG, H_ PUL)

d_vectornets

Synopsys,

Inc. 87

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Instantiating the Hardware Model

Before instantiating a hardware model, you first examine the model .v file you created, to
get the port names to use in the instantiation, and also to see whether you want to change
any of the model’s default parameters. The model.v files contain default values for the

model parameters, which you can override using the “defparam” statement in the model
Instantiation.

The following example shows how to instantiation a hardware model (TILS299 in this
case) in atestbench. Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parametersin the
instantiation override the default definitions in the model.v file (TILS299.MDL and
MAX, respectively). Inthisexample, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

/ Instantiate UJT : Mdel Source TILS299 hardware nodel : UL
def par am UL. Ti m ngVer si on="TI LS299A. MDL";
def par am UL. Del ayRange = “M N’;
TILS299 UL(. LK (cl kw),

4ioksagRRToTNO0E>]
o
Q
=
<

Performance Monitoring

You can monitor the performance of a hardware model and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% set env LM CPTI ON “noni t or _per f or nance”

For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.

88 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Compiling and Simulating
UNIX users accomplish this task by executing the Verilog-XL executable previously
built, referencing the testbench and the model.v file, asin the following example:

%verilog TILS299.v tbench.v +l oadpli 1=mav: nav_boot

As Verilog executes, it outputs progress, status, and error messages to the screen and
saves the transcript to afile named verilog.log, which you can examine if necessary for
troubl eshooting.

Examining the Output verilog.log File

After echoing the command that invoked Verilog, and the copyright and source
information, Verilog announces its progress as it compiles the input files. When the
prompt C1> isissued, the simulator iswaiting at time O for you to enter a command.
Typing aperiod (.), which means*“ continue”, starts the simulation run. Typing “ $finish;”
at the prompt terminates the ssmulation session.

Notice in particular these lines, which state the release numbers of Model Access for
Verilog and SFI:

Runti me, Mbddel Access for Verilog-XL R3.5a
SFI Copyright 1988-2000 Synopsys, |ncorporated.; 08/ 30/00; R3.5a

If you are troubleshooting and call Synopsys Technical Support for help, you will be
asked for the SFI release number (in this case, R3.5a). (For instructions on contacting
Synopsys Technical Support, refer to “ Getting Help” on page 16.) The following
illustration shows an example verilog.log file without errors.

Host command: verilog. | nv
Command ar gunent s:
-s

TI LS299. v

t bench. v
VERLOG XL 2.2.1 log file created Jan 8, 1997 14:14:00
VERILOG XL 2.2.1 Jan 8, 1997 14:14:00

Conpi | i ng source file “TILS299. v”
Conpi ling source file “tbench.v”

Runti me, Mbddel Access for Verilog R2.0

SFI Copyright 1988-1996 Synopsys, |ncorporated.; 05 Sep 1996;
R3. 3a
Type ? for help
ClL > .

April 2002 Synopsys, Inc. 89

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

L47 “tbench.v”: $stop at simulation tinme 4200

Cl > $finish;

Cl: $finish at simulation time 4200

54 sinmul ation events + 10 accel erated events

CPUtinme: 0.4 secs to conpile + 0.2 secs to link + 0.5 secs in
simul ation

End of VERLOG XL 2.2.1 Jan 8, 1997 14:15:09

Optional Capabilities During Simulation

During simulation, you can optionally enable timing measurement and test vector
logging.

Timing Measurement

LM-family modeling systems can measure input-to-output propagation delays on a
hardware model. You enable timing measurement using the command
$Im_timing_measurements(), described in “$Ilm_timing_measurements Command
Reference” on page 96.

5= Note
Timing measurement is not supported for M odel Source 3200 and 3400.

The following illustration shows an example of timing measurement for the TIL S299
model. The six lines of code following “SIMULATION run time duration” turn on
timing measurement, measure for 4200 timing units, then turn off timing measurement.
The timing information is saved in the file TILS299.TIM.

Test Vector Logging

M odel Source and LM-family modeling systems can capture and write to afile the input
stimuli presented to a hardware model, as well as the resulting sampled output values.

Test vectors are useful for debugging a simulation and for verifying the functionality of
ahardware model. You enable test vector logging by using the command
$Im_log_test_vectors(), described in “$Im_log_test vectors Command Reference” on

page 93.

The following illustration also shows an example of test vector logging for the model
TILS299. The six lines of code following the timing measurement enable test vector
logging, implement the logging for 4200 time units (the duration of the simulation), and
then disable the logging. The test vectors are saved in afile named hwm?299.vec.

/!l Instantiate UJT : Mbdel Source TILS299 hardware nodel : Ul
TILS299 UL(. QK (clkw,
.AR (clrw,

90 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

A (iolw[0]),

B (iolw[1]),

.C (iolw 2]),

.D (iolw 3]),

E (101w 4]),

.F (iolw[5]),

.G (iolwn[6]),

.H o (iolw 7]),

-Gl (91w,

& (92w,

QA (galw),

.QH (ghlw),

.0 (sOw,

.S1 (slw),

.SL (slw,

.SR (srw);
[/ SIMLATION run time duration
initial
begi n
$I mtimng_neasurenents (“tbench.Ul, 1, “TILS299. TIM);
#4200
$Imtimng _neasurenents (“tbench.Ul, 0, “TILS299.TIM);
end
initial
begi n

$Imlog test_vectors(“tbench. Ul”, 1,” hwn299. vec”);
#4200 $st op;

$Imlog test_vectors(“tbench. U1”, 0, " hwnR99. vec”);
end

The Test Vector Log File
This next illustration shows part of atest vector log file, hwm299.vec.

test vector format 2

test TILS299

time stanp = 1 nanosecond

runtime_nodel er_software R3. 3a

simulator _function_ interface R3. 3a

SR 1 |
SL 2 |
#patterns { 11111111 BBBBEEBEBAD }
{ }
{ SSSSOEECHGFEDCBAQ }
{ RL10L21L//// 111/ HA }
{ K RQQQQAQAXR '}
{ HGFEDCBA }
IN'T DDDDDUUDTTTTTTTT
77777777\ |

April 2002 Synopsys, Inc. 91

Chapter 3: Using Verilog-XL with Synopsys Models

0 DDDDUDDDITTITTITTT
LLLLLLLLLL
DDDDUDDDDDDDDDDD
DDDDDDDDDDDDDDDD
DDDDUDDDDDDDDDDD
LLLLLLLLLL
DDDDDDDUDDDDDDDD
LLLLLLLLLL
DDDDUDDUDDDDDDDD
LLLLLLLLLL
DDDDDDDUDDDDDDDD
DDDDUDDUDDDDDDDD
LLLLLLLLLL
DDUUDDDUDDDDDDDD
2222722727 L
DDUUDUUJUJDDDDDDDD
222272272z L

30
50
100
150
200

250
300

350

355

Understanding the Test Vector File

The test vector file iswritten in Logic Modeling test vector format. Symbols for input
and output values are defined in Table 15.

92

Table 15: Test Vector Symbols
Symbol I nput/Output Definition
U Input Drive hard 1
D Input Drive hard O
u Input Drive soft (resistive) 1
d Input Drive soft (resistive) 0
T Input Drive floating level
N Input Drive unknown level
H Output Sense hard 1
L Output Sense hard O
h Output Sense soft (resistive) 1
I Output Sense soft (resistive) O
4 Output Sense floating level. Used for an1/O pinin

the input state whose last driven value was
1 (either U or u)

Synopsys, Inc.

Simulator Configuration Guide

April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Table 15: Test Vector Symbols (Continued)

Symbol I nput/Output Definition

z Output Sensefloating level. Used intwo cases: for
an 1/0O pinin the input state whose last
driven value was O (either D or d), or for an
output pin that is not driving.

X Output Sense unknown value. Unknowns on
outputs are generated by unknown
propagation, value forcing, voltage
unknowns, or inconsistent unknowns.

? Output Sense any level (“don’t care”).

Saving and Restarting the Simulation State

The Verilog-XL $save() task saves the complete simulation data structure into a
specified file. The saved data structure includes the pattern memory for each hardware
model simulation instance.

The $restart() task restores the complete Verilog-XL simulation from the specified file.
The pattern memory for each hardware model simulation instance is restored into the
hardware modeler’s pattern memory.

Linking the SFI Debug Library

By default, Model Access for Verilog dynamically links the non-debug version of the
SFI library. If you want to use the SFI library’s debug version for troubleshooting, define
the environment variable HOSTDEBUG. For information about setting and using
HOSTDEBUG, refer to the Smulator Integration Manual. For troubleshooting
assistance, contact Synopsys Technical Support (for instructions, refer to “ Getting Help”
on page 16).

$Im _log test vectors Command Reference

The $Im_log_test_vectors command enables test vector logging for a specified instance,
and specifies afile name for the test vector log.

Syntax

$Im_log_test_vectors (“instance_path” , on_off, “filename”)

Arguments

instance_path Specifies the pathname of the model instance for which test

vector logging isto be enabled or disabled.

April 2002 Synopsys, Inc. 93

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

on_off Indicates whether test vector logging is to be enabled or
disabled. Allowed values are 1 to enable logging, or O (the
default) to disable logging.

filename Specifies the file name to be used for the test vector log.

Description

Enables test vector logging for a specified instance and specifies afilename for the test
vector log. By default, test vector logging is not performed. When test vector logging is
on, the pin value information created during the simulation for the specified device
Instance is written in test vector file format to filename.

For detailed information about test vector logging, refer to the Model Source User’s
Manual or the LM-family Modeler Manual.

Example

The following example enables test vector logging for the instance “U1”, and saves the
test vector log in thefile“Ul.log”.

$Imlog test _vectors (“Thench.U1”, 1, “Ul.1og”");

$Im_loop_instance Command Reference
The $Im_loop_instance command enables the |oop mode for a specified model instance.

Syntax

$Im_loop_instance (“instance_path”)

Arguments

instance_path Specifies the pathname of the model instance for which the
loop mode is to be enabled.

Description

Enables the loop mode for a specified instance. In loop mode, the hardware modeler
repeatedly plays to the physical device the pattern history of the specified device
instance. This command is most often used to analyze the behavior of adevice and its
pattern history with an oscilloscope or logic analyzer connected to the device.

Once in loop mode, the interface prompts you to press the Return key to exit the loop
mode.

94 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Examples

The following example turns on loop mode for the “U1” model instance.
$l mloop_instance (“ULl");

The following message is displayed while the instance isin loop mode.

Entering | oop node for hardware nodel instance UL
Press Return to termnate | oop node.

$Im_timing_information Command Reference

The $Im_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance.

Syntax

$Im_timing_information (“instance_path”, “timing_option”);

Arguments

instance_path Specifies the Verilog pathname of the instance whose timing
information is to be modified.

timing_option Allowed values are “nodelay” to ignore all delay information,
“delay” to process all delay information, “notimingchecks’ to
ignore all timing checks, and “timingchecks’ to apply all
timing checks. The defaults are “delay” and “timingchecks’.

Description

The $Im_timing_information command allows you to override the hardware modeler’s
default handling of timing information for a specified model instance. By default, the
hardware modeler processes all delay information and applies all timing checks. You
can decrease model evaluation time by disabling these activities. The hardware modeler
does not process information that is not needed by the simulator.

Example
The following example disables timing checks for the “U1” model instance.

$Imtimng_information (“UL”, “notim ngchecks”);

April 2002 Synopsys, Inc. 95

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

$Im_timing_measurements Command Reference

The $Im_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for Model Source 3200 and 3400.

Syntax

$Im_timing_measurements (“instance_path” , on_off, “filename”)

Arguments

instance_path Specifies the pathname of the model instance for which timing
measurement is to be enabled or disabled.

on_off Indicates whether test vector logging isto be enabled or
disabled. Allowed values are 1 to enable logging, or O (the
default) to disable logging.

filename Specifies the file name to be used for the test vector log.

Description

The $Im_timing_measurements command enables timing measurement for a specified
model instance. By default, timing measurement is not performed. Instead, the
hardware modeler usesthe delay values provided inthe .DLY filein the Shell Software.
When timing measurement is enabled, the hardware modeler returns to the simulator
and logs to the specified file the actual delays measured from the device.

Example

The following example enables timing measurements for the” U1” model instance and
saves the timing measurement log in the “Ul.log” file.

$Imtimng neasurenents (“Tbench.ULl”, 1, “Ul.log");

$Im_unknowns Command Reference

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
Instances in the simulation.

Syntax
$Im_unknowns (“option=value’ [,”option=value”’,...] [, “device_or_pin"])

96 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Arguments
You can use the following values for “ option=value’:

propagate=yes | no When “yes” (the default), enables the “on_unknown
propagate” statement, if there is one, in the model’s options
file (for example, TILS299.0PT) for the specified instance or
pin, or for all hardware model instances in the ssmulation. Set
propagate=no if you want to disable or override the
“on_unknown propagate” statement in the .OPT filefor a
specific instance or pin.

I Note
If thereis no “on_unknown propagate” statement in the model’s .OPT file,
unknown propagation is disabled even if you use” $Im_unknowns
propagate=yes’. For the “propagate=yes’ option to have an effect, there
must be an “on_unknown propagate” statement in the model’s .OPT file. For
more information about the on_unknown statement, refer to the Shell
Software Reference Manual.

value=previous | high | low | float
Specifies the value to be passed to the device when an
unknown value is passed to the modeler. The default is
“previous’, meaning that if the simulator sets an input pin to
“unknown”, the modeler drives the input to its previous value.
For more information, refer to the description of set_previous
in the on_unknown reference pages in the Shell Software
Reference Manual.

sequence_count=num_sequences
Specifies the number of random sequences to propagate
unknowns through the hardware model. The num_sequences
setting is an integer of value O (the default) through 20. The
default value, O, is usually sufficient; setting a higher value
ensures that unknowns will be propagated, but uses more
pattern memory.

random_seed=seed value
Specifies the initial seed for the random sequence generator.
seed valueisan integer of value O (the default) through
65535.

April 2002 Synopsys, Inc. 97

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

device or_pin Specifies the Verilog pathname of a device or pin whose
unknown values are to be translated into the value specified by
value. The default isto apply the statement to all hardware
model instances in the simulation.

Description

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified model instances or pins, or for all hardware
model instances in the ssimulation. By default, the hardware modeler translates all
unknown valuesto “previous’ before passing them to the device. Using this command,
you can specify values of high (1), low (0) or float (?), or disable unknown propagation,
for aspecified instance or pin, or for all hardware model instancesin the simulation if no
instance or pin is given. For detailed information about unknown handling, refer to the
Shell Software Reference Manual.

Examples

The following example disables unknown propagation and causes alow value to be
passed to the device when an unknown value is passed to the hardware modeler for the
instance “Thench.U1.”

$I m unknowns (“propagate=no”, “val ue=low’, “Tbench. UL")

The following example disables unknown propagation, causes a high value to be passed
to the device when an unknown value is passed to the model er, specifies 20 random
sequences to propagate unknowns through the hardware model, and specifies 200 as the
seed for the random sequence generator, for al hardware model instances in the
simulation.
$I m unknowns (*“propagat e=yes”, “val ue=hi gh”, “sequence_count=20",
“random seed=200")

Imvsg Command Reference

For a specified hardware model the Imsvg script creates a model.v file and placesit in
the specified destination directory.

Syntax

Imvsg [-d destination] [-i] [-w] [-v vector_path] [-h] model.MDL
Arguments

-d destination Specifies the destination directory in which to store the

generated model.v file. The default isthe current directory.

98 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

-i Generates awarning if apin nameisanillegal Verilog
identifier. By default, no warning is issued.

-w Specifies pullup and pulldown signal strength of weak1 and
weakO instead of the default pul 1 1 and pul | O, respectively.
Thiswill provide compatibility with Cadence's hardware
modeler interface.

-v vector_path Specifies the pathname to the file containing alist of vectors.
-h Displays the online help for this command.
model .MDL Specifies the name of the MDL file of the hardware model

whose model.v file is to be generated.

Description

The Imvsg script creates a model.v, in the destination directory. The model’s pin names
may not be legal Verilog identifiers. If apin nameisfound that isnot alegal Verilog
identifier, Imvsg escapes the illegal name (for example, the pin name “-CLR” becomes
“\-CLR”.) and, if the -i switch wasissued, displays awarning message.

If apin aiasisdefined in the model.NAM file, the pin dliasis used as the pin name. For
information about editing the model.NAM file, refer to the Model Source User’s Manual.

By default, Imvsg generates a module that contains a port for each logical pin. If you
want the module to use vectors for buses, you can provide afile containing alist of the
vectors. For example, if adevice contains a 32-bit address bus, the default behavior of
Imvsg is to generate a module with a port list containing the ports AQ, A1, ..., A31. You
can use the -v switch to name afile containing the statement “A[31:0]”. Imvsg then
generates the module using a 32-hit vector for the address bus.

April 2002 Synopsys, Inc. 99

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

100 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

A

Using NC-Verilog with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with NC-Verilog. The procedures are organized into the following
major sections:

« “Setting Environment Variables’ on page 101

« “Using SmartModels with NC-Verilog” on page 103

« “Using FlexModels with NC-Verilog” on page 104

« “Using MemPro Models with NC-Verilog on UNIX” on page 107
« “Using Hardware Models with NC-Verilog” on page 108

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOVE path_to_nodel s_install ation

April 2002 Synopsys, Inc. 101

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

; Caution

102

2. SettheLM_LICENSE _FILE or SNPSLMD_LICENSE FILE environment variable

to point to the productauthorization file, as shown in the foll owi ng example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpsimd-based authorizations.

. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _install _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,

as shown in the following example, and make sure that NC-Verilog is set up
properly in your environment:

% setenv CDS I NST DR path_to_Cadence_install ation

. Depending on your platform, set your load library variable to point to the platform-

specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD LI BRARY_PATH $LMC HOWE/ | i b/ sund4Sol aris.lib: \
$CDS INST_DI R'tool s/lib:$LD LI BRARY_PATH

Linux:

% setenv LD LI BRARY_PATH $LMC HOME/ | i b/ x86_| i nux. lib: \
$CDS I NST_DI R'tool s/lib:$LD LI BRARY_PATH

AlX:

% setenv LI BPATH $LMC HOVE/ | i b/ibrrs. lib: \
$CDS | NST_Di R/t ool s/ i b: $LI BPATH

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

HP-UX:

% set env SHLI B_PATH $LMC HOME/ | i b/ hp700. 1'i b: $CDS INST DR/t ool s/lib: \
$SHLI B_PATH

NT:
Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

Using SmartModels with NC-Verilog

SmartM odels work with NC-Verilog using a PLI application called LM TV that is
delivered in the form of a swiftpli shared library in SLMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “ Static Linking with LMTV” on page 104.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and model
Instantiation examples, refer to “Using SmartModels with SWIFT Simulators’ on

page 20.

2. Thereisno need to build a Verilog executable. You can use the one from
$CDS _INST_DIR/toolg/bin by adding it to your path statement.

3. To use the swiftpli shared library, invoke the NC-Verilog ssmulator to compile and
simulate your design as shown in the following examples:

UNIX

% ncveril og testbench nodel . v +l oadpli 1=swiftpli:sw ft_boot \
+i ncdi r+$LMC_ HOVE/ sinmipli/src

NT

> ncveril og testbench nodel . v +l oadpli 1=swiftpli:sw ft_boot
+i ncdi r +%MC HOME% si M plilsrc

T3> Note
If you are using ncelab and ncsim, use the -loadplil switch instead of the

+loadplil switch.

For information on LM TV commands that you can use with SmartModels on
NC-Verilog, refer to “LMTV Command Reference” on page 291.

April 2002 Synopsys, Inc. 103

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cinthe 3LMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LM TV
header files as follows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl _| mv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#include “ccl I mv_include_code. h”

Using FlexModels with NC-Verilog

FlexModels work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in SLMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “ Static Linking with LMTV™ on page 106.

To use the prebuilt swiftpli, follow this procedure:

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:

% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 16 lists the files that flexm_setup copies to your working

directory.
Table 16: FlexModel NC-Verilog Files
File Name Description L ocation
model_pkg.inc Verilog task definitions for FlexModel workdir/src/verilog/

interface commands. Thisfile also references
the flexmodel _pkg.inc and
model _user_pkg.inc files.

model_user_pkg.inc | Clock frequency setup and user customizations. | workdir/src/verilog/

model_fx_vxl.v A SWIFT wrapper that you can use to instantiate | workdir/examples/verilog/
the model.

104 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

Table 16: FlexModel NC-Verilog Files (Continued)

File Name Description L ocation

model.v A bus-level wrapper around the SWIFT model. | workdir/examples/verilog/
This allows you to use vectored ports for the
model in your testbench.

model_tst.v A testbench that instantiates the model and shows | wor kdir/examples/verilog/
how to use basic model commands.

2. Update the clock frequency supplied inthemodel _user_pkg.inc fileto correspond to
the CLK period you want for the model. Thisfileislocated in:

wor kdi r/ src/veril og/ model _user _pkg.inc

where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

“include "nodel pkg.inc"

T3> Note
Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model _user_pkg.inc, you don't need to add flexmodel _pkg.inc or
model _user pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the exampl e testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

nmodel U1 (nodel ports)
def par am
UL. Fl exMbdel Id = “TMS_| NST1”;

Example using bus-level wrapper (model.v) with timing:

nmodel U1 (nodel ports)
def par am
UL. Fl exTi m ngMbde = " FLEX_TI M NG MCDE_QN
UL. Ti m ngVersion = “ti mngversi on“,
UL. Del ayRange = “range“,
UL. Fl exMbdel | d= “TM5 | NST1”;

April 2002 Synopsys, Inc. 105

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

5. Thereisno need to build a Verilog executable. You can use the one from
$CDS _INST_DIR/toolg/bin by adding it to your path statement.

6. Invoke the NC-Verilog simulator to compile and simulate your design as shown in
the following examples:

UNIX

% ncveril og testbench +l oadpli 1=swi ftpli:swft_boot \
. I'wor kdi r/ exanpl es/ veri | og/ nodel . v \
. /wor kdi r/ exanpl es/ veril og/ model _fx_vxl.v \
+i ncdi r+$LMC HOVE/ sinipli/src \
+i ncdi r+wor kdi r/ src/veril og

NT

> ncveril og testbench + oadpli 1=sw ftpli:swift_boot
wor kdi r\ exanpl es\ veri | og\ nodel . v
wor kdi r\ exanpl es\veri |l og\ nodel _fx vxl.v
+i ncdi r +%MC_ HOME% simpli\src
+i ncdi r +wor kdi r\src\veril og

T3> Note

If you are using ncelab and ncsim, use the -loadplil switch instead of the
+loadplil switch.

For information on LM TV commands that you can use with FlexModels on NC-Verilog,
refer to “LMTV Command Reference” on page 291.

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

« edited copy of veriuser.cinthe SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipeshared library (dm_pli_dyn.ext), in the 3LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LM TV
header files as follows:

a. After #include “vxl _veriuser.h” add:

#i ncl ude “ccl | mv_include. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl _| mv_incl ude_code. h”

106 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

Using MemPro Models with NC-Verilog on
UNIX

MemPro models work with NC-Verilog using aPL 1 application called LMTYV that is
delivered in the form of a swiftpli shared library in SLMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “ Static Linking with LMTV” on page 107.

To use the prebuilt swiftpli, follow this procedure:

1. To include MemPro testbench interface commands in your design, add the
following line to your testbench:

Verilog testbench:
“include "rmenpro_pkg. v"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User’s Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 34. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 35.

3. Thereisno need to build a Verilog executable. You can use the one from
$CDS _INST_DIR/toolg/bin by adding it to your path statement.

4. Invoke the NC-Verilog simulator to compile and simulate your design as shown in
the example below:

% ncveril og testbench Veril og_nodul es MenPro_nodel _files \
+i ncdi r+$LMC HOVE/ sinipli/src \
+ oadpl i 1=swi ftpli:sw ft_boot

175> Note
If you are using ncelab and ncsim, use the -loadplil switch instead of the
+loadplil switch.

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cinthe SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

April 2002 Synopsys, Inc. 107

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

« C-Pipe shared library (dm_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LM TV
header files as follows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl | mv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#include “ccl I mv_include_code. h”

Using Hardware Models with NC-Verilog

This section explains how to use Release 3.5a of Model Access for Verilog to interface
hardware models with NC-Verilog. It is not necessary to edit and use the Makefile.nc to
build a standalone version of the ssmulator to link to the hardware modeler. Note that

dynamic linking is only supported on version 2.8 and above of NC-Verilog on HP-UX
and Solaris, and version 3.0 on NT.

1. Thereis no need to build a Verilog executable. You can use the one from
$CDS _INST_DIR/toolg/bin by adding it to your path statement.

2. Setyour SHLIB_PATH or LD _LIBRARY_PATH variable to point to the directories
that contain the Model Access libraries. Solaris users also need to add the
/usr/dt/lib and /usr/openwin/lib libraries.

HP-UX

% setenv SHLI B PATH \

har dware_nodel _iinstall_path/snms/ ma_veril og/lib/pa_hpl02:
$CDS INST_DiR'tools/lib

Solaris

% setenv LD LI BRARY_PATH \

har dwar e_nodel _instal | _path/ sns/ ma_veril og/lib/sun4. solaris:\
$CDS INST_DIR/tool s/lib:/usr/dt/lib:/usr/openwin/lib

For NT, add this path to the PATH user variable:

har dwar e_nodel _i nstal | _pat h\ sns\ ma_veril og\|i b\ pcnt
3. Invoke the smulator as shown in the following example:

% ncveril og testbench.v nodel.v +l oadpli 1=mav: nav_boot

108 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

NC-Verilog Utilities
The following hardware model utilities are supported in NC-Verilog:
$Im_log_test_vectors (“instance_path” , on_off, “filename”)

The$Im_log_test_vectors command enablestest vector logging for a specified instance,
and specifies afile namefor the test vector log. For adetailed syntax description, refer to
“$Im_log_test_vectors Command Reference” on page 93.

$Im_loop_instance (“instance_path”)

The $Im_loop_instance command enables the loop mode for a specified model instance.
For adetailed syntax description, refer to “$Im_loop_instance Command Reference” on

page 94.
$Im_timing_information (“instance_path”, “timing_option”)
The $Im_timing_information command lets you override the hardware modeler’s

default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$Im_timing_information Command Reference” on page 95.

$Im_timing_measurements (“instance_path” , on_off, “filename”)

The $Im_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for Model Source 3200 and 3400. For a detailed
syntax description, refer to “$Im_timing_measurements Command Reference” on

page 96.
$Im_unknowns (“option=value” [,”option=value’,...] [, “device_or_pin"])

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$lm_unknowns
Command Reference” on page 96.

April 2002 Synopsys, Inc. 109

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

110 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

5

Using MTI Verilog with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI Verilog (Model Sm/VLOG.). The procedures are organized
into the following major sections:

« “Setting Environment Variables’ on page 111

« “Using SmartModels with MTI Verilog” on page 113

« “Using FlexModelswith MTI Verilog” on page 114

« “Using MemPro Modelswith MTI Verilog” on page 117
« “Using Hardware Modelswith MTI Verilog” on page 119

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOVE path_to_nodel s_install ation
2. Make sure MTI Verilog is set up properly in your environment.

April 2002 Synopsys, Inc. 111

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

f Caution

112

3. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE FILE environment variable

to point to the productauthorization file, as shown in the foll owi ng example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpsimd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM _LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _install _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in 3LMC_HOME, as shown in the following examples:
Solaris:

% setenv LD LI BRARY PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% setenv LD LI BRARY _PATH $LMC_HOVE/ | i b/ x86_I i nux. | i b: $LD LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOVE/ 1i b/ i bnrs. |'i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC HOVE | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

Using SmartModels with MTI Verilog

SmartModels work with MTI Verilog using a PLI application called LMTV that is
delivered in the form of aswiftpli_mti shared library in 3LMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_miti, refer to “ Static Linking with LMTV” on page 114.

To use SmartM odels with the prebuilt swiftpli_miti, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on the required SWIFT parameters and SmartM odel
Instantiation examples, refer to “Using SmartModels with SWIFT Simulators’ on

page 20.
2. Compile your code as shown in the following examples:
UNIX
% vl og testbench nodel .v +i ncdi r+$LMC_ HOVE/ si mipli/src
NT
> vl og testbench nodel .v +incdir+%MC HOVME% si Mplilsrc

where the model.v files are located at $LMC_HOM E/special/cds/verilog/swift.
These .v filesareinstalled during the SmartModel installation if the customer
selects either Cadence or MTI for an EDAV option.

3. Invoke the ssmulator as shown in the following examples:

HP-UX
%vsi m-pli $LMC HOME/ i b/ hp700.ib/swi ftpli_nti.sl design
Solaris
%vsim-pli $LMC HOWE |i b/ sun4Sol aris.lib/swiftpli_mnti.so design
AlIX
%vsim-pli $LMC HOWE/ lib/ibnrs.lib/swftpli_nti.so design
Linux
%vsim-pli $LMC HOWE i b/ x86_linux.lib/swftpli_nti.so design
NT
> vsim%MC HOVE%A i b\pent. lib\swi ftpli_nti.dl | design

75> Note

For information on LM TV commands that you can use with SmartModels
on MTI Verilog, refer to “LMTV Command Reference” on page 291.

April 2002 Synopsys, Inc. 113

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. Theseinclude:

. edited copy of veriuser.cinthe 3LMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LM TV
header files as follows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl _| mv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#include “ccl I mv_include_code. h”

Using FlexModels with MTI Verilog

FlexModels work with Verilog-XL using aPLI application called LMTV that is
delivered in the form of aswiftpli_mti shared library in SLMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_mti, refer to “ Static Linking with LMTV” on page 117.

To use the prebuilt swiftpli_mti, follow this procedure:

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:

% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 17 lists the files that flexm_setup copies to your working

directory.
Table 17: FlexModel MTI Verilog Files
File Name Description L ocation
model _pkg.inc Verilog task definitions for FlexModel workdir/src/verilog/

interface commands. This file aso references
the flexmodel _pkg.inc and
model _user_pkg.inc files.

model _user_pkg.inc | Clock frequency setup and user customizations. | workdir/src/verilog/

model_fx_mti.v A SWIFT wrapper that you can use to instantiate | workdir/examples/verilog/
the model.

114 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

File Name Description L ocation

model.v A bus-level wrapper around the SWIFT model. | workdir/examples/verilog/
This allows you to use vectored ports for the
model in your testbench.

model_tst.v A testbench that instantiates the model and shows | workdir/examples/verilog/
how to use basic model commands.

2. Update the clock frequency supplied inthemodel _user pkg.inc fileto correspond to
the CLK period you want for the model. Thisfileislocated in:

wor kdi r/src/veril og/ model _user pkg.inc

where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

“include "nodel pkg.inc"

175> Note
Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don't need to add flexmodel _pkg.inc or
model _user pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the exampl e testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_mti.v).

Example using bus-level wrapper (model.v) without timing:

nmodel U1 (nodel ports)
def par am
UL. Fl exMbdel Id = “TMS_| NST1”;

Example using bus-level wrapper (model.v) with timing:

nmodel U1 (nodel ports)
def par am
UL. Fl exTi m ngMbde = " FLEX_TI M NG MCDE_QN
UL. Ti m ngVersion = “ti mngversi on“,
UL. Del ayRange = “range”,
UL. Fl exMbdel | d= “TM5 | NST1”;

April 2002 Synopsys, Inc. 115

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

5. Compile your code as shown in the following examples:
UNIX

% vl og testbench \
wor kdi r/ exanpl es/ veri |l og/ nodel . v \
wor kdi r/ exanpl es/ veri |l og/ nodel _fx_mti.v \
+i ncdi r+$LMC_ HOME/ simipli/src \
+i ncdi r+wor kdi r/ src/veril og

NT

> vl og testbench
wor kdi r\ exanpl es\ veri | og\ nodel . v
wor kdi r\ exanpl es\veril og\ nodel _fx_mti.v
+i ncdi r+%MC_ HOVE% simpli\src
+i ncdi r+wor kdi r\'src\veril og

6. Invoke the simulator as shown in the following examples:

HP-UX

%vsim-pli $LMC_ HOVE/ i b/ hp700.1ib/sw ftpli_nti.sl design

AlX

%vsim-pli $LMC HOW/ lib/ibnrs.lib/swftpli_nti.so design

Solaris

%vsim-pli $LMC HOW |i b/ sun4Sol aris.lib/swftpli_nti.so design

Linux

%vsim-pli $LMC HOWE/ i b/ x86_linux.lib/sw ftpli_nti.so design

NT

>vsim-pli %M HOVE% I ib\pcnt.lib\swiftpli_nti.dll design
175> Note

For information on LM TV commands that you can use with FlexModels on
MTI-Verilog, refer to “LMTV Command Reference” on page 291.

116 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. Theseinclude:

. edited copy of veriuser.cinthe 3LMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipe shared library (dm_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LM TV
header files asfollows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl | mv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#include “ccl I mv_include_code. h”

Using MemPro Models with MTI Verilog

MemPro models work with MTI Verilog (ModelSim) using a PLI application called
LMTYV that isdelivered in the form of aswiftpli_mti shared library in
$LMC_HOMFE/lib/platform.lib. If you cannot use the swiftpli_mti, refer to “ Static
Linking with LMTV” on page 119.

To use the prebuilt swiftpli_mti, follow this procedure:

1. To include MemPro testbench interface commands in your design, add the
following line to your testbench:

Verilog testbench:
“include "nenpro_pkg. v"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User’s Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 34. For information on message levels and message level
constants, refer to “ Controlling MemPro Model Messages’ on page 35.

3. Define the working directory that contains your testbench.
UNIX

%vlib work dir

April 2002 Synopsys, Inc. 117

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

NT
> vlib work dir
4. Compile your code as shown in the following examples:
UNIX

%vlog -work work_dir testbench.v Verilog_nodul es MenPro_nodel _fil es\
+i ncdi r+$LMC_ HOWE/ sinmipli/src

NT

> vlog -work work dir testbench.v Verilog nodul es MenPro _nodel files
+i ncdi r +%MC_ HOME% simpli\src

5. Invoke the simulator as shown in the following examples:
HP-UX

%vsim-pli $LMC_ HOWE |i b/ hp700.1ib/swftpli_mi.sl \
-c work_dir.testbench

AlX

%vsim-pli $LMC HOW/ lib/ibnrs.lib/swftpli_nti.so \
-c work_dir.testbench

Solaris

%vsim-pli $LMC HOWE | i b/ sund4Sol aris.lib/swftpli_nti.so \
-c work_dir.testbench

Linux
%vsim-pli $LMC HOWE |ib/x86_|inux.lib/swiftpli_nti.so \
-c work_dir.testbench

NT

>vsim-pli %MC HOME% Il ib\pent.lib\swiftpli_mi.dl\
-c work_dir.testbench

TI°5> Note
If you are also using SmartModels or FlexModelsin your design, you do not
need to load the swiftpl_mti again, since the same library is used to enable
al three types of modelsin MTI-Verilog.

118 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. Theseinclude:

. edited copy of veriuser.cinthe 3LMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipe shared library (dm_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LM TV
header files asfollows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl | mv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#include “ccl I mv_include_code. h”

Using Hardware Models with MTI Verilog

To use hardware modelswith MTI Verilog, follow this procedure. This procedure covers
userson UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any
UNIX command line examples (percent signs around variables and backslashesin
paths). Note that hardware models are supported on MTI Verilog v5.4c and up.

1. MTI Verilog only supports dynamic linking of PLI libraries. The three waysto
specify the required Model Access shared library, and the order in which the
simulator looks for PLI libraries, islisted below. Choose one of the following
methods:

a. Add the platform-specific shared library to the Veriuser entry in the
modelsim.ini file:

Solaris

Veriuser = mav.so
AlX

Veriuser = mav.so
HP-UX

Veriuser = nav.sl
NT

Veriuser = mav_nti.dl|

April 2002 Synopsys, Inc. 119

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

T3> Note

120

b. Add an item in the PLIOBJS environment variable list:
% set env PLI ABJS “nav. ext”
c. Use the -pli switch on the simulator invocation line:

%vsim-pli mav. ext

For steps b and c, fill in the correct extension for your platform.

2. Regardless of the option you choose, you must locate the Model Access PLI library

for the simulator using a platform-specific environment variable or by specifying the
full path to thelibrary in Step 1. Here are examples for setting the environment
variables which show the full pathsto the libraries:

Solaris

% set env LD LI BRARY _PATH \
har dwar e_nodel _instal | _path/ sns/ ma_verilog/lib/sun4_5. 6/ mav. so

HP-UX

% setenv SHLI B _PATH \
har dwar e_nodel _instal | _path/ sns/ ma_veril og/li b/ pa_hpl02/ nav. sl

AlX

% set env LI BPATH \
har dwar e_nodel _i nstal | _pat h/ sns/ ma_verilog/lib/rs6000_4.1.5/ mav. so

For NT, add this path to the PATH user variable:

har dwar e_nodel _i nstal | _pat h\ sns\ ma_veril og\|i b\ pcnt

. Generate a Verilog module definition or shell for each hardware model that you

want to use by running the Synopsys-provided Imvsg script, as shown in the
following example:

% 1| nvsg destination_nodel . MOL

For thisto work, the hardware_model_install _path/sms//ma_verilog/bin/platform
directory must be in your PATH. For details on the complete syntax of the Imvsg
command, refer to “Imvsg Command Reference” on page 98.

. Use the Verilog module definitions to instantiate the hardware models in your

testbench. The following example shows an example instantiation for the TILS299
hardware model Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parametersin the
instantiation override the default definitionsin the model.v file (TILS299.MDL and
MAX, respectively). Inthisexample, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

/ Instantiate W : Mdel Source Tl LS299 hardware nodel : Ul
def par am UL. Ti m ngVer si on="TI LS299A. MDL" ;
def par am UL. Del ayRange = “M N’;
TILS299 UL(. QLK (cl kw),

AR (clrw,
A (iolw[0]),
B (iolw[1]),
.C (ioln 2]),
.D (iolw[3]),
E (iolw[4]),
F o (iolw[5]),
.G (iolw[6]),
.H o (iolw 7]),
.Gl (g1w,
& (92w,
QA (galw),
QG4 (ghlw,
.S0 (sOw,
.S1 (slw),
.SL (slw,
.SR (srw);

5. Invoke the MTI Verilog simulator as shown in the following example, which
illustrates the use of the -pli switch to specify the PLI library.

%vsim-pli mav_library

MTI Verilog Utilities
The following hardware model utilities are supported in MTI Verilog:
$Im_log_test_vectors (“instance_path”, on_off, “filename”)

The $Im_log_test_vectors command enables test vector logging for a specified instance,
and specifies afile namefor the test vector log. For adetailed syntax description, refer to
“$Im_log_test vectors Command Reference” on page 93.

$Im_loop_instance (“instance_path”)

The $Im_loop_instance command enables the loop mode for a specified model instance.
For adetailed syntax description, refer to “$Im_loop_instance Command Reference” on

page 94.
$Im_timing_information (“instance_path”, “timing_option”)

The $Im_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$Im_timing_information Command Reference” on page 95.

$Im_timing_measurements (“instance_path” , on_off, “filename”)

April 2002 Synopsys, Inc. 121

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

The $Im_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for Model Source 3200 and 3400. For a detailed
syntax description, refer to “$lm_timing_measurements Command Reference” on

page 96.
$Im_unknowns (“option=value” [,”option=value’,...] [, “device_or_pin"])

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$Im_unknowns
Command Reference”’ on page 96.

122 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

6

Using Scirocco with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Scirocco. The procedures are organized into the following major
sections:

« “Setting Environment Variables’ on page 123

« “Using SmartModels with Scirocco” on page 124

« “Using FlexModels with Scirocco” on page 127

« “Using MemPro Models with Scirocco” on page 130
« “Using Hardware Models with Scirocco” on page 132

Setting Environment Variables

First, set the basic environment variables. In some cases the procedures that follow in
this chapter include steps for setting additional environment variables,

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC HOME path_to _nodel s_installation

2. Set the SYNOPSY S_SIM variable to point to the Scirocco installation directory as
follows:

% set env SYNCPSYS SI M Scirocco _installation directory

April 2002 Synopsys, Inc. 123

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

3. Source the environ.csh Scirocco environment file.
% sour ce $SYNCPSYS_SI M adm n/ set up/ envi r on. csh

4. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpsilmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_nodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal |l _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

Using SmartModels with Scirocco

To use SmartM odels with Scirocco, follow this procedure:

1. To create SmartModel VHDL templates, check to seeif you have write permission
for SLMC_HOME/synopsys/smartmodel; if so skip to Step 4. Otherwise, open the
.synopsys_vss.setup file in your current working directory and search for the string
SMARTMODEL. By default, thelogical library name SMARTMODEL is mapped
to 3LMC_HOME/synopsys/smartmodel, as follows:

SVARTMCODEL : $LMC_HOME/ synopsys/ smar t nodel

2. Change the directory to one for which you have write permission, as shown in the
following example:

SMARTMCDEL : ~/ smar t nodel

124 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

10.

. Generate aVHDL model wrapper file by invoking create_smartmodel _lib with any

optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_|lib Command Reference” on page 126.

%$SYNCPSYS_SI M si m bi n/ creat e_snmartnodel _|i b argunents

. If you changed the SMARTMODEL mapping in Step 2, you must use the -srcdir

option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processesall
installed SmartM odels. For example, here is arecommended set of options to use
for one SmartModel (ttI00 in this example).:

% $SYNCPSYS_SI M si m bi n/ create_snmartnodel _|ib -nodel ttl100\
-srcdir ~/ snmart nodel

. After create_smartmodel _lib hasfinished executing, verify that the VHDL template

files have been created in the appropriate directory.

. To use SmartModels in the VHDL source file of your design, specify the

SMARTMODEL library and instantiate each SmartModel component. IntheVHDL
design file that uses SmartModel components, enter the following library and use
clauses:

i brary SMARTMODEL;

use SMARTMODEL. conponent s. al |

Thelibrary logical name SMARTMODEL must be mapped to appropriate
directoriesin your .synopsys vss.setup file, as described on page 124.

. Add the following line to your .synopsys _vss.setup file:

TI MEBASE = PS

. Instantiate SmartModels in your VHDL design. For information on required

configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators’ on page 20.

. Compile your testbench as shown in the following example:

% vhdl an t est bench
Invoke the Scirocco simulator as shown in the following examples:
a. If you are using Scirocco 2001.10 or later:

% scs design
% scsi m desi gn
b. If you are using Scirocco 2000.12:

% scsi m desi gn

For more information, refer to the Scirocco Reference Manual.

April 2002 Synopsys, Inc. 125

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

create_smartmodel lib Command Reference
The command reference for create_ smarmodel_lib is asfollows:

Syntax

create_smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]
[-modelfilefile] {-model model_name}

Arguments

-nc
-create

-src_dir dirpath

-analyze

-nowarn

-modelfilefile

-model model_name

126

Displays the usage message and lists the command line
options.

Suppresses the Synopsys copyright message.

Creates the VHDL sourcefiles (.vhd files) for the
SMARTMODEL library and saves the source filesin the
$LMC_HOME/synopsys directory.

L ets you specify the location of the VHDL source files that
you create. The default location is SLMC_HOME/synopsys.

Analyzesthe SMARTMODEL library source files (.vhd files)
by invoking vhdlan. The analyzed files (.ssm and .mrafiles)
are saved in the SLMC_HOME/synopsys/smartmodel
directory. Thisdirectory is specified by SMARTMODEL
logical name mapping in the setup file.

Suppresses the generation of warning messages that notify
you of any port name mappings.

A list of SMARTMODEL component namesis read from file.
Names are separated by spaces. Only the specified component
names are included in the SMARTMODEL component
library.

The model_nameisincluded in the resulting SMARTMODEL
component library. Repeat this option to specify multiple
models. Only specified component names are included in the
SMARTMODEL component library.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

Description

When issued without options, the create_smartmodel_|ib command takes al of thefiles
in the SLMC_HOME/models directory, creates and analyzes the VHDL template files,
and savesthem inthe SLMC_HOM E/synopsys/smartmodel directory. If you do not have
write permission for $LMC_HOME/synopsys/smartmodel, the command terminates
with an error message. In that case, you must use the -src_dir option to specify a
writable directory in which to place the VHDL templates. You must also specify that
directory through the SMARTMODEL library mapping in the .synopsys vss.setup file
in your current working directory.

Using FlexModels with Scirocco

To use FlexM odels with Scirocco, follow this procedure:

1. If you want the improved performance that comes with bused wrappers, generate a
VHDL model wrapper file by invoking create_smartmodel_Ilib with any optional
arguments. For more information on the syntax for this command, refer to
“create_smartmodel_|ib Command Reference” on page 126.

%$SYNCOPSYS_SI M si i bi n/ create_snartnodel _|i b argunents

T3> Note
The bused wrappers enable improved performance but do not work with the

examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 18), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:

% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

April 2002 Synopsys, Inc. 127

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 18 describes the FlexModel Scirocco interface and
example files that the flexm_setup tool copies.

Table 18: FlexModel Scirocco VHDL Files

File Name Description L ocation

model _pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.

model_user_pkg.vhd | Clock frequency setup and user workdir/src/vhdl/
customizations.

model _fx_vss.vhd A SWIFT wrapper for the model. wor kdir/examples/ivhdl/

model_fx_comp.vhd | Component definition for use with the model | workdir/examples/vhdl/
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS’
when compiled.

model.vhd A bus-level wrapper around the SWIFT model. | workdir/examples/vhdl/
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the*“COMPONENTS’ package has been
installed in the logical library “dm_lib”.

model_tst.vhd A testbench that instantiates the model and wor kdir/examples/vhdl/
shows how to use basic model commands.

3. Update the clock frequency supplied in the model _user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup thisfileislocated in:

wor kdi r/ src/vhdl / model _user_pkg. vhd
where workdir is your working directory.
4. Add the following line to your .synopsys_vss.setup file:

SLIMLIB : SLMLIB _PATH
TI MEBASE = PS

128 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

5. Compile the FlexModel VHDL filesinto logical library sim_lib asfollows:

175> Note
These examples provide details for event-based simulation. Please refer to
the Scirocco Reference Manual for cycle-mode operation.

%vhdlan -w slmlib $LMC HOWEH si mil vhpi / src/ sl m hdl c. vhd
%vhdlan -w slmlib $LMC HOWH si mi vhpi / src/ fl exnmodel _pkg. vhd
% vhdlan -w sl mlib workdir/src/vhdl / model _user_pkg. vhd
%vhdlan -w sl mlib workdir/src/vhdl /model _pkg. vhd

%vhdlan -w sl mlib workdir/src/vhdl/nmodel _fx_conp. vhd
%vhdlan -w sl mlib workdir/src/vhdl /model _fx_vss. vhd

% vhdlan -w sl mlib workdir/src/vhdl/model . vhd

6. Add LIBRARY and USE statements to your testbench:

library simlib;

use slmlib. flexnodel pkg.all;
use slmlib. nodel pkg.all;

use sl mlib. model user pkg.all;

For example, you would use the following statement for the tms320c6201 fx
model:

use slmlib.tns320c6201_pkg. al | ;
use slmlib.tns320c6201_user _pkg. al | ;

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the exampl e testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

UL: nodel
generic map (Fl exModel I D => “TM5_| NST1")
port map (model ports);

Example using bus-level wrapper (model.vhd) with timing:

UL: nodel
generic map (Fl exModel | D => “TM5_| NST1",
Fl exTi m ngMbde => FLEX_TI M NG MDE_ON,
Ti mngVersion => “tiningversion”,
Del ayRange => “range”)
port nmap (nodel ports);

8. Compile your testbench as shown in the following example:
% vhdl an t estbench
9. Invoke the Scirocco simulator as shown in the following examples:

April 2002 Synopsys, Inc. 129

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

a. If you are using Scirocco 2001.10 or later:

% scs design

% scsi m-vhpi sl mvhpi: forei gnl N Tel ab: cpi pe
b. If you are using Scirocco 2000.12:

% scsi m-vhpi sl mvhpi: forei gnl N Tel ab: cpi pe desi gn

Using MemPro Models with Scirocco

You must have MemPro version 2000.04 or higher to use MemPro models with
Scirocco. To use Scirocco with MemPro models, follow this procedure.

1. Add the Scirocco library path to your library path environment variable.
HP-UX:

% setenv SHLI B_PATH \
$SYNCPSYS_SI M hpux10/simi | i b: $SH.I B_PATH

Solaris:

% setenv LD LI BRARY PATH \
$SYNCPSYS_SI M spar cO85/ si i | i b: $LD_LI BRARY_PATH

2. Add the Scirocco executable to your search path:
%set path = ($SYNCPSYS_SI M pl at f ornd si i bi n $pat h)
where platformis hpux10 or sparcOS5.

3. Create Im_lib and work directories:

%nkdir ./slmlib
% nkdir ./work

4. Createthelogical to physical mapping for thesim_lib, work, and default libraries by
modifying your local .synopsys vss.setup file to include the following lines:

WORK > DEFAULT
DEFAULT : ./work
SLIMLIB: ./simlib

TI°5> Note
It is also recommended you set your simulation timebase for the desired
level of timing accuracy by modifying your .synopsys vss.setup file to
include a TIMEBASE entry, as shown in the following example:

TI MEBASE = PS

5. Compile the MemPro VHDL filesinto your Sim_lib library:

130 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

T3> Note
These examples provide details for event-based ssmulation. Please refer to
the Scirocco Reference Manual for cycle-mode operation.

%vhdlan -w sl mlib $LMC HOWH si mi vhpi / src/ sl m hdl c. vhd
%vhdlan -w sl mlib $LMC HOWEH si mi vhpi / src/ menpr o_pkg. vhd
%vhdlan -w sl mlib $LMC HOWH si mi vhpi / src/ rdramd_pkg. vhd

Compiling the rdramd_pkg.vhd is required only if you are going to use MemPro
RDRAM models.

6. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% vhdl an nymem vhd
7. Add dm_lib LIBRARY and USE statements to your testbench:

LI BRARY SLM LI B;
USE SLM LI B. menpr o_pkg. al | ;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

8. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 34. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 35.

9. Compile your testbench as shown in the following example
% vhdl an t est bench. vhd
10. Invoke the Scirocco ssmulator as shown in the following examples:
a. If you are using Scirocco 2001.10 or later:

% scs testbench _configuration
% scsi m-vhpi sl mvhpi: forei gnl N Tel ab: cpi pe
b. If you are using Scirocco 2000.12:

% scsi m-vhpi sl mvhpi: forei gnl N Tel ab: cpi pe testbench_configuration

April 2002 Synopsys, Inc. 131

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

Using Hardware Models with Scirocco

To use Scirocco with hardware models, follow this procedure. Note that your design can
include a mix of event-based and cycle-based, but hardware models simulate only as
event-based.

1. Make sure Scirocco is set up properly and all required environment variables are set,
as explained in “ Setting Environment Variables’ on page 123.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install_path/sns/bin/your_platform $path)

3. Create the model.vhd wrapper file for your hardware model. You can use the nawk
script provided in “ Scirocco Template Generator Script for Hardware Models’ on
page 135 to generate thisfile. Copy the script and paste it into an executablefile
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

o an entity-architecture pair declaration so Scirocco can referenceit in alater
component instantiation statement.

o apackage for defining constants, declaring components, and instantiating
components.

5. Place the wrapper you just created in your testbench.
6. Compile the wrapper and testbench you just created.

% vhdl an har dwar enodel . vhd
% vhdl an t est bench

7. Invoke the Scirocco simulator as shown in the following examples:
a. If you are using Scirocco 2001.10 or later:

% scs design
% scsim

b. If you are using Scirocco 2000.12:

% scsi m desi gn

@ Attention
When using hardware models with Scirocco, your design can include a mix
of event-based and cycle-based, but hardware models simulate only as
event-based.

132 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

Scirocco Utilities
The following hardware modeler simulator commands are supported in Scirocco.
#imsi list devices|ids

You can use the Imsi list devices command to list all hardware model instances by
device name, and the Imsi list ids command to list all hardware model instances by id
name. For example:

lnmsi list devices

devi ce name id# instance nane | oggi ng
TI LS299 0 / TB_TI LS299/ WO O f

1nsi list ids

id# device nane i nst ance nane | oggi ng
0 TI LS299 / TB_TI LS299/ WO Of

You can aso log test vectors for the hardware model. To log by 1D number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If nofile
name is specified, VSS writes to afile named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance _name filename

To log vectors for all hardware model device instances, specify all. A log fileis created
for each instance. The output files are named device_name.id#. TST. For example:

#msi logon all

To turn off vector logging, replace logon with logoff and omit the file name in the above
examples.

VHDL Model Generics with Scirocco

You can aso control hardware model behavior using VHDL genericsin your hardware
model instantiations. The nawk script on page 135 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL genericsin your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Smulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

LMS_TIMING_MEASUREMENT

You can usethe LMSI_TIMING_MEASUREMENT generic to direct where timing
values for your simulation session come from. There are two legal values:

April 2002 Synopsys, Inc. 133

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

ENABLED The hardware modeler measures and records actual pin-to-pin
timing values and passes them to the simulator.

DISABLED The hardware model ers passes to the simulator the pin-to-pin
timing values from the .TMG file. Thisisthe default value.

LMSI_DELAY_TYPE

You can usethe LMSI_DELAY _TY PE generic to specify whether the hardware
modeler returns pin values to the simulator with minimum, typical, or maximum delays,
asyou can seein the following legal values:

MINIMUM Return minimum delays for pin values to the ssmulator.

TYPICAL Return typical delays for pin valuesto the ssmulator. Thisis
the default.

MAXIMUM Return maximum delays for pin values to the smulator.

LMSI_LOG

You can usethe LMSI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.
DISABLED The hardware modelers does not log test vectors. Thisisthe
default value.

134 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

Scirocco Template Generator Script for Hardware Models

Hereisthe nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page at a
time from this PDF file to get the whole thing copied to your environment.

Y

I'n your design directory type:
nawk -f hwn2vhdl . nank $HW <nodel >. NAM > <out fi | e>. vhd

(where "$HWW is the full path to your hardware nodeling directory)
Instantiate .vhd into your design.

Script to generate a VSS/ Scirocco VHDL shell for a hardware nodel
using the <nodel >. NAMfile

BEG N {

$2

$4

pin_type = 0

is_it_a vector = "No"
data_type = ""
prev_signal =""
prev_test =""
prev_nunber = ""
prev_dir =""

ending = ";"

printf "library SYNOPSYS;\n"

printf " use SYNCPSYS. ATTR BUTES. al | ;\ n"
printf "library |EEE\n"
printf " use | EEE std_|l ogic_1164.all;\n\n"
~ / generic_devi ce_nane/ {
device = $3
printf "entity " device " is\n"
printf " generic\n"
printf " (\n"
printf " timng : LMSI_TI M NG MEASUREMENT = DI SABLED, \ n"
printf " del ay_type : LMSI_DELAY TYPE = TYPI CAL; \ n"
printf " del ay : LMBI _DELAY = ENABLED, \ n"
printf " log : LMBI_LGG ;= DI SABLED, \ n"
printf " timng_violations : LMSI_TIM NGV CLATIONS : = Dl SABLED; \ n"
printf " xprop : LMl _XPRCP := D SABLED, \ n"
printf " xprop_net hod : LMl _XPRCP_METHCD = HG&\N"
printf ");\n\n"
printf " port\n"
printf " (\n"
~/\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~ /\(io_pin\)/ \

|| $4 ~ /\(power_pin\)/ {
pi n_type++

April 2002 Synopsys, Inc. 135

Chapter 6: Using Scirocco with Synopsys Models

$2 ~/\=/ || ($0 ~ /"$/ & pin_type ~ /3/) {
if (pin_type == 1) {
direction = "in "

}
else if (pin_type ==2) {
direction = "out "

}
else if (pin_type == 3) {

direction = "inout"
}
el se {

next
}
current_signal = $1 " "
gsub(/\{/, "", current_signal)
gsub(/\"/, "", current_signal)

current _test = current_signal
gsub(/[0-9]+ /, " ", current_test)

n = split(current_signal, array_a, "[a-zA-Z]")
current _nunber = array_a[n]
gsub(/ /, "", current_nunber)

if (prev_signal ~ /[0-9]+ /) {
if (current_test == prev_test) {
if (is_it_a vector == "No") {
data_start = prev_nunber

Simulator Configuration Guide

if ((current_nunber == prev_nunber - 1) || (current_nunber == prev_nunber + 1))

is_it_a vector = "Yes"
}
prev_signal = current_signal
prev_test = current_test
prev_nunber = current_nunber
next

el se {
if (is_it_a vector == "Yes") {
total = prev_nunber + data_start
if (prev_nunber > data_start) {
data_end = data_start
data_start = prev_nunber

}
el se {
data_end = prev_nunber
}
data_type = "_vector (" data_start " " "downto " data_end ")"
prev_signal = prev_test
}
}
if (prev_signal !'="") {
gsub(/ /, "", prev_signal)
n = split(prev_signal, array_c, "[a-zA-z0-9_]")
y =20 - n
if (y>0) {

for (i =1; i <=20-n; i++) {
prev_signal = prev_signal

}
if (($0 ~ /"$/) && (pin_type == 3)) {

ending = ""
}
printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"
}
data_type = ""
is_it_a vector = "No"
updown = ""

prev_signal = current_signal
prev_test = current_test
prev_dir = direction
prev_nunber = current_nunber

136 Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

END {
printf ");\n"
printf "end " device ";\n\n"
printf "architecture LMBl of " device " is\n"
printf " attribute FOREIGN of LMBlI : architecture is \"Synopsys:LMSI\";\n"
printf " begi n\ n"
printf "end LNMSI;\n\n"

April 2002 Synopsys, Inc. 137

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

138 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

7

Using VSS with Synopsys Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VSS. The procedures are organized into the following major
sections:

« “Setting Environment Variables’ on page 139

« “Using SmartModels with VSS’ on page 141

« “Using FlexModels with VSS’ on page 143

« “Using MemPro Modelswith VSS’ on page 146
« “Using Hardware Modelswith VSS’ on page 148

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC HOME path_to _nodel s_installation
2. Set the SYNOPSY S variable to point to the VSSinstallation directory as follows:
% set env SYNCPSYS VSS installation directory
3. Source the environ.csh VSS environment file.
For VSS version 1998.08-1 and earlier, use this path:
% sour ce $SYNCPSYS/ adm n/instal | /si m environ. csh

April 2002 Synopsys, Inc. 139

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

For VSS version 1999.05 and later, use this path:

% sour ce $SYNCPSYS/ adm n/ set up/ envi ron. csh

4. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpsilmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_nodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal |l _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% set env LD LI BRARY PATH $LMC HOME/ | i b/ sun4Sol ari s. | i b: $LD LI BRARY PATH
Linux:

% setenv LD LI BRARY _PATH $LMC_HOVE/ | i b/ x86_I i nux. | i b: $LD LI BRARY_PATH

AlX:

% set env LI BPATH $LMC HOWE | i b/ i bnrs. |i b: $LI BPATH
HP-UX:

% set env SHLI B PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

140 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

Using SmartModels with VSS

To use SmartModels with VSS, follow this procedure:

1. To create SmartModel VHDL templates, check to seeif you have write permission
for LMC_HOME/synopsys/smartmodel; if so skip to Step 3. Otherwise, open the
.Synopsys_vss.setup filein your current working directory and search for the string
SMARTMODEL. By default, the logical library name SMARTMODEL is mapped
to SLMC_HOME/synopsys/'smartmodel, as follows:

SVARTMIDEL : $LMC_HOME/ synopsys/ smar t nodel
2. Change the directory to one for which you have write permission, asin the
following example:
SVARTMXDEL : ~/ snart nmodel

3. To generate VHDL model wrapper files, invoke create_smartmodel_lib with any
optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_|ib Command Reference” on page 142.

%$SYNCOPSYS_SI M si i bi n/ create_snartnodel _|i b argunents

4. 1f you changed the SMARTMODEL mapping in Step 3, you must use the -srcdir
option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processesall
installed SmartM odels. For example, here is arecommended set of options to use
for one SmartModel (ttI00 in this example).:

%$SYNOPSYS_SI M si i bi n/ create_snartnodel _|ib -nodel ttl00\
-srcdir ~/ smart nmodel

5. After create_smartmodel _lib has finished executing, verify that the VHDL template
files have been created in the appropriate directory.

6. To use SmartModelsin the VHDL source file of your design, specify the
SMARTMODEL library and instantiate each SmartModel component. Inthe VHDL
design file that uses SmartModel components, enter the following library and use
clauses:

library SMARTMODEL;
use SMARTMODEL. conponents. al |

Thelibrary logical name SMARTMODEL must be mapped to appropriate
directories in your .synopsys_vss.setup file.

7. Add the following line to your .synopsys vss.setup file:
TI MEBASE = PS

April 2002 Synopsys, Inc. 141

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

8. Instantiate SmartModels in your VHDL design. For information on required
configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators’ on page 20.

9. Compile your testbench as shown in the following example:

% vhdl an t estbench
10. Invoke the VSS simulator as shown in the following example:

% vhdl si m desi gn
For information about vhdlsim and the VHDL debugger, refer to the VSSUser’s

Guide.

create_smartmodel_lib Command Reference
The command reference for create_smartmodel_lib is asfollows.

Syntax

create_ smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]
[-modelfile file] {-model model _name}

Arguments

-nc
-create

-src_dir dir

-analyze

-nowarn

142

Displays the usage and all the command line options of the
utility.

Suppresses the Synopsys copyright message.

Creates the VHDL sourcefiles (.vhd files) for the
SMARTMODEL library and saves the sourcefilesin the
$LMC_HOME/synopsys directory.

L ets you specify the location of the VHDL source files that
you create. The default location is $LMC_HOME/synopsys.

Analyzesthe SMARTMODEL library source files (.vhd files)
by invoking vhdlan. The analyzed files (.sim and .mrafiles)
are saved in the LM C_HOME/synopsys/smartmodel
directory. Thisdirectory is specified by the SMARTMODEL
logical name mapping in the setup file.

Suppresses the generation of warning messages that notify
you of any port name mappings. See “VHDL Reserved Port
and Window Names’ in the VSS Expert Interface Manual for
more information about port name mappings.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

-modelfilefile A list of SMARTMODEL component namesis read from file.
Names are separated by spaces. Only those component names
specified are included in the SMARTMODEL component
library.

-model modelname Each specified modelname is included in the resulting
SMARTMODEL component library. Repeat this option to
specify multiple models. Only those component names
specified are included in the SMARTMODEL component
library.

Description

The create_smartmodel _lib command, if issued without options, uses as input al of the
filesinthe SLMC_HOME/models directory, creates and analyzes the template files, and
saves them in the 3LMC_HOM E/synopsys/smartmodel directory. If you do not have
write permission for SLMC_HOM E/synopsys/smartmodel, the command terminates
with an error message. In that case, you must use the -src_dir option to specify a
writable directory in which to place the VHDL templates. You must also specify that
directory through the SMARTMODEL library mapping in the .synopsys_vss.setup file
in your current working directory.

Using FlexModels with VSS

To use FlexModels with VSSin UNIX, follow this procedure. Thereis no custom
integration for VSS on NT, but you can use C-only Command Mode. For information on
using C-only Command Mode, refer to “Instantiating FlexModels with C-only
Command Mode” on page 28.

1. If you want the improved performance that comes with bused wrappers, you can
generate VHDL model wrapper files by invoking create_smartmodel_lib with any
optional arguments. For more information on the syntax for this command, refer to
“create_smartmodel_|ib Command Reference” on page 142.

%$SYNCOPSYS_SI M si i bi n/ create_snartnodel _|i b argunents

TI°5> Note
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 19), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

April 2002 Synopsys, Inc. 143

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

2. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:
% $LMC_ HOWE/ bi n/ fl exm setup -dir workdir nodel fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 19 describes the FlexModel V SS interface and example
files that the flexm_setup tool copies.

Table 19: FlexModel VSS VHDL Files

File Name Description L ocation

model _pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.

model_user_pkg.vhd | Clock frequency setup and user workdir/src/vhdl/
customizations.

model_fx_vss.vhd A SWIFT wrapper for the model. wor kdir/examples/ivhdl/

model_fx_comp.vhd | Component definition for use with the model | workdir/examples/ivhdl/
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS’
when compiled.

model.vhd A bus-level wrapper around the SWIFT model. | workdir/examples/vhdl/
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the*“COMPONENTS’ package has been
installed in the logical library “dm_lib”.

model_tst.vhd A testbench that instantiates the model and wor kdir/examples/ivhdl/
shows how to use basic model commands.

3. Update the clock frequency supplied in the model _user pkg.vhd filein your
working directory to correspond to the desired clock period for the model. After
running flexm_setup thisfile will be located in:

wor kdi r/ src/vhdl / model _user _pkg. vhd
where workdir is your working directory.

4. Compile adummy module to force linking of CL1 library functions, as shown in the
following example:

% cp $LMC_ HOME si mvss/ src/vss_dummy_calls.c ./vss_dummy_calls.c
%cli -ansi -s -add -cf vss dummy_calls.c vss_dummy calls

144 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

5. Link the FlexModel binary into the vhdlsim simulation executable:
%cli -ansi -s -build -libs $LMC HOWE/ i b/platformlib/sl mvss.o
where platformis hp700 or sund4Solaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes FlexModels. This vhdlsim must be defined as the first vhdlsim
in your UNIX search path.

6. Add the following line to your .synopsys vss.setup file:

SLIMLIB : SLMLIB PATH
TI MEBASE = PS

7. Compile the FlexModel VHDL filesinto logical library sm_lib asfollows:

%vhdlan -c -wslmlib $LMC HOW si i vss/ src/ sl m hdl c. vhd
%vhdlan -c -wslmlib $LMC HOW si m vss/ src/ fl exnodel _pkg. vhd
%vhdlan -¢c -w sl mlib workdir/src/vhdl /nodel _user_ pkg. vhd
%vhdlan -c -w sl mlib workdir/src/vhdl / model _pkg. vhd

%vhdlan -c -w sl mlib workdir/src/vhdl / model _fx_conp. vhd
%vhdlan -¢c -w sImlib workdir/src/vhdl / model _fx_vss. vhd
%vhdlan -¢c -w sl mlib workdir/src/vhdl / nmodel . vhd

8. Add LIBRARY and USE statements to your testbench:

library simlib;

use slmlib. fl exnodel _pkg.all;
use slmlib. nodel pkg.all;

use sl mlib. model user pkg.all;

For example, you would use the following statement for the tms320c6201 _fx
model:

use slmlib.tns320c6201_pkg. al | ;
use slmlib.tns320c6201_user_pkg. al | ;

9. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the exampl e testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

UL: nodel
generic map (Fl exModel ID => “TM5_| NST1")
port map (model ports);

April 2002 Synopsys, Inc. 145

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

Example using bus-level wrapper (model.vhd) with timing:

UL: nodel
generic map (Fl exModel | D => “TM5_| NST1",
Fl exTi m ngvbde => FLEX_TI M NG MCDE_ON,
TimngVersion => “timngversion”,
Del ayRange => “range”)
port map (nodel ports);

10. Compile your testbench as shown in the following example:
% vhdl an t est bench
11. Invoke the VSS simulator as shown in the following example:

% vhdl si m desi gn

Using MemPro Models with VSS

To use MemPro models with VSS, follow this procedure. Note that on Solaris, VSS
requires the Sunsoft compiler and Solaris 2.5 or later.

1. Compile adummy module to force linking of CLI library functions:

%cli -ansi -s -add -cf \
$LMC_HOMH si Ml vss/ src/vss_dummy_cal | s.c vss_dumy_cal | s

2. Link the MemPro binary into the vhdlsim simulation executable:
%cli -ansi -s -build -libs $LMC HOWE/ li b/ platformlib/sl mvss.o
where platformis hp700 or sun4Solaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes MemPro memory models. In order to use vhdldbx on adesign
that includes MemPro models, the vhdlsim you just created must be defined as the
first vhdlsim in your UNIX search path.

3. For Solaris, set the LD _LIBRARY _PATH environment variable as follows:
% set env LD _LI BRARY_PATH $SYNCPSYS/ spar cC85/sinm | ib
4. Create m_lib and work directories:

%nkdir ./slmlib
% nkdir ./work

5. Createthelogical to physical mapping for thesim_lib, work, and default libraries by
modifying your local .synopsys vss.setup file to include the following lines:

WORK > DEFAULT
DEFAULT : ./work
SLIMLIB: ./simlib

146 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

T Note
It is also recommended you set your simulation timebase for the desired
level of timing accuracy by modifying your .synopsys_vss.setup file to
include a TIMEBASE entry, as shown in the following example:

TI MEBASE = PS

6. Compile the MemPro VHDL filesinto your Sim_lib library:

%vhdlan -¢c -wsIlmlib $LMC HOW si ni vss/ src/ sl m hdl c. vhd
%vhdlan -¢c -wslmlib $LMC HOW si i vss/ src/ menpro_pkg. vhd
%vhdlan -¢c -wslmlib $LMC HOW si i vss/ src/ rdrand_pkg. vhd

Compiling the rdramd_pkg.vhd is only required if you are going to use MemPro
RDRAM models.

I Note
The vhdlan program returns an "Error compiling file" warning message for
rdramd_pkg.vhd and reverts to interpreted code for the file. Your designs
containing MemPro RDRAMs will simulate properly, however.

7. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% vhdl an -¢ nymem vhd
8. Add LIBRARY and USE statements for the sim_lib within your testbench code:

LI BRARY SLM LI B;
USE SLM LI B. menpro_pkg. al | ;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

9. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer to
“Instantiating MemPro Models’ on page 34. For information on message levels and
message level constants, refer to “ Controlling MemPro Model Messages’ on

page 35.
10. Compile your testbench into your work library as shown in the following example:
% vhdl an t est bench. vhd
11. Invoke the VSS simulator as shown in the following example:

% ./vhdl si mtestbench_configuration

April 2002 Synopsys, Inc. 147

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

Using Hardware Models with VSS

To use hardware models with VSS, follow this procedure:

1. Make sure VSSis set up properly and all required environment variables are set, as
explained in “ Setting Environment Variables’ on page 139. Also, make sure you
have the VSS-LMSI key in your license file for the interface licensing.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/your platform $path)

3. Create the model .vhd wrapper file for your hardware model. You can use the nawk
script provided in “V SS Template Generator Script for Hardware Models’” on
page 151 to generate thisfile. Copy the script and paste it into an executable file
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

o an entity-architecture pair declaration so VSS can referenceit in alater
component instantiation statement.

o apackage for defining constants, declaring components, and instantiating
components.

VSS Example with TILS299 Hardware Model

The following example uses the TIL S299 hardware model to show how to set up
hardware models for use with VSS:

1. After creating the wrapper .vhd file, analyze the TILS299.vhd using vhdlan, as
shown in the following example:

% vhl dan Tl LS299. vhd

2. Place the hardware model in the testbench file and invoke the ssmulator. For this
TILS299 example, we used the Synopsys VHDL Debugger, as follows:

% vhdl dbx -t ns TB_TI LS299
The ns argument invokes the simulator with nanosecond timesteps.

148 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

VSS Utilities

The following hardware modeler simulator commands are supported in VSS.
Imsi list devices|ids

You can use the Imsi list devices command to list all hardware model instances by
device name, and the Imsi list ids command to list all hardware model instances by id
name. For example:

lnmsi list devices

devi ce name id# instance nane | oggi ng
TI LS299 0 / TB_TI LS299/ WO O f

1nsi list ids

id# device nane i nst ance nane | oggi ng
0 TI LS299 / TB_TI LS299/ WO Of

You can aso log test vectors for the hardware model. To log by 1D number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If nofile
name is specified, VSS writes to afile named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance _name filename

To log vectors for all hardware model device instances, specify all. A log fileis created
for each instance. The output files are named device_name.id#. TST. For example:

#msi logon all

To turn off vector logging, replace logon with logoff and omit the filename in the above
examples.

VHDL Model Generics with VSS

You can aso control hardware model behavior using VHDL genericsin your hardware
model instantiations. The nawk script on page 151 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL genericsin your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Smulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

April 2002 Synopsys, Inc. 149

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

LMSI_TIMING_MEASUREMENT

You can usethe LMSI_TIMING_MEASUREMENT generic to direct where timing
values for your simulation session come from. There are two legal values:

ENABLED The hardware modeler measures and records actual pin-to-pin
timing values and passes them to the simulator.

DISABLED The hardware modeler passes to the simulator the pin-to-pin
timing values from the .TMG file. Thisisthe default value.

LMSI_DELAY_TYPE

You can usethe LMSI_DELAY _TY PE generic to specify whether the hardware
modeler returns pin values to the simulator with minimum, typical, or maximum delays,
asyou can seein the following legal values:

MINIMUM Return minimum delays for pin values to the ssmulator.

TYPICAL Return typical delays for pin valuesto the ssmulator. Thisis
the default.

MAXIMUM Return maximum delays for pin values to the smulator.

LMSI_LOG

You can usethe LMSI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.
DISABLED The hardware modelers does not log test vectors. Thisisthe
default value.

150 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

VSS Template Generator Script for Hardware Models

Hereisthe nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page at a
time from this PDF file to get the whole thing copied to your environment.

Y

In your design directory type:
#
nawk -f hwnRvhdl . nank $HW <rodel >. NAM > <out fi | e>. vhd
#
(where "$HWM is the full path to your hardware nodeling directory)
Instantiate .vhd into your design.
#
THE SCR PT:
#
Script to generate a VSS/ Scirocco VHDL shell for a hardware nodel
using the <nodel >. NAMfile
BEG N {
pin_type = 0
is_it_a vector = "No"
data_type = ""
prev_signal =""
prev_test =""
prev_nunber = ""
prev_dir =""
ending = ";"

printf "library SYNOPSYS;\n"

printf " use SYNCPSYS. ATTR BUTES. al | ;\ n"
printf "library | EEE\n"
printf " use | EEE std_l ogi c_1164.al|;\n\n"

}

$2 ~ /generic_device_nane/ {
device = $3
printf "entity " device " is\n"
printf " generic\n"
printf " (\n"
printf " timng : LMSI_TI M NG MEASUREMENT = DI SABLED, \ n"
printf " del ay_type : LMSI_DELAY TYPE = TYPICAL; \n
printf " del ay : LMBI _DELAY = ENABLED, \ n
printf " log : LMBI_LGG = DI SABLED, \ n
printf " timng_violations : LMSI_TIM NGV CLATIONS : = Dl SABLED; \ n"
printf " xprop : LMl _XPRCP = Dl SABLED; \ n"
printf " xprop_net hod : LMl _XPRCP_METHCD = HG&\N"
printf ");\n\n"
printf " port\n"
printf " (\n"

}

$4 ~ /\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~ /\(io_pin\)/ \
|| $4 ~ /\(power_pin\)/ {
pi n_type++

$2 ~/\=/ || ($0 ~ /"$/ &% pin_type ~ /3/) {
if (pin_type == 1) {
direction = "in

}
else if (pin_type ==2) {
direction = "out "

}
else if (pin_type == 3) {

direction = "inout"
}
el se {

next
}
current_signal = $1 " "
gsub(/\{/, "", current_signal)
gsub(/\"/, "", current_signal)

current _test = current_signal

April 2002 Synopsys, Inc. 151

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

gsub(/[0-9]+ /, " ", current_test)

n =split(current_signal, array_a, "[a-zA-Z]")
current _nunber = array_a[n]

gsub(/ /, "", current_nunber)

if (prev_signal ~/[0-9]+ /) {
if (current_test == prev_test) {
if (is_it_a vector == "No") {
data_start = prev_nunber

if ((current_nunber == prev_nunber - 1) || (current_nunber == prev_nunber + 1))

is_it_a vector = "Yes"
prev_signal = current_signal
prev_test = current_test
prev_nunber = current_nunber
next

el se {
if (is_it_a_vector == "Yes") {
total = prev_nunber + data_start
if (prev_nunber > data_start) {
data_end = data_start
data_start = prev_nunber

el se {
data_end = prev_nunber
}
data_type = "_vector (" data_start " " "downto " data_end ")"
prev_signal = prev_test
}
}
if (prev_signal !="") {
gsub(/ /, "", prev_signal)
n = split(prev_signal, array_c, "[a-zA-z0-9_]")
y=20-n
if (y>0 {

for (i =1; i <=20-n; i++) {
prev_signal = prev_signal " "

}
if (($0 ~ /"$/‘) &% (pin_type == 3)) {

ending = "'
.
printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"
}
data_type = ""
is_it_a vector = "No"
updown = ""

prev_signal = current_signal
prev_test = current_test
prev_dir = direction
prev_nunber = current_nunber

}
END {
printf ");\n"
printf "end " device ";\n\n"
printf "architecture LMSl of " device " is\n"
printf " attribute FOREIGN of LMBlI : architecture is \"Synopsys:LMSI\";\n"
printf " begi n\ n"
printf "end LMBI;\n\n"
}

152 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

8

Using MTI VHDL with Synopsys Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI VHDL. The procedures are organized into the following
major sections:

« “Setting Environment Variables’ on page 153

« “Using SmartModels with MTI VHDL” on page 155

« “Using FlexModelswith MTI VHDL" on page 158

« “Using MemPro Modelswith MTI VHDL” on page 161
« “Using Hardware Modelswith MTI VHDL” on page 162

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,

skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC HOMVE path_to_nodel s_install ation
2. Make surethat MTI VHDL is set up properly in your environment.

3. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

April 2002 Synopsys, Inc. 153

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

; Caution

154

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal | _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD LI BRARY_PATH $LMC HOWE/ | i b/ sun4Sol ari s. |ib: $LD LI BRARY_PATH
Linux:

% set env LD LI BRARY_PATH $LMC HOME/ | i b/ x86_l i nux. | i b: $LD LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOWE/ | i b/ i bnrs. |i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

Using SmartModels with MTI VHDL

To use SmartModels with MTI VHDL, follow this procedure:

1. Open the modelsim.ini filein atext editor and uncomment the lines corresponding
to the platform you are using:

; Mdel Simis interface to Logic Mdeling s Smart Model SWFT software
;libsm= $MDEL TECH | i bsm sl
; Mdel Simis interface to Logic Mdeling s Smart Model SWFT software
(Wndows NT)
i bsm= $MDEL_TECH | i bsm dl |
; Logic Modeling s Smart Model SWFT software (HP 9000 Series 700)
; libswift = $LMC HOME |'i b/ hp700.1ib/libswift. sl
; Logic Modeling s Smart Model SWFT software (1 BM R SC Syst en 6000)
; libswift = $LMC HOW/ lib/ibnmrs.lib/swft.o
; Logic Modeling s Smart Model SWFT software (Sun4 Sol ari s)
libswift = $LMC HOWE/ |i b/ sund4Sol aris.lib/libswft.so
; Logic Modeling s Smart Model SWFT software (Sund4 SunCg)
; do setenv LD LI BRARY_PATH $LMC HOWE |i b/ sun4SunGCs. |i b
cand run "vsimsw ft".
; Logic Mddeling s Snart Mdel SWFT software (Wndows NT)
; libswift = $LMC HOW lib/pent.lib/libswft.dll

2. To create the SmartModel Library VHDL wrappers or templates, run the MTI
sm_entity script with any optional arguments. The sm_entity script takes
SmartModel names as input and writes the VHDL output to STDOUT. You can
redirect the output to afile. Run sm_entity asfollows. For moreinformation, refer to
“sm_entity Command Reference” on page 158.

%smentity -c nodel > nodel . vhd
For example:
%smentity -c tt1373 > ttl373. vhd

generates the following VHDL file, which has both entity and component
declarations for the model. Edit the resulting VHDL file to add the portions of text
that are highlighted in the following example:

library | EEE;

use |EEE std logic 1164.all;

entity tt1373 is

generic (TimngVersion : STRNG:= "SNr4LS373";
el ayRange : STRING : = "NAX';

Model MapVersion : STRING : = "01008");
port (C: in std_logic;

in std_|ogic;

in std |ogic;

in std |ogic;

in std |ogic;

EBBE

April 2002 Synopsys, Inc. 155

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

in std |ogic;
in std |ogic;
in std_|ogic;
in std_|ogic;
in std_|ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std logic);

RBAFRRBLBREEIFH

D
>
2

architecture Smart Model of ttl1373 is
attribute FOREIGN : STRING
attribute FOREIGN of SmartMddel : architecture is "sminit
SMDEL_ TECH | i bsm sl ; ttl373";
begi n
end Smart Model ;
library ieee; use ieee.std |ogic _1164.all; package conp is
conponent ttl 373
generic (TimngVersion : STRNG:= "SNr4LS373";
el ayRange : STR NG : = "MAX'
Model MapVersion : STRING := "01008");
port (C: in std_|ogic;
: in std_|logic;
std_| ogi c;
std_| ogic;
std_| ogic;
std_| ogic;
std_| ogi c;
std_| ogi c;
std_| ogi c;
std_| ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std | ogic;
: out std logic);
end conponent;
end conp;

53 3 3535335335 35S

BQABRRBRBRERIBERRERR

156 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

3. Compile the model.vhd into alibrary called Sim_lib, asfollows:

%vlib slmlib
%vmap slmlib simlib
% vcom-work slmlib nodel.vhd

4. Instantiate the SmartModel component in your testbench by specifying the required
SWIFT parametersin the generic map. Here is an exampl e instantiation for the
TTL373 model, with the library and use statements, the instance (U1), and the
TimingVersion and DelayRange options specified in the generic map for the
TTL373 SmartModel Library component.

Use the SmartModel Library (sim_lib) just as you would use any other VHDL
resource library. Here is an example:

library | EEE

use | EEE STD LOd C 1164. ALL;
library SLMLIB;

use SLM LI B. COMPONENTS. ALL;

entity TestBench is
end Test Bench;

archi tecture ArchTest Bench of TestBench is
signal AL B, C STD LG3AC

UL : TTL373 generic map (Ti m ngVersion => "SN74LS373",
Del ayRange => "Typ")
port map (A=>Dl, B=>0D2, C= Q);

Pl : process
begi n

For more information on SmartModel configuration parameters, refer to “Using
SmartModels with SWIFT Simulators’ on page 20.

5. Compile the top-level testbench to awork library (MYWORK) as shown in the
following example:

%vlib MWORK
% vcom -wor kK MYWORK t op. vhd

6. Invoke the simulator by running vsim, as shown in the following example:
%vsim-lib MWRK CFGTEST
For information on how to use MTI VHDL, refer to the “Model Sm User’s Manual.”

April 2002 Synopsys, Inc. 157

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

sm_entity Command Reference
The command reference for sm_entity is as follows.

Syntax

sm_entity [options] [SmartModel |

Arguments

-read Read SmartModel names from standard input.
-Xe Do not generate entity declarations.

-xa Do not generate architecture bodies.

-C Generate component declarations.

-all Select all modelsin the SmartModel Library.
-V Display progress messages.

By default, sm_entity generates an entity and architecture. Optionally, you can include
the component declaration (-c), exclude the entity (-xe), or exclude the architecture
(-xa).

Using FlexModels with MTI VHDL

To use FlexModelswith MTI VHDL, follow this procedure. This procedure covers users
on UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any UNIX
command line examples (percent signs around variables and backslashes in paths).

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:

% $LMC_HOVE/ bi n/ fl exm setup -dir workdir nodel _fx

158 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 8: Using MTI VHDL with Synopsys Models

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 20 describes the FlexModel interface and example files
that the flexm_setup tool copies.

Table 20: FlexModel MTI VHDL Files

File Name Description L ocation
model_pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.
model_user_pkg.vhd | Clock frequency setup and user wor kdir/src/vhdl/
customizations.
model_fx_mti.vhd A SWIFT wrapper for the UNIX model. wor kdir/examples/ivhdl/
model_fx_mti_nt.vhd A SWIFT wrapper for the NT model. wor kdir/examples/ivhdl/
model_fx_comp.vhd Component definition for use with the model | workdir/examples/vhdl/
entity defined in the above SWIFT wrapper
file. Thisis put in a package named
“COMPONENTS” when compiled.
model.vhd A bus-level wrapper around the SWIFT model. | workdir/examples/vhdl/
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the “COMPONENTS’ package has been
installed in the logical library “sim_lib”.
model _tst.vhd A testbench that instantiates the model and wor kdir/examples/ivhdl/

shows how to use basic model commands.

2. On NT, add the following to your modelsim.ini file:
i bsm= $MDEL_TECH | i bsm dl |
and add the following to your PATH:
% MC_ HOVE% | i b\ pent . 1i b
Thisisso MTI can find the km_mti.dIl file.

3. Update the clock frequency supplied in the model _user pkg.vhd file to correspond
to the desired clock period for the model. After running flexm_setup, thisfileis

located in:

wor kdi r/ src/vhdl / model _user _pkg. vhd
where workdir is your working directory.

April 2002

Synopsys, Inc.

159

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

4. Add the following to your vsystem.ini or modelsim.ini file.

sl mlib=$LMC HOVE/ si minti /1i b
VHDLO93 = 1

5. Compile the FlexModel VHDL filesinto logical library sim_lib asfollows:

% mi_path/bin/vlib $LMC HOME/ siminmi/lib

% i _path/bin/vcom-work slmlib $LMC HOME siminti/src/ sl mhdlc.vhd (UN X)

% nti _path\bi n\vcom-work simlib %M HOVE% si Minmti\src\sl mhdlc_nt.vhd (NT)

% mi_path/bi n/vcom-work slmlib $LMC HOVE simimii/src/fl exnodel _pkg. vhd

% nti _path/bin/vcom-work slmlib workdir/src/vhdl /nodel user pkg. vhd

% nti _path/bin/vcom-work slmlib workdir/src/vhdl /nodel pkg. vhd

% nti _path/bi n/vcom-work sl mlib workdir/exanpl es/vhdl / nodel _fx_conp. vhd

% nti _pat h/ bi n/vcom -work sl mlib workdir/exanpl es/vhdl /model _fx_nti.vhd (UN X)
% i _pat h\ bi n\vcom -work sl mlib workdir\exanpl es\vhdl \nodel _fx_nti_nt.vhd (NT)
% nti _pat h/ bi n/vcom -work sl mlib workdir/exanpl es/ vhdl / model . vhd

160

6. Add LIBRARY and USE statements to your testbench:

library simlib;

use slmlib. flexnodel pkg.all;
use sl mlib. model _pkg. all;

use sl mlib. model user pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slmlib.tns320c6201_pkg. al | ;
use slmlib.tns320c6201_user pkg. all;

. Instantiate FlexM odels in your design, defining the ports and generics as required

(refer to the exampl e testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_mti.vhd for UNIX or model_fx_mti_nt.vhd
for NT).

Example using bus-level wrapper (model.vhd) without timing:

UL: nodel
generic map (Fl exModel ID => “TM5_| NST1")
port map (nmodel ports);

Example using bus-level wrapper (model.vhd) with timing:

UL: nodel
generic map (Fl exModel | D => “TMB_| NST1",
Fl exTi m ngMbde => FLEX_TI M NG MDE_ON,
Ti mngVersion => “tiningversion”,
Cel ayRange => “range”)
port nmap (nodel ports);

8. Compile the testbench as shown in the following example:

% vcom t est bench

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

9. Invokethe MTI VHDL simulator as shown in the following example:

% vsi m desi gn

Using MemPro Models with MTI VHDL

To use MemPro modelswith MTI VHDL, follow this procedure:
1. Perform one of these platform-dependent steps.

a. On NT platforms, verify that the shared library is visible from the current
working directory. The path to the shared library
(%LMC_HOME%\lib\pcnt.lib) was set at MemPro installation.

b. On UNIX and Linux platforms, append the MemPro shared library location to
the library search path environment variable setting.

On Solarisor Linux workstations;

% setenv LD LI BRARY PATH \
$LMC_HOVE/ 1i b/ pl at. i b: $LD LI BRARY PATH

where plat is sundSolaris or x86_linux, respectively.

On HP-UX workstations:

% setenv SHLI B_PATH \
$LMC_HOWEH |'i b/ hp700. i b: $SH.I B_PATH

2. Create dm_lib and work directories:

%vlib ./sImlib
%vlib ./work

3. Create the logical to physical mapping for the sm_lib and work libraries:

Y%vmap slmlib ./sImlib
% vimap work . /work

4. Compile the MemPro VHDL filesinto your sikm_lib library:

%vcom-93 -work slmlib $LMC HOME siminti/src/ sl mhdl c.vhd
%vcom-93 -work slmlib $LMC HOME si minti/ src/ menpro_pkg. vhd
%vcom-93 -work slmlib $LMC HOME si minti/src/rdranmd_pkg. vhd

5= Note
Compiling the rdramd_pkg.vhd is only required if you are going to use
MemPro RDRAM models.

5. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% vcom -93 -work work nymem vhd

April 2002 Synopsys, Inc. 161

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

6. Add LIBRARY and USE statements for the slm_lib within your testbench code:

LI BRARY SLM LI B;
USE SLM LI B. menpr o_pkg. al | ;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “ C Testbench Interface” chaptersin the MemPro User's
Manual.

7. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer
to" Instantiating MemPro Models’ on page 34. For information on message levels
and message level constants, refer to “ Controlling MemPro Model Messages’ on

page 35.
8. Compile your testbench into your work library as shown in the following example:
% vcom -wor k work testbench. vhd
9. Invoke the simulator on your testbench as shown in the following example:

% vsi mt est bench

Using Hardware Models with MTI VHDL

To use hardware models with MTI VHDL, follow this procedure:

1. Makesure MTI VHDL is set up properly and all required environment variables are
set, as explained in “ Setting Environment Variables” on page 153.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/your platform $path)

3. Modify the modelsim.ini or project_name.mpf file to include the hardware
modeling information. Locatetheline;

[1 re]

162 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

Remove the semicolons from the libhm line and the libsfi line you will be changing
for your platform. Provide the correct path for the SFl. For example:

; Model Sims interface to Logic Mddeling' s hardware nodel er SFI software
l'i bhm = $MODEL_TECH | i bhm sl

; Logi c Model i ng' s hardware nodel er SFI software (HP 9000 Series 700)
libsfi = hardware_nodel install _path/lib/platformlibsfi.ext

; Logi c Modeling' s hardware nodel er SFI software (I BM R SC Syst eni 6000)

; libsfi = <sfi_dir>/1ib/rs6000/1ibsfi.a

; Logic Modeling' s hardware nodel er SFI software (Sun4 Sol ari s)

; libsfi = <sfi _dir>/lib/sund.solaris/libsfi.so
; Logi c Modeling' s hardware nodel er SFI software (Sun4 SunCs)
; libsfi = <sfi_dir>/1ib/sund.sunos/libsfi.so

; Logic Modeling' s hardware nodel er SFI software (Wndow NI)
; libsfi = <sfi_dir>/lib/pcent/Imsfi.dll

where ext is so for Solaris. afor AlX, or d for HP-UX.

4. Run the hm_entity script to generate a.vhd file for the hardware model as shownin
the following example. For details on hm_entity, refer to “hm_entity Command
Reference” on page 164.

5. You are now ready to use the model in your simulation.

MTI VHDL Example Using TILS299 Hardware Model

Hereis an example that uses the TIL S299 hardware model. Follow these steps:
1. Put the TILS299 hardware model in the testbench.
2. Create aworking library directory by invoking vsim -gui and selecting
Library/Create. This creates a working directory called work.
3. Compile the .vhd files, as shown in the following example:
% vcom -wor k work TI LS299. vhd TB_TI LS299. vhd

This step compiles the two VHDL files and puts them in the specified work library.
Note that the TIL S299.vhd file must be specified first or you get an error because
the TB_TILS299.vhd utilizes the TILS299 entity.

4. Invoke the ssmulator as shown in the following example:
% vsi m

5. When the window comes up, select the testbench to load.

6. Use the View/Wave pull-down menu to get the wave window. In the wave window,
use File/Load Format wave.do to get the waveforms. After the waveform viewer
comes up and the vsim prompt appears, enter “run 10000".

April 2002 Synopsys, Inc. 163

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

7. You can also use some of the hardware model utilities listed below, but the
commands must be entered at the simulator command prompt because they are not
VHDL statements. For the TIL S299 example, you can also put these commands into
the .do file. Here is an example wave.do file:

Imvectors on /tbh_tils299/ W TEST. VEC

add wave -logic {/clk}
add wave -logic {/clr}
add wave -logic {/sl}
add wave -logic {/s0}

add wave -logic {/gl}
add wave -logic {/g2}

add wave -logic {/sr}
add wave -logic {/sl}
add wave -logic {/qa}

add wave -logic {/gh}
add wave -literal {/t}

hm_entity Command Reference
The hm_entity script creates .vhd files for hardware models.

Syntax

hm_entity [options] shell _software filename

Arguments

-Xe Do not generate entity declaration.
-xa Do not generate architecture body.

-C Generate component declaration

-93 Use extended identifiers where needed

164 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

Example

For example, the following hm_entity invocation:
% hmentity TILS299. MOL > TI LS299. vhd

generates a .vhd file that looks like the following:

library ieee;
use ieee.std | ogic 1164. all
entity TILS299 is
generic(DelayRange : STRNG:= "Mx");
port (& : in std_logic;
CLR : in std_|l ogic;
SR : in std_logic;
CLK : in std_|l ogic;
. in std_|ogic;
in std |ogic;
in std |ogic;
in std_| ogic;
out std_| ogic;
out std_| ogic;
nout std_| ogic;
nout std_| ogic;
nout std_| ogic;
nout std_| ogic;
nout std_| ogic;
nout std_| ogic;
nout std_| ogic;
nout std logic);

UTIUJO:DG)ITIIQQQC'Q@EQ

end;

architecture Hardware of TILS299 is
attribute FCREIGN : STR NG
attribute FOREIGN of Hardware : architecture is "hminit
SMCDEL_TECH | i bhm sl ; TI LS299. MOL";
begi n
end Har dwar e;

April 2002 Synopsys, Inc. 165

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

MTI VHDL Utilities
The following hardware modeler ssmulator commands are supported in MTI VHDL:
Im_vector s on | off instance_name filename

The Im_vectors utility turns on vector logging for the hardware model instance. The
vectors record stimulus to the input and 1/0 pins and responses from the output and 1/0
pins during simulation.

Im_measure_timing on | off instance_name filename

TheIm_measure_timing utility causes the modeler to measure timing between an input
transition and resulting output transition on the hardware model. Note that thisis only
supported on LM-family systems.

Im_timing_checks on | off instance_name

The Im_timing_checks utility allows you to enable or disable timing checks such as
setups and holds.

Im_loop_patternson | off instance_name

Thelm_loop_patterns utility causes the hardware modeler to continually replay the
pattern history of a specified device instance.

Im_unknowns on | off instance_name

The Im_unknowns utility turns off unknown propagation. This*on_unknown” feature
Isalso inthe .OPT file for hardware models. It modifies the system's default handling of
device input and 1/0O pins that are set to unknown by the ssimulator. This utility does not
turn on unknown propagation unless it is also turned on in the .OPT file, but it can
override the setting in the .OPT file to turn this feature off when it is set to onin the
OPT file.

166 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

9

Using Cyclone with Synopsys
Models

Overview

This chapter explains how to use MemPro models and hardware models with Cyclone.
The procedures are organized into the following major sections:

« “Setting Environment Variables’ on page 167

« “Using SmartModels with Cyclone” on page 169

« “Using FlexModels with Cyclone” on page 169

« “Using MemPro Models with Cyclone” on page 169
« “Using Hardware Models with Cyclone” on page 170

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your MemPro installation tree, as
shown in the following example:

% setenv LMC HOME path_to _nodel s_installation

2. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

April 2002 Synopsys, Inc. 167

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

; Caution

168

You can put license keys for multiple products (for example, MemPro models and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

. Set the SYNOPSY S_CY environment variable to point to the Cyclone installation

tree, as shown in the following example:
% set env SYNCPSYS_CY Cycl one_instal |l _path

. Set the MA_CY environment variable to point to the ma_cyclone directory, as

shown in the following example:
% setenv MA _CY Model Access_install _path

. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_nodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _install _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your models in adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in 3LMC_HOME, as shown in the following examples:
Solaris:

% set env LD LI BRARY _PATH $LMC HOME/ | i b/ sun4Sol aris. | i b: $LD LI BRARY PATH
Linux;

% set env LD LI BRARY PATH $LMC_HOME/ | i b/ x86_1 i nux. | i b: $LD_LI BRARY PATH
AlX:

% set env LI BPATH $LMC HOVE/ | i b/ i bnrs. | i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC HOME/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Using SmartModels with Cyclone

For information on using SmartM odel swith Cyclone, refer to “Using SmartM odels with
SWIFT Simulators’ on page 20.

Using FlexModels with Cyclone

To use FlexModels with Cyclone, you use C-only Command Mode. For information on
the required SWIFT parameters for FlexModels (which differ from regular
SmartModels) and how to use C-only Command Mode, refer to “Using FlexModels
with SWIFT Simulators’ on page 26.

Using MemPro Models with Cyclone

To use MemPro models with Cyclone, follow this procedure. Note that RDRAM models
are not supported on Cyclone.

1. For HP-UX, Cyclone incorrectly uses “hpux10.lib” in paths to platform-specific
directories. The correct path leaf should be “hp700.lib.” Correct the paths by
creating symbolic links as follows:

%In -s $LMC HOW/ | i b/ hp700.1ib $LMC HOWE |i b/ hpux10.1ib
%Iln -s $LMC_ HOME nenpro/ | i b/ hp700.1ib $LMC HOVE menpr o/ | i b/ hpux10.lib

2. Create dm_lib and work directories:

%nkdir ./slmlib
% nkdir ./work

3. Createthelogical to physical mapping for thesim_lib, work, and default libraries by
modifying your local .synopsys vss.setup file to include the following lines:

WORK > DEFAULT
DEFAULT : ./work
SIMLIB: ./slmlib

I Note
It is also recommended you set your simulation timebase for the desired
level of timing accuracy by modifying your .synopsys vss.setup file to
include a TIMEBASE entry, as shown in the following example:

TI MEBASE = PS

April 2002 Synopsys, Inc. 169

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

4. Compile the MemPro VHDL filesinto your skm_lib library:

10.

%cyan -nc -synthoff -lang vhdl -wsimlib\
$LMC_HOWH si i cycl one/ src/ sl m hdl c. vhd

%cyan -nc -synthoff -lang vhdl -wsimlib\
$LMC_HOWH si i cycl one/ src/ menpr o_pkg. vhd

. After generating a model using MemPro, compile the VHDL code for the model

into your work library, as shown in the following example:
% cyan -nc -synthoff -lang vhdl nynmem vhd

. Add LIBRARY and USE statements for the sim_lib within your testbench code:

LI BRARY SLM LI B;
USE SLM LI B. menpr o_pkg. al | ;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” in the MemPro User’s Manual.

. Instantiate MemPro models in your testbench. Define ports and generics as

required. For information on generics used with MemPro models, refer
to" Instantiating MemPro Models’ on page 34. For information on message levels
and message level constants, refer to “ Controlling MemPro Model Messages’ on

page 35.

. Compile your testbench into your work library as shown in the following example:

% cyan t est bench. vhd

. Elaborate your design as shown in the following example:

%cylab (-4state | -2state) testbench_configuration
Invoke the Cyclone simulator as shown in the following example:

%cysim(-4state | -2state) testbench_configuration

Using Hardware Models with Cyclone

This section describes how to set up and configure Release 3.5a of Model Access for
Cyclone. After completing the setup tasks, for usage information refer to “Using
Hardware Models with Cycle-Based Simulators’ on page 178.

The hardware modeling configuration you choose affects the performance you get when
running hardware models in Cyclone ssimulations. This section reviews the
fundamental's of the M odel Source and L M-family hardware modeling systems, and then
provides guidelines for a number of possible configurations.

170

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

ModelSource System Hardware and Software

If you are using a Model Source system, your hardware modeling system configuration
consists of one or more MS-3400 or M S-3200 units, plus a M odel Source Processor. (For
adescription of a Model Source Processor, refer to the Model Source Hardware
Installation Guide. For information about the software, refer to the Model Source User’s
Manual.) The Model Source Processor is connected to the rest of your network via
Ethernet, and to the M S-3400/M S-3200 units via fiber-optic cable.

The Model Source Processor provides the CPU for the Model Source units, and at a
minimum, it executes the runtime modeler software (RMS) for the modeling system.
However, you might decide to run your simulation from the M odel Source Processor
workstation as well, unless you are using an LM-1400 as the M odel Source Processor.

The R3.3aand later Model Source RM S has been enhanced to deliver higher
performance in all configurations, and has been optimized to generate the maximum
performance gain over previous releases of the RM S when used by a single user running
the simulation from the M odel Source Processor workstation. This enhanced rel ease of
the RMSisavailable for Sun Solaris and HP 700 M odel Source Processor workstations.

LM-1400/LM-family System Hardware and Software

If you are using one of the LM-family hardware model servers (LM-1200 or LM-1400),
your hardware modeling system configuration consists of the LM-family unit. This
family of modelersincludes a dedicated CPU within the modeling system chassis. The
LM-family system connectsto the rest of your network via Ethernet. The LM-family
CPU runsthe standard RMS. You run your simulations from other workstations on the
Ethernet network.

Configuration Options

Figure 6 on page 173 illustrates some of the supported Cyclone configurations, labeled
from A (the highest performance choice) to D (lower performance options).

Option A

The recommended configuration for highest performance in cycle-based simulation is
an MS-3400 or MS-3200 hardware modeling system with the simulation executing on
the Model Source Processor workstation (which has the SBus or EISA card connection
to the modeling systems). This configuration eliminates network overhead in the
communication between the modeling system processor and the simulation.

April 2002 Synopsys, Inc. 171

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Option B
In this configuration, the Cyclone simulation is executing on a different workstation

from the M odel Source Processor workstation. In this case, the simulation workstation
and the M odel Source Processor workstation must be on the same Ethernet subnet.

Option C
Because the LM-1400 has its own dedicated CPU within the LM-1400 chassis, the
simulation must be run on a separate workstation. For best performance with an

LM-1400 (or any of the LM-family hardware model servers), keep the simulation
workstation and the LM-1400 on the same Ethernet subnet.

Option D

In this configuration, the hardware modeling system (which can be either a

Model Source system or an LM-family hardware model server) exists on adifferent
Ethernet subnet from the workstation on which the Cyclone simulation is running.
Because of the extra overhead of the router, thisis alower performance configuration.

172 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

ModelSource Processor
(Sun SPARC or HP700

with SBus or EISA card)
running Cyclone and MS-3400/MS-3200

ModelSource RMS

A

BEST
PERFORMANCE
OPTION

Fiber link

High-performance ModelSource Processor
workstation running (Sun SPARC or HP700)
Cyclone running ModelSource RMS

Ethernet Fiber link

(Same subnet)

LM-1400

High-performance running LM-1400 RMS

workstation running
Cyclone

Ethernet *
(Same subnet)

High-performance ModelSource Processor
workstation running (Sun SPARC or HP700)
Cyclone running ModelSource RMS

D Router Fiber link

MS-3400/MS-3200

Ethernet [—
(different subnets)

LM-1400
running LM-1400 RMS |

Figure 6: Cyclone Configuration Guidelines

April 2002 Synopsys, Inc. 173

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Cyclone User Setup
Before proceeding with the setup instructions that follow, perform these tasks:

« Install the Cyclone simulator package as described in the Cyclone Installation
Guide.

« Install and configure the hardware modeling system, including hardware and
software (R3.5a or later), as outlined in the Quick Reference in Chapter 1 of either
the Model Source Hardware Installation Guide or the LM-family Hardware
Installation Guide.

« |If necessary, boot the modeler.

« Make sure all required environment variables are set, as explained in “ Setting
Environment Variables’ on page 167

The ma_cyclone Software Tree

The ModelAccess for Cyclone (ma_cyclone) directory structureisillustrated in
Figure 7.

ma_cyclone/

C/ setup/
sun5.5.1/ Im_hw_slang.c setup.csh
ger_unterface Im_hw_slang.h setup.sh
\r/flrlfyslewp synopsys_Im_hw.setup
pa_hp102 synopsys_Im_hw.setup.hp700

geninterface

verifySetup synopsys_Im_hw.setup.solaris

Figure 7: ModelAccess for Cyclone Installation Tree

The setup process consists of the following tasks:
« “Setting Up Your Environment” on page 175
« “Running verifySetup” on page 175
« “Running geninterface” on page 175.
« “Confirming License File Settings (Model Source Only)” on page 177.

174 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Setting Up Your Environment

Make sure all required environment variables are set properly, as explained in “ Setting
Environment Variables’ on page 167. If any of the required environment variables are
not defined, the source command will fail, with an error message indicating the cause of
the error.

Running verifySetup

Run the provided verifySetup program. This verifies that your environment is set up
correctly so that genlnterface can run.

1. To run verifySetup, change directory to /tmp, then execute verifySetup, as follows:

%cd /tnp
% veri fySetup

The verifySetup program returns messages confirming the setup information that
will be used (both the environment setup information, and the genlnterface setup
options taken from the synopsys Im_hw.setup file). For example, if the hardware
modeling system is not booted and available on the network, verifySetup reports the
error.

% verifySetup
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; RL.0

**%% Fnvironment Setup *xr*

User horre: /hone/ Kkl t

MA CY: /tool s/l nt/sms/ ma_cycl one

LMinclude directory: /tool s/l nt/sns/include

LMlibrary directory: /tools/lnt/sns/lib/sund.solaris

CY include directory: /tools/cycl one/ sparcC85/ cycl one/ i ncl ude

x% Satup Files **

Model er: engi neeri ngl

SFI ERROR nodel er not respondi ng (Message Nunber: 972)
Running geninterface

The genlnterface program takes hardware model Shell Software files as input, and
creates the following files:

« A VHDL shéll for each hardware model you specified

« A dynamicaly-linkable C library, which is used in communicating simulator
requirements to/from the hardware modeling system (via the hardware modeling
Simulator Function Interface software)

April 2002 Synopsys, Inc. 175

Chapter 9: Using Cyclone with Synopsys Models

Simulator Configuration Guide

With the output of genlinterface, you proceed as with any other VHDL input by
compiling the hardware model VHDL files (elaborate and analyze) along with your
other VHDL design files and then simulating the design. Figure 8 gives an overview of
the entire process, and the following sections describe each step in detail.

Invoke genlnterface from the directory in which you want the interface files to be
created. On the command line, specify the hardware models you want to use with
Cyclone. For details on genlnterface syntax, refer to “genlnterface Command

Reference” on page 182

I Note
The genlnterface program relies on the software described in “Cyclone
genlinterface Setup Files’ on page 186. The verifySetup program helps you
verify that these prerequisites have been set up correctly.

176

Confirm
environment
setup

Y

Edit setup file,
if needed

ModelAccess
for Cyclone *

Confirm setup
(verifySetup)

Y

Create interface
(geninterface)

Analyze
(cyan)

Y

Cyclone Elaborate
(cylab)

Y

Simulate
(cyclone or cysim)

Figure 8: Process Flow Chart

Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Confirming License File Settings (ModelSource Only)

The genlnterface program is not license-protected. However, in order to use the output
of geninterface to run Cyclone simulations with M odel Source hardware models, several
licenses are required:

« MSCBS licenses the use of hardware models with cycle-based ssmulators.
o MS3400 or MS3200 specifies the number of MS-3400 or MS-3200 units licensed.
In addition, you need the appropriate licenses to run Cyclone.

I Note
The LM-family hardware model servers (LM-1400 and LM-1200) are not
license-protected and do not have alicensefile. Thisstep isrequired only for
M odel Source systems (M S-3400, M S-3200).

For information about installing hardware model licenses or updating an existing license
file, refer to the Hardware Modeling Release Notes. To confirm that your licenses are
working correctly, follow these steps:

1. Invoke the Im utilities:

%I m

Copyright 1988-1996 Synopsys, Incorporated.; 17 Aug 1998; R3.4a
Default Modeler is "venkat"

LMUWilities Menu

1) Ceate Logic Mdels

2) Verify Logic Mdels

3) Perform Mi nt enance

4) Run D agnostics

5) Show Model er Configuration

h) Help
q Qit
sel ecti on:

2. Select item 5, “Show Modeler Configuration”.

sel ection: 5
Model er Configuration
1) Show Model ers
2) Show Logi ¢ Moddel s
3) Show Wsers
4) Show Versi ons
5) Show Mddel Users
6) Show Li censes

h) Help
q Qit
sel ecti on:

April 2002 Synopsys, Inc. 177

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

3. Select item 6, “Show Licenses’.

sel ection: 6
Model er Nanme (* = ALL) [venkat]:
Li cense Server set to: 5300@al
"venkat" Licenses Used
No |icenses being used on the nodel er
"venkat" Total Licenses Present in the License File
Feature # |icenses Ver si on Exp. Date
MSFAULTYes3. 400 31- Dec-1999
MBCBSYes 3.400 31-Dec-1999
M53400100 3. 400 31- Dec-1999
M53200100 3. 400 31- Dec-1999
o o v S SIS S S BTSSR S S A S AR S S

Using Hardware Models with Cycle-Based Simulators

Model Access for Cyclone allows you to prepare your hardware models for usein a
Cyclone cycle-based simulation. This section describes how to use hardware modelsin a
Cyclone simulation. We begin with an overview of hardware modeling in the Cyclone
environment and then provide instructions for using geninterface.

Timing Delays

Synopsys hardware models typically include pin-to-pin delay information and can
optionally include timing checks. However, in cycle-based simulation, the simulator
ignores delay information and timing checks in the hardware models.

Cycle-Based Simulation Constraints

Before using a hardware model in cycle-based simulation, review the design, coding,
and testbench guidelines provided in the Cyclone documentation set. Although there are
no inherent limitations because of hardware modeling technology (when compared to a
VHDL model or C-language model of the same device), you must follow the same
usage guidelines for acircuit using hardware models as you would follow for a circuit
using any other types of models, when creating a cycle-based simulation testbench.

178 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

How Hardware Models Interface with Cyclone

Cyclone provides the Slang C-language interface to enable you to integrate external C
and C++ models into the Cyclone runtime environment. Hardware models are also
integrated into the Cyclone environment using a specia -purpose implementation of the
Slang interface.

A Slang C (or C++) software model consists of a collection of C language entry points,
compiled into a shared object library, plusaVHDL shell that determines which entry
points are called at runtime. A Slang hardware model requires a shared object library,
one VHDL shell per model, the hardware model’s Shell Software, and the model itself,
installed in the hardware modeler. A conceptual diagram of a Slang hardware model is
shown in Figure 9.

SFI

Hardware Model Silicon in
Shell Software Hardware
(.MDL File) Modeler

[Files created by genlinterface

Hardware Model

Figure 9: Slang Hardware Model Conceptual Diagram

T3> Note
The genlnterface program createsthe C library and VHDL shell files needed

by Cyclone to evaluate hardware models.

April 2002 Synopsys, Inc. 179

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Editing the Setup File

The genlnterface program hasits own setup file (synopsys Im_hw.setup) that you useto
specify various options to be applied to the entire genlnterface session, or to particular
models within the session, including:

« Deleting intermediate files
« Overwriting existing files
« Overwriting pin names (per model)

Default values are provided for all required items, so you only need to edit thisfileif
you want to alter the default values. If you decide to edit the file, copy it from
$MA_CY/setup/synopsys Im_hw.setup to your own local working directory. The copy
must be renamed to .synopsys Im_hw.setup. Now you can edit and customize the local
.synopsys_Im_hw.setup file appropriately for your session.

If you want to change the global settings on a Solaris system, you must edit the
following file:

SMA_CY/setup/synopsys Im_hw.setup.solaris
(The other file extension is .hp700.)

To change thefile, copy lines from the default synopsys Im_hw_setup file shown in
Figure 10 and uncomment the lines.

delete files yes # default yes
overwite files no # default no

for PPCA03CGA use

delete files yes

overwite files no

pi n_nanme_ovr "-DSR/ -CTS' "NSRSCTS'
pi n_name_ovr "-HALT" "NHALT"

Figure 10: Default synopsys_Im_hw.setup File

Deleting Intermediate Files

delete files {yes| no} # default yes
By default, geninterface deletes the intermediate filesit creates. If you want to retain the
intermediate files, specify “delete filesno” in the setup file and delete the leading ‘#
character. (Typically, you need to save these files only for debugging purposes; the files
are not used by Cyclone.)

180 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Overwriting Existing Files
overwite_files {yes|no} # default no

By default, geninterface does not overwrites filesin the target directory. Thisisto
protect you from accidentally overwriting earlier versions of .vhd files that you might
have customized. If geninterface detects a file with the same name in the target
directory, it generates the following warning:

genlnterface warning: retaining ol der version of ./nodel _nanme.vhd file

If you receive this warning, you must choose one of the following:

« If youwant to save the old .vhd files, rename them, and then run genlnterface again.
You can add your custom code to the newly-updated .vhd files.

« |If you don’'t want to save the old .vhd files, delete them from the target directory or
change the overwrite files setting to yes before you run genlnterface/

@ Attention
Whenever you receive this warning, you must correct the situation and re-
run genlnterface so that a complete, integrated set of .vhd files and the
corresponding C library are created. The genlnterface program keys the
results of each session, so if you attempt to mix files from different
geninterface sessions in your Cyclone simulation, you receive afatal
simulation error (LM_HW integration error: Keys do not match).

Selecting Options Per Model

The synopsys_Im_hw.setup file allows you to set specific options per model, including
the following:

. delete files

. overwrite files

. cflags-DLM_HW_DEBUG
« pin_name_ovr

The cflags debugging options are intended for system administrators, and are explained
in“cflags’ on page 187.

The pin_name_ovr statement, which enablesthe overwriting of automatically-generated
pin names, is only available on a per-model basis, as explained below.

April 2002 Synopsys, Inc. 181

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Overwriting Pin Names Per Model

The Shell Software syntax for hardware model pin names uses special characters and
VHDL keywordsthat are not allowed in legal VHDL signal names. Therefore, when
geninterface creates VHDL shellsfor each model, it convertsillegal VHDL signal
names to legal equivalents. This processisexplained in “Rulesfor Signal Renaming” on
page 188. If you prefer to use your own VHDL signal names, you can use the
pin_name_ovr statement to specify the mapping from the origina name to the new
name.

The syntax for this statement is:

for nodel _nane use
pi n_nane_ovr "shell _sw namel" "VHDLnanmel"
pi n_name_ovr "shel |l _sw_nanme2" "VHDLnane2"
end

For example, the pin name -ALE isallowed in the Shell Software, but not in VHDL. By
default, genlnterface removes the leading hyphen (-) and replacesit with the string NE_,
creating the new pin name NE_ALE. If you prefer the alternate legal name NALE, add

the following lines to your setup file:

for 180960M use
pi n_nanme_ovr "-ALE' "NALE'
end

geninterface Command Reference

After successfully running verifySetup, you can run genlnterface, specifying the
hardware models you want to include in Cyclone simulation.

Syntax

genlnterface {-m modeler_name} [mdlfilel mdlfile2 ... | -f model_list | -a]
Arguments

-m modeler_name This optional switch specifies the hardware modeling system

for geninterface to use. The modeler must be installed on the
network and be booted and running. If amodeler_ nameis not
specified, genlnterface searches the modelers.lisfile for the
name of an available modeler.

The modeler does not need to have the hardware model
installed; it must only be booted and running Runtime
Modeler Software v3.3 or later.

182 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

mdlifilel You can list individual models by their Model (.(MDL) file
name, such as IPENTIUM.MDL. \Separate multiplefile
names with a blank (space) character.

-f model_list You can create afilelisting the Model (MDL) filesto be
included. Create the file with one .MDL file name per line.

-a The -aoption alows you to generate an interface that includes
all available model files found in directories specified by the
LM _LIB environment variable.

0% Hint
The -aoption is convenient when you want to create one interface
incorporating al hardware modelsin your environment. However,
depending on how your LM_LIB environment variable is set, thiscould be a
largefile.

"W

Examples

The following example creates interface files for the hardware models listed in the
“my.models’ file:

% genlnterface -f my.nodels

The following example creates interface files for al hardware modelsinthe LM_LIB
search path, using the hardware modeling system named “engineeringl”:

% genlnterface -mengineeringl -a

The following example createsinterface files for the hardware models IPENTIUMPRO,
182451GX, 182452GX, 182453GX, and 182454GX:

% genl nterface | PENTI UMPRO. MDL |1 82451GX. MDL | 82452GX. MDL \
| 82453GX. MDL | 82454GX. MDL

Assuming that all setup files have been left at their default values, the geninterface
command creates the following filesin the current directory:

« liblm_hw.so (Solaris only)
o IPENTIUMPRO.vhd

. 182451GX.vhd

« 182452GX.vhd

« 182453GX.vhd

« 182454GX.vhd

April 2002 Synopsys, Inc. 183

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

The following exampl e shows genlnterface executed on the ID3052EA hardware model
(Model file ID3052EA.MDL):

% genl nterface -m engi neeri ngl | D3052EA MDL
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; RL.0

Processi ng Common files..... Done
Processi ng | DB0O52EA. MOL file...... Done
Runni ng make. . .. Done

Runni ng cl ean. ... Done

This command creates one dynamic library and a“.vhd” file for each model specified in
the command line. For the Solaris example shown above, the liblm_hw.so library and
ID3052E.vhd file are created.

The genlnterface program requires an ANSI C compiler. If you receive compiler errors
while attempting to run geninterface, for information about updating setup files, refer to
“Cyclone genlnterface Setup Files’ on page 186.

Cyclone Simulation

After successfully running verifySetup and genlnterface, you can simulate using
Cyclone. For detailed information on using Cyclone, refer to the Cyclone Reference
Manual. Following are some Cyclone usage notes for hardware models.

Analyzing the Design

You analyze the generated VHDL files (created by geninterface), just as you would any
other filesin your design.

Elaborating and Simulating the Design

Performance Monitoring

You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the ssmulator, enter the following:

% set env LM CPTI ON “noni t or _per f or nance”

For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.

184 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

2-state and 4-state Simulation

If you are using Release 1.1 or later of Model Access for Cyclone with Cyclone Release
1998.02 or later, you can specify either 2-state (0, 1) or 4-state (0, 1, X, Z) simulation.
However, for earlier releases, 2-state simulation is not supported; when running cylab,
you must specify -4state to create 4-state (0, 1, X, Z) code. Similarly, for earlier releases
you must specify -4state for 4-state simulation with cysim.

Defining LD_LIBRARY_PATH

When using the output of genlnterface with Cyclone, the LD_LIBRARY _PATH
environment variable must include “.” (the current directory). Thisis also required by
Cyclone, soif you have set LD _LIBRARY _PATH as documented in the Cyclone user
documentation, LD_LIBRARY_PATH will be correct for genlnterface.

Cyclone Elaboration Warnings

Cycloneissuestwo elaborations warnings for each hardware model in your design. This
Is because Cyclone divides the circuit into two types of blocks, sequential and
combinatorial. At every clock edge the sequential blocks get executed first, and then the
combinatorial blocks get executed. The hardware model is neither fully sequential nor
fully combinatorial, so Cyclone declaresit as a specia block. Cyclone discourages you
from using special blocks by issuing warnings, however, special blocks are fine for
hardware models, so you can ignore the warnings for hardware models.

“Keys Do Not Match” Error Message
If you receive the following error message during Cyclone simulation:
LM HWintegration error: Keys do not nmatch

this indicates that you do not have a consistent set of genlnterface output; for example,
the liblm_hw.so file was not generated in the same genlnterface session as one or more
of the .vhd files, so the information is not valid for simulation. This can occur if you run
genlnterface more than once on the same hardware model files with the overwrite files
option left at its default setting of “no.”

To correct this error, refer to “ Overwriting Existing Files” on page 181; then rerun
geninterface on the complete set of hardware models you want to use in the Cyclone
simulation. Analyze and elaborate the new genlnterface output before proceeding with
your simulation.

April 2002 Synopsys, Inc. 185

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Cyclone geninterface Setup Files
This section describes the Model Access for Cyclone setup file syntax and usage.

Setup File Definition
Two sets of setup files are provided for geninterface:
1. Model-dependent setup information is stored in the following file:

$MA_CY/ set up/ synopsys_| m hw. set up

Thisfileistypically copied by each user from this central location into the their own
directory, where it can be edited for a particular session. Use of this setup fileis
described in “Editing the Setup File’ on page 180.

2. System-dependent setup information is stored in these three platform-specific files:
o $MA_CY/setup/synopsys Im_hw.setup.hp700
o $MA_CY/setup/.synopsys_Im_hw.setup.solaris

Thesefiles are provided to allow a system administrator to update compiler and
linker information, if necessary. If the ANSI C compiler (acc) is used, then no
editing of these files should be required.

Search Path

Upon invocation, the genl nterface program searches for the synopsys Im_hw.setup file
and the.synopsys Im_hw.setup.platformfiles in the following locations, in the order
listed:

1. Current working directory (files preceded by “.")
2. User’'s home directory (files preceded by “.")
3. SMA_CY/setup (fileswithout a“.” prefix).

System-Dependent Setup Options

The system-dependent setup files allow you to change default settings for genlnterface.
A sample of the HP-UX version of thefileis shown in Figure 11.

186 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

conpil er acc # default acc

cflags val ues are cumul ative

cflags +z +DA1.1 +DS2.0

cflags -fPIC # default -fPIC
cflags - DLM HW DEBUG

cflags - DLM HW Pl N DEBUG

linker |d # default Id

|flag val ues are cumul ati ve
1flags -b # default -b

Figure 11: Sample System-Dependent Setup File
(.synopsys_Im_hw.setup.hp700)

compiler

The genlnterface program requires access to a C compiler. The ANSI C compiler (acc),
which is required for use with Cyclone, is also recommended for genlnterface.

By default, genlnterface searches for the acc compiler. If thisis not correct for your
environment, update the information following the compiler keyword, as follows:

conpi l er gcc

cflags

The-DLM_HW_DEBUG and -DLM_HW_PIN_DEBUG flags create a special, debug
version of the Cyclone interface. By default, these options are always commented out
(preceded by a#). There is no need to enable these options unless you are requested to
do so by the Synopsys Technical Support Center.

linker and Iflags

By default, geninterface uses the |d linker with the flags specified in each platform-
dependent setup file. If you choose to use another linker, contact the Synopsys Technical
Support Center. For instructions, refer to “Getting Help” on page 16.

Cyclone geninterface Processing

This section describes how genlnterface processes input Shell Software to create the
VHDL shell needed by Cyclone. Note that genlnterface ignores .NAM files when
processing pin names.

April 2002 Synopsys, Inc. 187

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Rules for Signal Renaming

Because certain characters and keywords are permitted in Shell Software pin names but
areillegal asVHDL signal names, genlnterface must convert these signal namesin order
to generate correct VHDL. The rules that genlnterface uses to map the signal namesto
legal values are explained in the following sections.

The following rules are applied by default. You can explicitly specify the mapping for
any signal name by using the pin_name_ovr statement in the genlnterface setup file, as
described in “Overwriting Pin Names Per Model” on page 182.

Renaming Buses

The genlnterface program sorts all pinsin ascending order. Groups of pins having the
same basename are combined into buses. If part of the busisin adifferent mode (for
example, inout and out), then the busis split by mode, and the basenames are made
unique.

For example, consider the following bus, described in the Shell Software:

out _pin

A 21:12] = 110, 109, 108, 107 106, 105, 104, 103, 99, 98
io_pin

A 11: 6] = 97, 96, 95, 94, 93, 92

Al 29: 22] = 119, 118, 117, 116, 115, 114, 113, 112

Thisis converted as followsin the generated VHDL file:

A : INQUT std | ogic_vector(1l dowto 6);
AA ;. QUT std | ogic_vector(21 dowto 12);
AB : I NQUT std | ogic_vector(29 downto 22);

Replacing Special Characters

Cyclone alows only aphanumeric characters and underscores (_) in the generation of
valid signal names. Hardware model Shell Software allows special characters such as
dlash (/), asterisk (*), minus (-), and underscore ().

The genlnterface program follows the conversion rules specified in Table 21.
Table 21: Rules for Special Character Mapping

Conversion when
Character in Shell | Conversonwhenat| appearing within | Conversion when at
Software beginning of name name end of name
Slash (/) SL_ _SL_ _SL
Star (*) ST _ST_ _ST
Minus (-) NE _NE_ _NE
188 Synopsys, Inc. April 2002

Simulator Configuration Guide

Table 21: Rules for Special Character Mapping (Continued)

Conversion when
Character in Shell | Conversonwhenat| appearing within | Conversion when at
Software beginning of name name end of name
Underscore () UN_ _ (no conversion) _UN
Any other special Random Random Random
character aphanumeric a phanumeric a phanumeric

Chapter 9: Using Cyclone with Synopsys Models

For every generated name, genlnterface then compares the name with the present list of
names. If there is a match, arandom string is added at the end of the name until itis
unique.

The following examples illustrate how genlnterface converts existing Shell Software
names in the generated VHDL file.

'-CS is converted to: NE _CS
'-BMD/ BYTE' is converted to: NE_BMD_SL_BYTE
'DT/-R is converted to: DT_SL_NE R

'-TOUT2/-1R@'is converted to: NE_TOUT2_SL_NE_| RQ®B
"1 094 _- RCLK - BUSY/ RDY'is converted to:1 04 _NE_RCLK_NE_BUSY_SL_RDY

Keyword Replacement

Certain VHDL keywords cannot be used as signal names (for example, IN, OUT,
PROCESS). The genlnterface program scans the list of signal names replaces
disallowed keyword is found, that name is replaced by S_keyword. If another signal
aready exists by this name, arandom string is appended to the end of the present signal
name.

For example, the Shell Software notation:
IN[6: 1]
would be converted as follows:

SIN: INstd |logic_vector(6 downto 1);

189

April 2002 Synopsys, Inc.

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

190 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

10

Using Leapfrog with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Leapfrog. The procedures are organized into the following major
sections:

« “Setting Environment Variables’ on page 191

« “Using SmartModels with Leapfrog” on page 193

« “Using FlexModels with Leapfrog” on page 194

« “Using MemPro Models with Leapfrog” on page 194
« “Using Hardware Models with Leapfrog” on page 197

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, asfollows:

% setenv LMC HOVE path_to_nodel s_install ation

April 2002 Synopsys, Inc. 191

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

; Caution

192

2. SettheLM_LICENSE _FILE or SNPSLMD_LICENSE FILE environment variable

to point to the productauthorization file, as shown in the foll owi ng example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpsimd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _install _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

. Set the CDS_VHDL variableto the location of your Leapfrog installation and make

sure that Leapfrog is set up properly in your environment.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in 3LMC_HOME, as shown in the following examples:
Solaris:

% set env LD LI BRARY _PATH $LMC HOME/ | i b/ sun4Sol aris. | i b: $LD LI BRARY PATH
Linux;

% set env LD LI BRARY PATH $LMC_HOME/ | i b/ x86_1 i nux. | i b: $LD_LI BRARY PATH
AlX:

% set env LI BPATH $LMC HOVE/ | i b/ i bnrs. | i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC HOME/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

Using SmartModels with Leapfrog

To use SmartM odels with Leapfrog, follow this procedure:

1. To build the SmartModel interface, first cd to the lib directory in the Cadence tree
and execute the IfsmGen command:

%cd $CDS VHDL/li b
% | f snEn

This step produces aliblfsm.so.1.1 file on SunOS, liblfsm.so on Solaris, liblfsm.dl
on HP-UX, and liblfsm.aon Al X.

2. To build the VHDL libraries needed to simulate with SmartM odels, cd to the
$CDS VHDL/bin directory and execute the IfsmLibPckGen command:

% cd $CDS VHDL/ bin
% | f srLi bPckGen

This step produces alfsmLibPck file.

3. Determine where you want the SmartModel VHDL librariesto go and cd to that
location. Then execute the IfsmLibPck you built in the previous step.

% | f snii bPck

This step can take 30 minutes or more. When the process completes you get the
following two VHDL files that you need to analyze in LeapFrog:

« SMILibrary.vhd
» SMpackage.vhd

The SMILibrary.vhd file contains entity-architecture pairs for all SmartModelsin
your 3LMC_HOME tree. These include the generics used to configure SmartM odel
SWIFT parameters.

Note that SmartModels are identified as follows:

attribute FOREI AN of SmartModel : architecture is
“LFSM LFSnar t Mbdel s”;

The SMpackage.vhd file contains component declarations for the SmartModels.
You must specify required SWIFT parametersfor every generic in acomponent that
you want to simulate within Leapfrog. For more information on required SWIFT
parameters, refer to “Using SmartModels with SWIFT Simulators’ on page 20.

April 2002 Synopsys, Inc. 193

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

; Caution

On the HP platform all users must use the same $LMC_HOME in order to
prevent erroneous simulation results or fatal simulation errors. This
precaution is necessary because the IfsmGen command modifies the
liblfsm.dl fileto require SLMC_HOME, and on the HP platform the
liblfsm.dl file references an absolute path name to libswift.dl, the SWIFT
library. When the absol ute path name is not the same as the user’s
$LMC_HOME, theresult is the loading of two different versions of
libswift.dl during the simulation.

Using FlexModels with Leapfrog

To use Leapfrog with FlexModels, follow the same steps laid out for SmartModels in
“Using SmartModels with Leapfrog” on page 193. On Leapfrog, you use FlexModels
with C-only Command Mode. For information on the required SWIFT parameters for
FlexModels (which differ from regular SmartModels) and how to use C-only Command
Mode, refer to “Using FlexModels with SWIFT Simulators’ on page 26.

Using MemPro Models with Leapfrog

To use MemPro models with Leapfrog, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, you need
to perform this step in order to combine your shared library with the MemPro FMI
shared library.

C?V)Q Attention
If you do not build your own FMI library, skip to Step 3.

Leapfrog binds in only one shared FMI library at runtime. If your design uses FMI,
you need to build anew FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX
$LMC_HOVE/ | i b/ hp700. lib/libfm _ar.a
Solaris

$LMC_ HOWH |'i b/ sund4Sol aris.lib/libfm_ar.a

194 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

You must create a new archive that includes the MemPro archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in “Foreign Model Integration” in the Cadence Leapfrog C Interface User
Guide.

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmlib. h>

ext ern fm Model Tabl eT Qoi peModel Tabl e;
extern fm Model Tabl eT nyFM Tabl e;

fmLibraryTabl eT fmLibraryTable = {
{" Cpi pe", i peMdel Tabl e},

{"nyFM i b", nyFM Tabl e},

{o, 0}

i
Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructions in the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.awith the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a

HP-UX

% /bin/cc -D NOPROTO -c +Z -1$CDS_WHDL/ i ncl ude new FM _tabl e. c
%/bin/ld -b -0 libfn.sl new FM _table.o your_archive.a \
$LMC HOME/ | i b/ hp700. 1ib/libfm _ar.a

Solaris

% / opt / SU\Vpr o/ bin/cc -c -KPIC -1$CDS VHDL/ i ncl ude new FM _table.c
% / opt/ SU\Vgpro/bin/cc -G-o |ibfm.so new FM _table.o \
your _archive.a $LMC HOW/ i b/sund4Sol aris.lib/libfm _ar.a

2. Set up the library search path to locate the MemPro shared library.

& Attention
You must add the MemPro shared library to the beginning of your
SHLIB_PATH or LD_LIBRARY _PATH contents. If the MemPro shared
library is added to the tail of the path list, the library search order will be
incorrect and Leapfrog will not simulate properly.

HP-UX
% set env SHLI B_PATH $LMC_HOVE/ | i b/ hp700. | i b: $SH.I B_PATH

April 2002 Synopsys, Inc. 195

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

Solaris

% setenv LD LI BRARY PATH \
$LMC_HOVE/ 1 i b/ sundSol ari s. | i b: $LD LI BRARY_PATH

3. Create m_lib and work directories:

%nkdir ./slmlib
% nkdir ./work

4. Create the logical to physical mapping for the sSim_lib and work libraries by
modifying your cds.lib file, adding the following lines:

define simlib ./sImlib
define work ./work

5. Compile the MemPro VHDL filesinto your Sim_lib library:

%cv -wslmlib $LMC_ HOW si i | eapfrog/ src/ sl mhdl c. vhd
%cv -wslmlib $LMC HOW si nl | eapfrog/ src/ menpr o_pkg. vhd
%cv -wslmlib $LMC HOW si nl | eapfrog/ src/ rdramd_pkg. vhd

Compiling the rdramd_pkg.vhd is only required if you are going to use MemPro
RDRAM models.

6. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% cv -w work nymem vhd
7. Add LIBRARY and USE statements for the silm_lib within your testbench code:

LI BRARY SLM LI B;
USE SLM LI B. menpr o_pkg. al | ;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

8. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer
to" Instantiating MemPro Models’ on page 34. For information on message levels
and message level constants, refer to “ Controlling MemPro Model Messages’ on

page 35.
9. Compile your testbench into your work library as shown in the following example:
%cv -w work testbench. vhd
10. Elaborate your design as shown in the following example:
% ev testbench _configuration
11. Invoke the Leapfrog simulator as shown in the following example:

% sv testbench _configuration

196 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

Using Hardware Models with Leapfrog

To use hardware modelswith Leapfrog, follow this procedure. For the latest information
on supported features, refer to the Cadence documentation.

1.

Make sure Leapfrog is set up properly and all required environment variables are
set, as explained in “ Setting Environment Variables” on page 191.

. Add the hardware model install tree to your path variable, as shown in the following

example:
% set path=(/install/sns/bin/platform S$path)

. Run the install.sh script so that the hardware models option is turned on and the

LMlibrary.vhd, LMpackage.vhd, and LMproc.vhd are created. Also make surethe
cds.lib file points to the correct libraries, including LM SFI, which islocated in the
install area.

. Create your own library directory for filesthat will be generated for the hardware

model. In the Leapfrog Notebook, you can set up the directory so that the library
files get placed in there by using the Library menu.

. Generate a custom Leapfrog simulator executable (sv) to work with the hardware

model and imported Verilog model. Thisisdonein theinstall.sh. Theinstal
generates a new svvlog.exe. When this compl etes, you are ready to run using the
custom sv executable.

Leapfrog Example with TILS299 Hardware Model

The following example uses the TIL S299 hardware model to show how to set up
hardware models for use with Leapfrog:

1. Create atestbench to instantiate the hardware model (for example,

TB_TILS299.vhd).

2. Invoke Leapfrog. This brings up the Notebook window, where you can compile,

elaborate, and simulate your VHDL testbench. Type “leapfrog&”.

3. In the Notebook window, select your .vhd testbench file and click on the compile

button.

4. Once compiled, use the Unit menu and select elaborate. Fill inthe Design Unit with

your compiled information and fill the snapshot with SIM. For example, mywork is
the directory specified to place compiled work, so we use mywork. TB.TIL S299.

5. To simulate, select ssmulate from the Unit menu and fill in the information for

simulating in the snapshot line. For example: mywork.th_tils299:test/sim. This
syntax can also be found at the end of the elaborate.

April 2002 Synopsys, Inc. 197

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

6. To see waveforms, use the simulator window to select Tools > Navigator. When you
select the hardware model instance in the subscopes, the signal pins come up in the
Object window. Select all the signals to be traced in the waveforms and right-click
to select Set trace simple.

7. Go back to the simulator window and select Tools > Waveview. When the cwaves
window comes up with al your signal pins, click on run on the simulator window to
simulate.

Leapfrog Utilities
The following hardware modeler smulator commands are supported in Leapfrog:
Im_log_test vectors (* instance_name”, 1/0, “ filename”);
enables (1) or disables (0) vector logging for hardware models.
Im_timing_measurements (“ instance_name” , 1/0, “ filename”);
Enables (1) or disables (0) timing measurements for hardware models.
Im_enable_timing_checks ([device_name(s)....])
Enables timing checks for hardware models.
Im_disable timing_checks ([device_name(s)....])
Disables timing checks for hardware models.
Im_unknowns (“ option=value’ ,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

« propagate=yes/no

« vaue=previous/high/low

« Seguence_count=0-20

« random_seed=0-65535

« device or_pin
Im_loop_instance ([instance_name));

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

Im_pam_shortage(* actions=save/sleep/finish/free/suspend/drop_faults’,

"deep_minutes=n, “deep_count=n", “save file=filename”);

198 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

L ets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

Im_pattern_history ([device_name(s)....])
Saves the pattern memory for a private device instance.

Examples

You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an Im_procedure call.

Example call from VHDL code:

Variable ret : Natural;

ret :=Imlog test vectors(":ULl",1,"UL VEC');
wait for 800 ns;
ret :=Imlog test vectors(":UL",O0,"UL VEC');

Example invocation from the debugger prompt with Im_procedure call:
>call Imlog_test vectors(UL 1, UL. VEQ

April 2002 Synopsys, Inc. 199

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

200 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

11

Using NC-VHDL with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, and MemPro models with
NC-VHDL. The procedures are organized into the following major sections:

« “Setting Environment Variables’ on page 201

« “Using SmartModels with NC-VHDL” on page 202

« “Using FlexModels with NC-VHDL"” on page 204

« “Using MemPro Models with NC-VHDL” on page 207
« “Using Hardware Models with NC-VHDL"” on page 209

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel, FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC HOME path_to _nodel s_installation

2. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

April 2002 Synopsys, Inc. 201

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

You can put license keys for multiple products (for example, FlexModels and
MemPro models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

3. Make sure that NC-VHDL is set up properly in your environment. See the NC-
VHDL Smulator Configuration Guide for details.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in 3LMC_HOME, as shown in the following examples:

Solaris:
% set env LD LI BRARY PATH $LMC HOME/ | i b/ sun4Sol ari s. 1i b: $LD LI BRARY PATH
Linux;

% set env LD LI BRARY PATH $LMC_HOME/ | i b/ x86_I i nux. | i b: $LD_LI BRARY PATH
AlX:

% set env LI BPATH $LMC HOVE/ | i b/ i bnrs. | i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC _HOME/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

Using SmartModels with NC-VHDL

To use SmartModels with NC-VHDL, follow this procedure:

1. Add the following line to your cds.lib file to specify the logical library sm_library
for SmartModels, as shown in the following example:

DEFINE smlibrary ./smlibrary

2. Run the ncshell utility to generate a wrapper for the model that you want to use, as
shown in the following example:

%ncshell -inport swift into vhdl nodel -work smlibrary

202 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

This step produces awrapper file (model.vhd) and a component declaration
(model _comp.vhd) for the specified model in the sm_library work directory.

If you want to generate wrappers for all SmartModelsin your SLMC_HOME tree,
add the -all switch to the ncshell invocation. In this case, ncshell creates onefile
(shell.vhd) that contains al the model wrappers and another file (component.vhd)
that contains the component declarations.

Q7 Hint
NC-VHDL also works with wrappers created for Leapfrog. If you want to
reuse SmartModel wrappers created for Leapfrog, use ncvhdl to recompile
the SMLibrary.vhd and SMpackage.vhd files. For more information on
using SmartModels with Leapfrog, refer to “Using SmartM odels with
Leapfrog” on page 193.

3. Add LIBRARY and USE statements to your testbench:

library smlibrary;
use smlibrary. conponent.all;

4. Instantiate SmartM odelsin your design using the wrapper filesthat you generatedin
Step 2. For information on required configuration parameters and instantiation
examples, refer to “Using SmartModels with SWIFT Simulators’ on page 20.

5. Compile the other VHDL filesinto the work library, as shown in the following
example:

% ncvhdl -w work testbench. vhd
6. Elaborate your design as shown in the following example:
% ncel ab cf gt est

7. If you are using any SmartCircuit modelsin your design, set the LMC_TIMEUNIT
environment variable to -12 for 1 ps resolution, as shown in the following example:

%setenv LMC TIMEINT -12

This sets aglobal timing resolution for all SmartModels in your ssmulation. If this
variable is not set, the default timing resolution is 100 ps, which is the resolution
used by most SmartModels. To see if amodel is a SmartCircuit model, refer to the
model datasheet. For more information on the LMC_TIMEUNIT environment
variable, refer to the Cadence documentation for NC-VHDL.

8. Invoke the NC-VHDL simulator on your design as shown in the following example:

% ncsi m desi gn

April 2002 Synopsys, Inc. 203

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

Using FlexModels with NC-VHDL

To use FlexModels with NC-VHDL, follow this procedures:

R(d
@Q Attention

204

1. If you have built your own Foreign Model Interface (FMI) shared library or you

have another third party FMI, perform this step.

If you do not build your own FMI library, skip to Step 2.

NC-VHDL bindsin only one shared FMI library at runtime. If your design uses
FMI, you need to build anew FMI shared library that contains your library and the
FlexModel library. A FlexModel archive library can be found at:
HP-UX

$LMC_HOVE/ | i b/ hp700. lib/libfm _ar.a
Solaris

$LMC HOVE/ | i b/ sun4Sol aris. lib/libfm _ar.a

You must create anew archive that includes the FlexModel archive, library tablefile
declaration object file, and your archive. Detailed instructions for this process can
be found in the “ Foreign Model Integration” chapter of the Affirma NC VHDL
Smulator C Interface User Guide.

As shown in the following example, you must combine the contents of the
FlexModel library table file with your own FMI application library table. If you do
not have atable, create a new C file that contains the information shown bel ow.

#include <fmlib. h>

ext ern fm Model Tabl eT Qoi peModel Tabl e;

fmLibraryTabl eT fmLibraryTable = {
{" Cpi pe", i peMdel Tabl e},

{o, 0}

I

For our example we will call this C file, new_FMI_table.c.

If you already have afile defining fmiLibraryTable, include these two lines at the
appropriate locations in the C file:

ext ern fm Model Tabl eT Qoi peModel Tabl e;
{" pi pe", Qi peMdel Tabl e},

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

Link the FlexModel archive library with the new library table object file and any
other FMI application object files you wish to include, following the instructionsin
the Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
FlexModel libfm_ar.awith the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a
HP-UX

% /bin/cc -D NOPROTO -c +Z -1$CDS_WHDL/ i ncl ude new FM _table. c
%/bin/ld -b -0 libfn.sl new FM _table.o your_archive.a \
$LMC HOME | i b/ hp700. 1ib/libfm _ar.a

Solaris

% / opt / SU\Vépr o/ bin/cc -c -KPIC -1$CDS VHDL/ i ncl ude new FM _table.c
% / opt/ SU\Vgpro/bin/cc -G-o |ibfm.so new FM _table.o \
your _archive.a $LMC HOWE/ i b/sun4Sol aris.lib/libfm _ar.a

2. Add the following lines to your cds.lib file:

define simlib simlib_path
define work work_lib_path

3. Generate a VHDL wrapper file for the model by invoking ncshell, as shown in the
following example:

% ncshell -inport swift -into vhdl rodel fx -noconpile -work simlib

4. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:

% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 22 describes the FlexModel NC-VHDL interface and
example files that the flexm_setup tool copies.

Table 22: FlexModel NC-VHDL Files

File Name Description L ocation

model _pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.

model _user pkg.vhd | Clock frequency setup and user workdir/src/vhdl/
customizations.

model_fx_comp.vhd | Component definition for use with the model | workdir/examples/vhdl/
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS’
when compiled.

April 2002 Synopsys, Inc. 205

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

Table 22: FlexModel NC-VHDL Files (Continued)

File Name Description L ocation

model.vhd A bus-level wrapper around the SWIFT model. | workdir/examples/vhdl/
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the *“COMPONENTS’ package has been
installed in the logical library “dm_lib”.

model_tst.vhd A testbench that instantiates the model and wor kdir/examples/vhdl/
shows how to use basic model commands.

5. Update the clock frequency supplied in the model _user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup thisfileislocated in:

wor kdi r/ src/vhdl / model _user_pkg. vhd
where workdir is your working directory.

6. Create alogical library named slm_lib. The default physical library mapping for this
is$LMC_HOME/sim/simulator/lib; however, you can put the physical library
anywhere you want.

7. Add LIBRARY and USE statements to your testbench:

library simlib;

use slmlib. flexnodel pkg.all;
use sl mlib. nodel pkg.all;

use sl mlib. model _user_pkg.all;

For example, you would use the following statement for the tms320c6201 fx
model:

use slmlib.tns320c6201_pkg. al | ;
use slmlib.tns320c6201_user_pkg. al | ;

8. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the exampl e testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
bit-blasted wrapper generated in Step 2 (model _fx.vhd) using ncshell.

Example using bus-level wrapper (model.vhd) without timing:

UL: nodel
generic map (Fl exModel I D => “TM5_| NST1")
port map (nmodel ports);

206 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

Example using bus-level wrapper (model.vhd) with timing:

UL: nodel
generic map (Fl exModel I D => “TM5_| NST1”,
Fl exTi m ngvbde => FLEX_TI M NG MCDE_ON,
TimngVersion => “timngversion”,
Del ayRange => “range”)
port map (nodel ports);

9. Compile the FlexModel VHDL filesinto logical library sm_lib as follows:

%ncvhdl -wslmlib $LMC HOW si i ncvhdl / src/ sl m hdl c. vhd

% ncvhdl -w slmlib $LMC HOWH si mi ncvhdl / src/ f| exnodel _pkg. vhd
% ncvhdl -w sl mlib workdir/src/vhdl /model _user_ pkg. vhd

% ncvhdl -w sl mlib workdir/src/vhdl /model _pkg. vhd

% ncvhdl -w sl mlib workdir/exanpl es/ vhdl / nodel _fx_conp. vhd

% ncvhdl -w slmlib nodel fx.vhd

% ncvhdl -w sl mlib workdir/exanpl es/ vhdl / nodel . vhd

% ncvhdl -w wor k t est bench

10. Elaborate your design as shown in the following example:

% ncel ab cf gt est
11. Invoke the NC-VHDL simulator as shown in the following example:

% ncsi m desi gn

Using MemPro Models with NC-VHDL

To use MemPro models with NC-VHDL, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, perform
this step.

&) Attention
If you do not build your own FMI library, skip to Step 2.

NC-VHDL bindsin only one shared FMI library at runtime. If your design uses
FMI, you need to build anew FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX

$LMC_HOVE/ | i b/ hp700. lib/libfm _ar.a
Solaris

$LMC HOVE/ | i b/ sundSol aris.lib/libfm _ar.a

April 2002 Synopsys, Inc. 207

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

208

You must create a new archive that includes the MemPro archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in the “ Foreign Model Integration” chapter of the Affirma NC VHDL
Smulator C Interface User Guide.

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmlib. h>

ext ern fm Model Tabl eT Qoi peModel Tabl e;
extern fm Model Tabl eT nyFM Tabl e;

fmLibraryTabl eT fmLibraryTable = {
{" Cpi pe", Opi peMddel Tabl e},

{"nyFM i b", nyFM Tabl e},

{o, 0}

i
Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructions in the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.awith the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a

HP-UX

% /bin/cc -D NOPROTO -c +Z -1$CDS_VWHDL/ i ncl ude new FM _tabl e. c
%/bin/ld -b -0 libfn.sl new FM _table.o your_archive.a \
$LMC HOME/ | i b/ hp700. 1ib/libfm _ar.a

Solaris

% / opt/ SUN\Vépro/ bin/cc -c -KPIC -1$CDS_VHDL/ i ncl ude new FM _table. c
% / opt/ SU\Vgpro/bin/cc -G-o |ibfm.so new FM _table.o \
your _archive.a $LMC HOW/ i b/sund4Sol aris.lib/libfm _ar.a

. Create dm_lib and work directories:

%nkdir ./slmlib
% nkdir ./work

. Create the logical to physical mapping for the km_lib and work libraries by

modifying your cds.lib file, adding the following lines:

define simlib ./sImlib
define work ./work

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

4. Compile the MemPro VHDL filesinto your skm_lib library:

% ncvhdl -w slmlib $LMC HOW si mi ncvhdl / src/ sl m hdl c. vhd
% ncvhdl -w slmlib $LMC HOWEH si mi ncvhdl / src/ menpr o_pkg. vhd
% ncvhdl -w slmlib $LMC HOWEH si mi ncvhdl / src/ rdrand_pkg. vhd

Compiling the rdramd_pkg.vhd is only required if you are going to use MemPro
RDRAM models.

5. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% ncvhdl -w work nymem vhd
6. Add LIBRARY and USE statements for the silm_lib within your testbench code:

LI BRARY SLM LI B;
USE SLM LI B. menpr o_pkg. al | ;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

7. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer
to" Instantiating MemPro Models’ on page 34. For information on message levels
and message level constants, refer to “ Controlling MemPro Model Messages’ on

page 35.
8. Compile your testbench into your work library as shown in the following example:
% ncvhdl -w work testbench. vhd
9. Elaborate your design as shown in the following example:

% ncel ab testbench_configuration
10. Invoke the NC-VHDL simulator as shown in the following example:

% ncsi mtestbench _configuration

Using Hardware Models with NC-VHDL

To use hardware models with NC-VHDL, follow this procedure. For the latest
information on supported features, refer to the Cadence documentation.

1. Make sure NC-VHDL is set up properly and all required environment variables are
set, as explained in “ Setting Environment Variables” on page 201.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/platform $path)

April 2002 Synopsys, Inc. 209

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

3. Create your own library directory for filesthat will be generated for the hardware

model.
4. Run the ncshell command to generate .vhd wrapper files, as shown in the following
example:
% ncshell -inport Insfi -into vhdl nodel s/ TILS299/ Tl LS299. MOL

You can aso use the -all switch to create .vhd files for multiple hardware models.

NC-VHDL Example with TILS299 Hardware Model

The following example uses the TIL S299 hardware model to show how to set up
hardware models for use with NC-VHDL:

1. Create atestbench to instantiate the hardware model (for example
TB_TILS299.vhd).

2. Run ncvhdl to compile your .vhd files, as shown in the following example:
% ncvhdl Tl LS299. vhd TI LS299 conp. vhd TB_TI LS299. vhd

3. Elaborate the design, as shown in the following example:
% ncel ab -nessages work.tb til s299:test

4. Invoke the NC-VHDL simulator, as shown in the following example:

%ncsim-gui work.tb tils299:test

NC-VHDL Utilities

The following hardware modeler simulator commands are supported in NC-VHDL.:
Im_log_test_vectors (* instance_name”, 1/0, “ filename”);

Enables (1) or disables (0) vector logging for hardware models.
Im_timing_measurements (“ instance_name’ , 1/0, “ filename”);

Enables (1) or disables (0) timing measurements for hardware models.
Im_enable_timing_checks ([device_name(s)....])

Enables timing checks for hardware models.

Im_disable_timing_checks ([device_name(s)....])

Disables timing checks for hardware models.

Im_unknowns (“ option=value’ ,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

210 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

« propagate=yes/no

« vaue=previous/high/low

« Seguence_count=0-20

« random_seed=0-65535

« device_or_pin
Im_loop_instance ([instance_name));

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

Im_pam_shortage(* actions=save/sleep/finish/free/suspend/drop_faults’,

"deep_minutes=n, “deep_count=n", “save file=filename”);

Lets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

Im_pattern_history ([device_name(s)....])
Saves the pattern memory for a private device instance.

Examples

You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an Im_procedure call.

Example call from VHDL code:

Variable ret : Natural;

ret :=Imlog test vectors(":UL",1,"UL VEC");
wait for 800 ns;
ret :=Imlog test vectors(":Ul",O0,"UL VEC');

Example invocation from the debugger prompt with Im_procedure call:

%ncsink call Imlog test vectors : W0 1 299. VEC

April 2002 Synopsys, Inc. 211

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

212 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

12

Using QuickSim Il with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, and hardware models with
QuickSim 1. The procedures are organized into the following major sections:

« “Setting Environment Variables’ on page 213
« “Using SmartModels and FlexModels with QuickSim I1” on page 215
« “Using Hardware Models with QuickSim I1” on page 240

175> Note
MemPro models are not supported on QuickSim I1.

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOME path_to _nodel s_installation

2. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE path_to_product _authorization file
% setenv SNPSLMD LI CENSE FI LE path_to_product _authorization file

April 2002 Synopsys, Inc. 213

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

3. Set MGC_HOME to the location of your Mentor installation and make sure
QuickSim 11 is set up properly in your environment.

% setenv M3C HOMVE path_to_Mentor_installation

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install_path/sns/Imdir
% setenv LM LI B hardware_rnodel _install _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variabl e setting accordingly.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in 3LMC_HOME, as shown in the following examples:

Solaris;

% setenv LD LI BRARY PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% set env LD _LI BRARY_PATH $LMC_HOVE/ 1 i b/ x86_I i nux. | i b: $LD LI BRARY_PATH

AlX:

% set env LI BPATH $LMC_HOME/ | i b/ i bnrs. | i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC_HOME/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pent.lib isin the Path user variable.

214 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Using SmartModels and FlexModels with
QuickSim Il

This section explains how to use SmartModels and FlexModels with QuickSim I1. To
use FlexModel s with QuickSim 11, you use C-only Command Mode. For information on
C-only Command Mode, refer to “Using FlexModels with SWIFT Simulators’ on

page 26. Therest of this section explains required installation steps and how to use
model symbolsin the schematic capture front-end to the simulator. Thisinformation is
organized in the following major subsections:

Installing the QuickSim Il SWIFT Interface

Synopsys shipsthe part of QuickSim |1 that communi cates with the SWIFT interface for
versions of QuickSim Il prior to the D.1 release. If you are using aversion of QuickSim
Il prior to D.1, you must install the Mentor Graphics application software for each
Mentor Graphics user tree.

) Attention
Beginning with version D.1 of QuickSim Il, Mentor Graphics assumed
responsibility for their integration of the SWIFT interface. If you are using
version D.1 or higher, refer to the Mentor Graphics documentation for
information about using SWIFT.

Every timeyou install or update Mentor Graphics application software, you must create
auser tree for the SWIFT SmartModel Library. Use the MGC install tool to create
duplicate Mentor Graphics user trees. User treestypically require between 10-20 MB of
disk space. For questions about creating Mentor Graphics user trees, refer to the Mentor
Graphics documentation. Follow these steps:

1. If you are using aversion of QuickSim Il prior to D1, for each Mentor Graphics
home directory (user or master tree) that requires access to the SWIFT interface,
execute the following command:

UNIX
% $LMC_HOVE/ bi n/ ngc_i ns - m $M3C_ HOME -1 $LMC_HOME
NT

You will be running amkns shell in the MGC environment; for more information on
the mkns shell, refer to Mentor Graphics QuickSim |1 documentation.

April 2002 Synopsys, Inc. 215

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

In the Control Panel, set the following drivesto the appropriate system environment
variables:

DR VE: /port LMZ HOME
DR VE /port M3C HOVE

2. Add “$LMC_HOME” followed by a blank line to your location map file.

3. Add SmartModel Library Menus to Design Architect. Normally, as part of
installation, the Admin tool automatically adds SmartModel menus to Design
Architect for the models you installed. Use the instructions in this section to add the
SmartModel menus only if, after installation, you do not find SmartModel menu
entries under the Design Architect “Libraries’ pull-down menu. To include
SmartModel menu selections in the Design Architect (DA) menus, follow these

steps:

a. Set the AMPLE_PATH environment variable. If this variable already exists, use
one of these commands as appropriate:

UNIX

% set env. AVPLE_PATH ${ AWPLE PATH} : $LMC_ HOME/ speci al / gsi mi nenus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/specia/qsim/menus/des _arch.”

NT
DRIVE:/path_to_menus/

b. If the AMPLE_PATH environment variable does not exist, use one of these
commands as appropriate:

UNIX

% set env. AVPLE_PATH $LMC_HOWE speci al / gsi ni menus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/special/gsim/menus/des_arch.”

NT
DRIVE:/path_to_menus/
4. Generate the menus as shown in the appropriate example:
UNIX
% $LMC_HQOWE/ bi n/ ngc_menu. pl
NT
> LMC_HOMVERA bi n\ ngc_nenu. cnd

216 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Menu entries are created for the models that you have installed. If menu entries are
missing for models you believe you have in your library, use the Admin tool to verify
your installed models. If you change your model installation, rerun mgc_menu to update
the menu to reflect the new model list.

After successful menu activation, the “Libraries’ pull-down menu of the Schematic
Editor contains an entry for “Logic Modeling SmartModel Library.” If you have
SimuBus models installed, the pull-down menu also contains an entry for “Logic
Modeling SimuBus Products.”

Using SmartModels/FlexModels with QuickSim Il

This chapter provides information about using SmartModels (including FlexModels)
with Mentor Graphics (MGC) tools. Thisinformation is organized in the following
major sections:

« Schematic Capture
« Logic Simulation
« Custom Symbols

Schematic Capture

Adding a SmartModel Library model to a design schematic involves identifying the
desired symbol, instantiating it, and then editing its properties as necessary. Synopsys
supplies acomplete Schematic Editor menu system in the QuickSim |1 environment that
you can use to identify and instantiate a component. You can also instantiate symbols
from the command line and edit property values interactively using Design Architect.
This chapter provides information about both approachesto building adesign, following
an introductory discussion of the symbols and their properties.

For more information about Design Architect and the Schematic Editor, refer to the
Mentor Graphics documentation.

Symbols

Synopsys provides symbols representing default package pinouts for each SmartM odel.
Some models have more than one symbol associated with them. Thisistruefor:

« Models of smplelogic gates, which are supplied with DeM organ equivalent
negative logic symbolsin addition to standard symbols

« Modelsthat offer both pin and bus symbols

For information about symbol compatibility with different versions of the Design
Architect software, refer to the SmartModel Library Release Notes.

April 2002 Synopsys, Inc. 217

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Pin and Bus Symbols

For many high pin-count parts, you get pin and bus symbols. Bus symbols may be more
convenient to use than their pin equivalents, because they take up lessreal estate on the
schematic and are easier to connect and to read. Figure 12 illustrates the differences

between pin and bus symbols.

Pir Syrnbal Buz Symbol
LI EMs 222NN 08 n e agen s I
SR EEERE, AR L]
g 3333333333 & ICBE100-20
s Bifas BUE
L Bafer —{ a1 CA[31:2)
i 23 —|CR(1:0) CEAS [~
e e CFETCH |-
ik A D{a1:0) DA[a1:2) |-
fieie i A — DR D8 =
i e ez DRAV —
ot B3l DL OCK [
Bt @b —NT DEE(z:0) |—
E’E :;’J‘" "2 RET
A e —PCE ERR —
e il — PLLEN
S it - Cik
NULL_PINFILE

Figure 12: Sample Pin and Bus Symbols

Symbol Properties

Assigning specific values to symbol properties completes the definition of a
SmartModel. The properties used on the symbols provided for the Mentor Graphics
Design Architect environment include:

« Symbol properties used by SWIFT interface models
« Symbol properties required for smulation
« Optiona symbol properties

218 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

You can edit symbol property values either with the Schematic Editor pop-up menu or
by using the QuickSim Il CHANGE TEXT VALUE command. These properties are
hidden or visible depending on the visibility attributes selected by your library manager.
Figure 13 illustrates the positions of the visible properties on a symbol supplied by
Synopsys.

U?«———REF

TIMING o 7 s poe s
Wersion
DIF +—

4o [l i

Ph

Pl —s 5 A0
§— 4 ¢
Faz
84z
- a4
i Af
o Af
i3 AT
id—AS
iAo

s pase— PIN_NAME
fE]cAs
2L WRITE e CORP

L_TCSE(r0s-5

i mceryr =——— MilemoryFile

Figure 13: Visible Symbol Properties

Symbol Properties used by SWIFT Models
Table 23 lists symbol properties that are used by SWIFT interface models.
Table 23: Symbol Properties used by SWIFT Models

Property Description

TimingVersion | Timing version to use with amodel. Any value
assigned to the TimingVersion property must be a
valid timing version for that model.

MemoryFile | Nameand path of a memory image file.

April 2002 Synopsys, Inc. 219

Chapter 12: Using QuickSim Il with Synopsys Models

Simulator Configuration Guide

Table 23: Symbol Properties used by SWIFT Models (Continued)

Property

Description

PCLFile Name and path of a compiled PCL file.

JEDECFile Name and path of a JEDEC fuse map file.

SCFFile Name and path of an MCF file for SmartCircuit
models.

T3> Note

FlexModels use aslightly different set of symbol properties. For information
on the required configuration properties for FlexModels, refer to “Using
FlexModels with SWIFT Simulators’ on page 26.

You can use either an absolute or relative path name to point to afile. If you usea
relative path name it is resolved relative to the value of SMGC_WD.

Symbol Properties Required for Simulation
Table 24 lists symbol properties that are required for simulation.
Table 24: Symbol Properties Required for Simulation

Property

Description

MODEL

The MODEL property containsalabel registered as
type “SWIFT”.

PIN

Logic simulation requiresthat each pin on asymbol
have a property. A PIN property has two values
associated with it:

« User pin name
« Compiled pin name

You can change the user pin name to adhere to
drafting standards, but you must not change the
compiled pin name.

PINTY PE

Each model pin has an associated PINTY PE
property, which describes the pin entry point type
(i.e, IN, OUT, IXO, or 10). QuickSim Il requires
this property.

SWIFT_TEMPLATE

The SWIFT_TEMPLATE property always has a
value that specifiesthe model name. This property
cannot be changed.

220

Synopsys, Inc.

April 2002

Simulator Configuration Guide

Table 24: Symbol Properties Required for Simulation (Continued)

Chapter 12: Using QuickSim Il with Synopsys Models

Property

Description

PKG

Each model has a PK G property equal to the

the symbol's pin numbers match. When using the
bus symbol for a component, the PKG property is
set to the value “BUS".

physical packagetype (for example, DIP, LCC) that

Optional Symbol Properties

Table 25 lists optional symbol properties.
Table 25: Optional Symbol Properties

Property

Description

COMP

The COMP property provides an interface to layout
or other applications. Synopsys does not use this
property.

The COMP property is assigned the default value
“TimingVersion” with the property attribute
“expression’. This causes the COMP property to
track the value of the TimingVersion property for
Synopsys symbols.

PIN_NAME

The PIN_NAME property isthe visible text on a
symbol representing a pin's name. Changing this
text has no effect on the model's operation.

PIN_NO

The PIN_NO property value matches the physical
pin number of the component for the default
package. Changing the value of this property has
no effect on the model's operation.

REF

The REF (reference) property providesan identifier
for use in Advanced Verification messages.
Changing the value of this property has no effect on
the model's operation.

Building a Design Using the Menus

The Synopsys entriesin the Design Architect menu system can be useful when building
adesign for the first time because all of the alternatives at each menu level are apparent.

To add SmartModels to a design using the menus, follow these steps:

1. Identify the desired model using the Schematic Editor menu system to traverse the

menus.

April 2002

Synopsys, Inc.

221

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

2. Instantiate the model's symbol on the schematic sheet.

3. Edit property values as necessary using Design Architect or the Schematic Editor.

The Menu System

The menu system consists of severa levels, starting with the pull-down menu that is
accessed with the Libraries choice from the Design Architect menu bar. At that point,
the following menu choices are available:

« Logic Modeling SmartModel Library

« Logic Modeling SimuBus Products (this entry is present only if you have installed
SimuBus models)

TI°5> Note
Normally, the Admin tool installs the Logic Modeling entries in the Design
Architect Libraries menu automatically, as part of model installation. If,
after installing your models, you do not find at least the Logic Modeling
SmartModel Library entry, you can perform the menu installation yourself.
For more information, refer to “ Installing the QuickSim 11 SWIFT Interface”
on page 215.

Following are descriptions of the relevant menu levels:

Top-level
The top-level menu offers a number of choices, including component libraries and
the first SmartModel product menu.

Function
The first SmartModel product menu offers a choice of functions, as follows:

o General purpose logic menu
o Logic block menu

o Memories menu

o Processor menu

o Programmable logic menu

O

Support peripheral menu

Subfunction
Each item on the function menu has its own subfunction menu, which is used to
further specify the symbol for the model being instantiated.

222 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Vendor
Each subfunction menu selection has an associated vendor menu, which displays a
list of part manufacturers for that subfunctional group of models.

Part
Each vendor menu selection has an associated part menu, which displays alist of
all SmartModels for the selected subfunction class and vendor.

Component
Each part menu selection has an associated component menu, which displays alist
of all the timing and/or symbol versions available for a particular mode!.

Example

The following sequence of menu selections activates a M otorola M C88100:
SmartModel Library > Processor > Microprocessor > Motorola >
88100 > MC88100-20 (BUS)

Choosing the function, subfunction, and vendor brings up the part menu, which shows
al the Motorola microprocessor models. Choosing the MC88100 brings up the
component menu, which shows both the component and the symbol.

Building a Design Without the Menus

Userswho are familiar with the SmartModel Library may prefer to use Schematic Editor
commands to build designs. This approach can be faster than using the menu system.
The basic steps are the same:

1. Identify the model you need.
2. Instantiate the model's symbol on the schematic sheet.
3. Use Design Architect or the Schematic Editor to edit property values, as necessary.

Creating An Instance

Use the $add_instance command to instantiate a part in the Schematic Editor, as shown
in the following minimal command:

% $add_i nst ance (“$LMC_HOWE speci al / gsi mi synbol s/ ")

The symbol name and TimingVersion property value can also be included on the same
line, asfollows. (All punctuation marks are required.)

% $add_i nst ance \
(“$LMC_HOWE speci al / gsi mi synbol s/”,“”,,,[“Ti mi ngVersion”,”"])

April 2002 Synopsys, Inc. 223

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

If the TimingVersion property value is not specified, the default timing version is
activated. If asymbol isnot specified when applicable, the default isused. The defaults
are “positive” for logic version, and “pin” for symbol type.

Selecting Alternate Symbols

When there are DeMorgan equivalent symbols, the positive version is the default.
Specify “NEG” as the symbol name to get the negative logic symbol (if desired), as
follows:

% $add_i nst ance (“$LMC_HOME speci al / gsi mi synbol s/ttl 00", " NEG',,, \
[“Ti m ngVersion”,” SN74AS00"])

When activating parts manually, remember that the pin symbol is the default when both
pin and bus symbols are available. Specify the bus symbol (if desired), as follows:

% $add_i nst ance (“$LMC_HOWE speci al / gsi mi synbol s/ nc68030_hv”,”BUS", ,, \
[“Ti m ngVersion”, ” M%68030- 33"])

Use the Mentor Graphics Design Viewpoint Editor (DVE) to set the primitive type for
SWIFT in DVE. To ensurethat SWIFT instances are evaluated as primitives, you can
add to the primitive rule using the add primitive command within DVE. Inthefollowing
example, the add primitive command causes all instances of the MODEL property value
“SWIFT” to be evaluated as primitives by QuickSim 11.

%add primtive “nodel” -noexcept -string “SWFT”

The string “SWIFT” can be substituted with any other labels that you have registered
with the model type of “swift”.

Logic Simulation

Thefollowing sectionsin this chapter provide information about using SmartM odels for
logic simulation in the Mentor Graphics's QuickSim |1 environment. For related
information, refer to the following Mentor Graphics manuals.

« Common Smulation User's and Reference Manual
« Getting Started with QuickSm I1 Training Workbook
o QuickSmII User's Manual

224 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

Current Support Levels

Please note the following important items before starting a simulation. SmartM odel
Library models currently:

« Do support the implementation of location maps. You can use location maps to
install alibrary anywhere on the system. Set an environment variable and alocation
map variable before using location maps.

« Do support extended-time (64-bit) simulations.
« Do not support the unit delay timing mode.

Default Timing Mode

The default timing mode for SWIFT SmartModelsis“typ”. You can use the
timing-mode switch at QuickSim invocation time to force the timing mode to be “min”,
“typ”, or “max”.

Signal Levels and Drive Strengths

SmartM odel s recognize the nine signal levels and drive strengths listed in Table 26.
QuickSim Il maps indeterminate strengths to unknowns for “12-state” simulations.

The models generate strong and resistive states. The high-impedance unknown state
(XZ) is used when amodel places an output in the high-impedance state.

Table 26: Signal State Values

The state values shown in bold type are generated by the models. All values are

Signal Level
Drive Strength Low (0) High (1) Unknown (X)
Strong (S) 0S 1S XS
Resistive (R) OR 1R XR
High Impedance (Z) 0z 1z XZ

recognized.

April 2002

Synopsys, Inc.

225

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

QuickSim Il Command Line Switches

When QuickSim Il isinvoked from the command line, the following switches are the
only ones recognized by SmartModels.

Timing Mode Switch

Use the -timing_mode switch to set the global timing mode to minimum, maximum, or
typical. Unit delay timing mode is not currently supported. Use the following syntax
when setting this switch:

-tinmng _node { mn| nmax | typ }

TI°5> Note
SmartCircuit models override settings made with the timing mode switch by
means of the model command file (M CF) when the MCF is configured with
aparticular timing mode. For more information about configuring
SmartCircuit models of FPGA and CPLD devices, refer to the SmartModel
Library User’s Manual.

Time Scale Switch

Usethe -time_scale switch to adjust time values (delays and checks) to the desired
resolution by specifying the time scale in nanoseconds (ns). The defaultis0.1 ns. Use
the following syntax when setting this switch:

-time_scale tinescal e

Constraint Mode Switch

Use the -constraint_mode switch to enable or disable timing constraint checking. The
default is“off”. Any value other than “off” causes amodel to perform constraint
checking. Use the following syntax when setting this switch:

-constraint_node { off | state_only | messages }

226 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

QuickSim Il Command Interaction
There are many QuickSim |1 simulator commands that interact with SmartModelsin a

design. Table 27 lists some of the QuickSim II commands that affect SmartModels.

Table 27: QuickSim Il Command Interaction

QuickSim II Command

Effect on SmartM odels

INITIALIZE

Causes amodel to reevaluate until the smulation
reaches DC stability. It will not reset the model or
set internal values to the “state value” specified.

SIGNAL INSTANCE

Reports the status of selected instances with the
“swift_dump” parameter.

REPORT OBJECT

Not supported by SmartModels. Use the SIGNAL
INSTANCE command to query amodel and report
its status.

REREAD MODELFILE

Reloads any of the configuration files used by a
model, including memory image, JEDEC, MCF,
SCF, and PCL command files. Configuration files
are only re-read if the simulation has changed the
configuration.

RESET STATE Causes al modelsto reinitialize their statesto the
original time zero (power-up) conditions.

RESTORE STATE Restores all of the model's internal states as part of
the operation.

SAVE STATE Records al of the model'sinternal states as part of

the operation.

WRITE MODELFILE

Causes amodel to “dump” its memory imageto a
file.

SWIFT Command Channel

You can use the SWIFT command channel to pass commands directly through to
SmartModels. Use the QuickSim II SIGNAL INSTANCE command to access the

command channel.

To issue a command for selected instances, use the following:

signal instance swi ft_nodel -p “command_name [argurents]”

April 2002

Synopsys, Inc.

227

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

To issue a command for a session, use the following:

si gnal

i nstance swift_session -p “command_name [argunents]”

For more information on using the SWIFT command channel, refer to “ The SWIFT
Command Channel” on page 23.

Checking the Model's Status

Use the QuickSim Il SIGNAL INSTANCE command to query amodel directly. Select
one or more instances in the design and then issue the command to display the internal
element status of all selected instances, as shown in the example below.

si gnal
"1$1
1181
1181
AR YA
AR YA
AR YA
I8
I8
I8
AR YA

AR YA
11
I
T
AR YA
AR YA
A YA
A A

I

i nstance swi ft_dunp

"Note: <<Status Report>>'

Model tenpl ate: pal 20r4i'

Version: not avail abl e’

| nst anceNane: /| $2742'

Ti m ngVer si on: MM _20R4A- COM

Del ayRange: TYP

JEDECFi | e: /user/bobb/ desi gn/ schemat i ¢/ sel ack. j edec'

Timng CGonstraints: Of'

Snmar t Model | nstance /1$2742(U103: MM _20R4A- COV), sheet 1
of schenatic at time 0.00 nsec'

"Note: SmartModel Wndows Description:'

@0 “PAL Internal Register connected to pin 20"

QL9 “PAL Internal Register connected to pin 19"

Q8 “PAL Internal Register connected to pin 18"

QL7 “PAL Internal Register connected to pin 17"

Smart Model Wndows not enabl ed for this nodel .’

Snart Model | nstance /1$2742(U103: MM _20R4A- QQV), sheet 1
of testbed/schematic at time 0.00 nsec'

Reconfiguring Models for Simulation
You can use QuickSim |1 to reconfigure models for additional simulations by:

« Editing properties

« Changing timing modes of model instances

« Enabling or disabling constraint checking

228

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Editing Properties
Adding or changing the value of a JEDECFile, SCFFile, PCLFile, or MemoryFile

property causes the simulator to read the file and initialize the model to the power-up
state. Select the following menu choices to change a property:

Edit > Properties > Add, Edit > Properties > Change, and Edit > Properties

Changing Timing Modes

SmartM odel s support minimum, typical, and maximum timing modes. Unit-delay
mode is not supported. Select the following menu choices to display the form for
changing the timing mode of specific model instances:

Setup > Kernel > Change > Timing Mode
You can also use instance names to specify which instance to change.

Constraint Checking

Select the following menu choices to enabl e/disabl e the various timing constraint checks
(for example, setup, hold):

Setup > Kernel > Constraint Mode > Change

To enable constraint checking, select either “ State Only” or “Messages’ on the Change
Constraint Mode form. To disable constraint checking, select “ Off” on the Change
Constraint Mode form.

SmartModel Library Message Formats

SmartModels issue four different kinds of messagesto provide relevant information to
users during ssmulations. These include:

« Error messages

« Warning messages
« Trace messages

. Notes

Error messages can be generated by timing or usage checks. Warning messages, error
messages, and notes can all be generated by usage checks, depending on the situation.
Hardware verification models also issue trace messages, if enabled.

Error messages itemize selected information. For example, a setup time violation
causes an error message that documents:

« Pinname

« Part (by instance), reference designator, and component name

April 2002 Synopsys, Inc. 229

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Sheet name

Design name

Simulation time

Signals and edges, as appropriate

Setup times (as they occurred and as required by vendor data sheet)

Here are some sample messages:

230

“/1$2751" ;!

“/1$2751':*? Error: Unknown signal |evel on CK pin.'

“/1$2751' :*? This will probably cause problens |ater in the

sinul ation.'
“/1$2751' ;. *? Smart Model |Instance /1$2751(UL02: MO68030- 20), sheet1 of
schematic at time 0.0

“/1$2790": * !

“/1$2790': ‘Note: Loading the nmenory image file “/user/bobb/design/
schematic/romimage. 0_7""

“/1$2790' : ‘ Smart Mbdel | nstance /1$2790(U201: |1 27512), sheet2 of
schematic at time 0.0

“/1$2790': * --- 14 values have been initialized."'
“/1$2751" ;¢
“/1$2751': ‘! Warning: Unknown signal |evel on DSACKO _PIN
Assuming DSACKO PINis 1.'
“/1$2751' : ‘! SmartModel |nstance /1$2751(UL02: MXB8030- 20), sheetl of

schenmatic at time 200.0
“/1$2751' . ‘Trace: Returning read data to PCL program'

“/1$2751' . * [0] =00000BFE, [1] =00000000, [2]=00000000, [3]=00000000'
“/1$2751' . * [4]=00000000, [5]=00000000, [6]=00000000, [7]=00000000,
[8] =00000000'
“/1$2751' . * SmartMdel |nstance /1%$2751(U102: MC68030- 20), sheet1 of
schematic at time 1750.0
“/1$2751" ;¢
“/1%$2751': ‘Trace: PCL Bus Oml: Read. Control =06, Addr=00000004,
Byt es=4. "
“/1$2751' . * SmartMdel |nstance /1%$2751(U102: MC68030- 20), sheet1 of

schematic at tinme 1750.0'

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Using SmartModel Windows with QuickSim I

SmartModel Windowsisa SmartModel Library feature that can be used for more
efficient system-level verification and debugging by allowing you to view window
elements during simulation runs for microprocessor, PLD, memory, and peripheral
models.

Window elements that can be viewed include registers, pointers, states, or latches (for
example), depending on the part being modeled. This section provides information
about how to interact with SmartModel Windows using QuickSim 1. SmartModel
Windows can be used to:

« Review window element values and set breakpoints
« Single-step through simulations
Change window element values before proceeding with a simulation

« Traceinstruction execution
« Rename instances
« Combine register elements

Most SmartModels contain predefined window el ements that correspond to the
manufacturer's specifications. In addition, SmartCircuit models allow usersto define
their own window elements so that the actual structure of the device can be examined.
To determine if a specific model is equipped with SmartModel Windows, check the
model's online datasheet.

How SmartModel Windows Works

SmartM odel Windows couples the models and the simulator so that model elements can
be used amost as if they were netsin the design. Normal QuickSim |1 commands are
used with SmartModel Windows, except that an instance designator must be added to a
QuickSim Il command to address a model's window elements (even at the top level).
The general format for using QuickSim Il commands with SmartModel Windowsis:

command nodel _i nst ance/ el ement _nane
Use any of the following commands to enable window elements with the simulator:

ADD LI STS nodel _i nst ance/ el emrent _nane
ADD MCN TGRS nodel _i nst ance/ el errent _nane
ADD TRACES nodel _i nst ance/ el errent _nane

April 2002 Synopsys, Inc. 231

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Window elements must be activated with one of the preceding commands in order for
SmartModel Windows to begin displaying data. Each model's online datasheet listsits
predefined window elements, which are available during simulation. Using windows
you can read or display elements, force new values onto them, and stop the simulation
based on their values.

Tracing Instruction Execution

SmartM odel Windows provides the ability to trace peripheral component activity in a
design. Most larger peripherals and microprocessors equipped for SmartM odel
Windows have a 1-bit element named TRACE_ENABLE. Setting TRACE_ENABLE
to one (1) causes trace messages to display in the transcript window.

Use the following command to enable instruction tracing for a model:
FORCE nodel _i nst ance/ TRACE ENABLE 1
Some trace message examples follow:

“1$2752': ‘Trace: Logical Mster witing to PMMJ (perand Address AR

“1$2752' : * Smart Model | nstance /1$2752(UL03: M%68851- 12), sheetl of
ny_design at tinme 819500.0

“1$2752': ‘Trace: MX®b8851 is starting a table search using CRP.

“1$2752': ‘ Smart Model | nstance /1$2752(U103: M368851- 12), sheet 1 of
ny_design at tine 822150.0

Setting Breakpoints and Word Triggering

Usethe ADD REAKPOINT command to stop the simulation at critical points and
examine internal window elements. You can set breakpoints based on the contents of
specific elements inside components within the design. For example, the following
command causes the simulation to stop at the breakpoint when the specified conditionis
met.

ADD BREAKPA NT (rodel _i nst ance/ TC==0B)

You can use Boolean expressions with the Add Breakpoint command to set up complex
word triggers that provide alogic analyzer during ssimulation. For example, the
following command causes the simulation to stop at the breakpoint when both of the two
specified conditions are met.

ADD BREAKPA NT ((nodel _i nst ance/ SOC =0) &&(model _i nst ance/ TC==B))
Trigger terms do not have to refer to the same instance or model. 1n addition, net values
and window element contents can be combined to make trigger terms.
Single-Step Simulation

The ADD BREAKPOINT command defaults to stopping the simulator when asignal or
expression in awindow element changes state. Asaresult, you can usethe ADD
BREAKPOINT command to single-step through a simulation.

232 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Renaming Instances

Usethe ADD SYNONY M command to rename instances with easier-to-remember
substitute names. For example, to rename a model for an MC68851 with an instance
name of “1$289” to an easier-to-remember name such as“PMMU,” use the following
command:

ADD SYNONYM ' PMW | $289

Once you add a synonym you can use it in place of the original instance namein
commands. For example, the following command lists the MC68851 translation control
register.

ADD LI STS HEX PMW TC

Combining Register Elements

You can use the ADD BUS command to combine meaningful 1-bit elements of a PLD
into a single bus that can be viewed or changed after the PLD has been programmed.
This saves effort compared to dealing with each 1-bit element one at atime. Table 28
shows the elements of a sample device, the Texas Instruments TIBPAL22V 10. All
window elements for this example are 1-bit wide with read and write access.

Table 28: Elements in a TIBPAL22V10 Device

Element Description

Q23 PAL Internal Register connected to pin 23

Q22 PAL Internal Register connected to pin 22

Q21 PAL Internal Register connected to pin 21

Q20 PAL Internal Register connected to pin 20

Q19 PAL Internal Register connected to pin 19

Q18 PAL Internal Register connected to pin 18

Q17 PAL Internal Register connected to pin 17

Q16 PAL Internal Register connected to pin 16

Q15 PAL Internal Register connected to pin 15

Q14 PAL Internal Register connected to pin 14

April 2002 Synopsys, Inc. 233

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

TI°5> Note
Because the block diagram of this part does not denote specific names for
the elements, their names reflect the output pin numbers on the DIP symbol
(for example, pin 23 maps to Q23).

For example, to program thefirst six elementslisted in Table 28 as counters and register
the last four elements as data pins from an 1/O port, you would use the following
commands:

ADD BUS ONTR | $230/ @3, 1$230/ @2, 1$230/ @1, |$230/ @0, |$230/ QL9,
| $230/ QL8

ADD BUS DATA |$230/ QL7, |1$230/ Q16, |1$230/ QL5, |$230/ QL4

ADD LI STS ONTR DATA - C - HEX

Changing Program Flow by Setting Values

You can use the SmartM odel Windows feature to shorten large repetitive loops. For
example, if aDMA controller hasinitiated a DMA transfer of 1,024 words to main
memory, you can view the transfer of the first couple of words before stopping the
simulation. By artificially setting the value of the DMA's transfer control register, you
can control which part of the transfer to view. You can then view the last few words as
they are transferred without having to wait for the entire process.

Be careful when inserting values into window elements, especially when forcing data
into program counters and instruction registers. This SmartModel Windows featureis
recommended only for users who completely understand the implications of what is
being inserted into an element.

When forcing avalue onto an el ement, the FORCE command is always interpreted as if
the -CHARGED switch were present. This means that the forced value vanishes when
another event attempts to update the window element. It isnot possibleto FIX or WIRE
aforced value on awindow element.

SmartModel Window Elements

SmartModel Window elements for SmartCircuit models can be defined only at
simulator startup. This affects the way several QuickSim || commands interact with
SmartCircuit models:

« The SAVE STATE and RESTORE STATE commands produce unpredictabl e effects
if any SmartCircuit window elements are defined after saving the state.

« For SmartModel Windows to work with the SAVE STATE and RESTORE STATE
commands, the window elements defined at SAV E STATE must exactly match those
defined at the start of the current simulation session.

234 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

« The REREAD MODELFILE command does not redefine window elements for
SmartCircuit models. Using this command to redefine window elements after
simulation startup disables the window elements.

Custom Symbols

Synopsys provides symbol s representing default package pinouts for SmartModels.
However, you may need to create custom symbols for some of the following reasons:

« Toconform to internal drafting requirements
« To make asymbol match a component's pinout
« Tomatch external drafting specifications (for example, military specifications)

Users who choose to create custom symbols as an alternative to using the symbols
provided can:

« Modify a SmartModel Symbol. Start with the SmartModel symbol and modify it
to match your drafting requirements. The value of the user PIN property can now be
changed without corrupting the value of the compiled PIN property.

« CreateaNew Symbol. Create the symbol with your pin values, figure out the
corresponding pin names used by the model, and change the user pin valuesto those
names.

To create custom symbols, follow these steps:
1. Provide required SWIFT properties on the symbol.
2. Register the component.
3. Map pin names to standard SWIFT pin names.

SWIFT Properties
The following symbol properties are required to interface with a SWIFT model:
« model
« TimingVersion
. pin
« pintype
. Swift_template
Refer to Table 23 and Table 24 for information about other required symbol properties.

April 2002 Synopsys, Inc. 235

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Component Registration

When creating new symbols, you must add the SWIFT model to the component
interface by “registering” the model with atype of “SWIFT”.

For example, suppose you have created a new component called “my_ttI00” and you
want to use the SmartModel Library “ttl00” binary asthe simulation model. You would
register the tt100 model as follows:

reg_nodel $W DR/ ny_conp_lib/ny_ttl00 -type SWFT -1abel 'ny_label'

PIN_NAME Mapping

The two methods for creating custom symbols described in “ Custom Symbols’ on page
235 cannot be used to map bus symbol pinsto model pins. You must use apin_map file
to accomplish this sort of custom symbol creation, as explained in the following
sections.

PIN Property
A PIN property can have two distinct values in Design Architect, as follows:

« Compiled pin value
o User pinvaue

The compiled pin value must be the same value that isused in the model. When initialy
adding a pin to a symbol, both these values are set to the specified value. For example,
naming apin “A” causes both its user pin value and the compiled pin value to be “A”.

Changing aPIN property value causes the compiled pin value to track the user pin value.
Specifically changing the compiled PIN property value disables this tracking
mechanism. To re-enable tracking, set the value of the compiled PIN property to null

")

PIN_NAME Property

SmartModel Library symbolsinclude a property called PIN_NAME that is used purely
for graphical purposes. The PIN_NAME property is provided because SmartM odel
Library symbols do not completely match the Mentor Graphics requirements for pin
names. Deleting a PIN_NAME property does not affect model functionality in any way.

) Attention
Do not confuse the PIN property with the PIN_NAME property on
SmartModel symbols.

236 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Purpose of the pin_map File

Usethe pin_map fileto map custom symbol pinsto model pins. If your symbol does not
have buses, then you can use the “user pin value” and “compiled pin value”
combinations previously described to do this mapping without using the pin_map file.
If you have bus pins on your symbol, then you need to use apin_map file and ensure that
the PKG symbol property is set to the value “BUS’. Following is ageneral description
of the pin_map file which describes both cases.

T3> Note

Error messages cite the pin names used by the model, not those on the
symbol or in the pin_map file.

How the pin_map File Works

At startup, aPKG symbol value of “BUS’ triggers the simulator to ook for apin_map
filefor that model. The pin_map cross-referencefileis afree-format ASCII file. It
contains statements that use the following syntax:

pin_type synbol _pin [=] nodel _pin_names ; [# comrent _text]

Following are descriptions of the fields and options.

pin_type

symbol_pin

model_pin_names

April 2002

Must be the same value as the PINTY PE property of the
model. VaidvauesarelIN, OUT, IXO, and IO. Do not
change this value.

The new pin name you want to use on your symbol. Thisis
the symbol's user PIN property, not its PIN_NAME property.

Optional.

A statement can have from 0 to 767 model_pin_names,
separated by spaces, tabs, or new lines. The
model_pin_names are ordered from most significant to least
significant and refer to the PIN property, not the PIN_NAME

property.
Ends a statement.
Starts a comment, which runs to the end of theline.

Synopsys, Inc. 237

Chapter 12: Using QuickSim Il with Synopsys Models

Example of a pin_map File

The following example pin_map file customizes the standard symbol supplied with the
model of the National Semiconductor DP8429 DRAM controller shown in Figure 14.

Simulator Configuration Guide

II‘J‘I:IEI_'I'N[II:I]_'I'—-mb
AR NN
mOr- Op Mo —
[e B k(e e Ceck ok (e e
S Ly
18 i ol e
JEI_H Dg_'-I-B
1oy m
13 s, w3
] My
.3 o
I s L
g wo ol ¥
% |y DPH42870 e
g PP g pd
Fezh
G weah
II‘FIE-;:.E"‘L
W[
[m]
T I
A A A owm
yianmxr) L
[[R e Py Fa o]
ki aZFEZEL
SREET]
{11}] In

Figure 14: National Semiconductor DP8429 DRAM Controller

In the example pin_map file shown below, the names that are changed on the first
symbol arelabeled CS, RASIN, R/C, CASIN, WIN, RA, RB, RC, RD, and M2. They
will have an “L” added to the name to denote that they are asserted low. Notice that a
bus has been defined for each of these sets of pins: QO through Q9, RO through R9, CO
through C9, and BO through B1.

238

#

DP8429 PI N NAVE CHANGES

#

INCSL = CS ;

IN RASINL = RASIN

IN CASINL = CASIN

INRCL = RC ;

INWN = WN

INRFSH = M ;

INR = RRBRRRRBRMRBRR R

Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

OB BBOGH-ASB2CA
Bl BO;
VE.

z Z
o O

RAS3
RAS2
RAS1 ;
RASO ;
ABIX B®DABQERQA QL

Conditional Pin Mapping

Use aconditional clausein the pin_map file to cause the model to use different parts of a
pin_map file based on the value of a certain property. The syntax is:

SEEEE
dRE2m, ,

ar Q

% property nane property_val ue

This method is used by the models to map the pins from the BUS symbols to the model.

The pin map parser searches for the property_name in the design database and then
compares the property_value. If the property is not present, or if the actual value of the
property does not match the property_value exactly, everything in the file until the next
percent sign (%) isignored.

The following example shows the pin_map file that provides mapping from the pin to
the bus symbols for the Logic Devices LSH32 32-bit barrel shifter.

#

Bus Package for the LSH32

#

% PKG BUS

IN I =131130129 128 127 126 125124 123 122 121120119 118

117 116 115114 113 112 1121 11019181716 1514131211 ;
QUT Y = Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO ,
IN S SI4 813 92 8S1S0 ;
QUT SO = S S@B S Sa S

April 2002 Synopsys, Inc. 239

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Figure 15 illustrates both symbol types.

Buz Symbaol Pin Symbol
L
LSRG 4

5
— N3 50} EERLATY o
— 5NE)
— Al
— FAW
—Z{ MR
—.5)=FAN SO
—M5iLS Rl A A
|os SR

R T

Figure 15: Bus and Pin Symbols

5= Note
The properties on custom symbols must be the same as those on standard
SmartModel symbols.

Using Hardware Models with QuickSim Il

This section describes how to configure Release 3.5a of Model Access for QuickSim 1.
Model Access is the software you use to interface hardware models with the simulator.
Before you begin, review the release notes for Model Access for QuickSim in the
Hardware Modeling Release Notes. If you are using the C-series releases of QuickSim
I1, you must use R3.0 or better of the Model Access for QuickSim |1 interface software.

These instructions assume that you have already installed the following software:

« Mentor Graphics software, including QuickSim Il V8.6 or later; and the Design
Data Port package, as described by Mentor Graphics Corporation.

« R3.laor later of Model Source or LM-family hardware modeling software.

240 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Setting up Hardware Models in QuickSim Il

To set up the LM-family Model Access interface software for QuickSim 11, complete the
following steps:

1. “Running Imc_hm_install” on page 241
2. “Rebuilding the Mentor Graphics Tree” on page 242

Running Imc_hm_install

To run the Model Accessinstallation script, enter the following commands. If you are on
NT, execute these commandsin aMGC “mkns’ shell.

%cd install _dir/sns/mags_30/1 nc_hm $vco/ bin
%I nc_hminstall -mngc_home -1 | mhome -p ma_hone

where;

« $vco isthe vendor CPU operating system suffix that corresponds to your platform,
as shown in Table 29.

« mgc_homeisthe directory path that contains the Mentor Graphics software tree.
You can use SMGC_HOME if you have set it, or a pathname such as
/home/mentor.

« Im_homeisthedirectory path that contains the LM-family and M odel Source system
software; for example, /home/lm.

. ma_homeisthe directory path that contains the Model Access interface software; for
example, /home/lmc_hm.sss.

Table 29: Mentor Graphics Vendor CPU Operating System Suffixes

Vendor CPU
Host Operating System Suffix ($vco)
Sun SPARC (Solaris) ss5
HP 9000 Series 700 hpu
Intel Pentium (Windows NT) iXn

When the script completes, the following message appears on the screen:

1. I nvoke the Mentor Installation tool
> cd /an_idea_tree/install8
> jnstall

April 2002 Synopsys, Inc. 241

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

2. Fromthe "Mentor G aphics Install" tool w ndow
> Adm n
> Rebui | d M Tree

3. Inthe "Pronpt" w ndow enter the proper path to the
M3C HOME to be rebuilt. dick on
> K

4. "Rebuild MC Tree Resul ts" wi ndow appears. AFTER Rebuild
conpletes. Aick on
> K

5. Fromthe "Mentor G aphics Install" tool w ndow
> File
> Exit

6. "Install Warning" w ndow appears. dick on
> K

T3> Note
This process rebuilds the Mentor tree with the newly installed hardware
modeler package.

Rebuilding the Mentor Graphics Tree

The final step isto rebuild the Mentor Graphics tree using the Mentor Graphics
installation script.

Using install, version C.1
1. To invoke this program, enter the following:

%cd ngc_home/install8 ./install
2. When the install tool appears, use the mouse to select the Admin > Rebuild MGC
Tree pull-down menu item. The program prompts you to enter the MGC tree
pathname.

3. If you have defined $MGC_HOME, that path will appear; otherwise, enter the full
pathname of the Mentor Graphics tree that you want to rebuild, such as the
mgc_home pathname described in “ Rebuilding the Mentor Graphics Tree” on
page 242.

4. Click on OK or press the Return key to accept this pathname. The install program
takes several minutes to rebuild the Mentor Graphics tree. The program prints a
number of messages to the Results screen. You should ensure that no errors or
warnings are printed, especially warnings generated by the Imc_hm package
indicating that you are missing certain Mentor Graphics software packages.

242 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

5. When the rebuild is complete, click on OK to delete the Results screen.
6. Use the mouse to select the File > Exit pull-down menu item.

This completes the Model Access installation procedure. You are now ready to begin
model registration and simulation.

Using Hardware Models in QuickSim Il

This section describes how to prepare and use hardware modelsin QuickSim I1. We
begin with an overview of the Mentor Graphics design environment that describes why
models must be registered in order to function in this environment. The section also
describes how to use the Im_model utility to register hardware models.

The operation of the hardware modeling system during simulation is transparent to the
user in most respects. However, a number of signal instance commands are available to
enable or disable QuickSim Il or hardware modeling features for selected instances
during ssimulation. This section provides descriptions and examples of those commands.

The Mentor Graphics Design Environment

In the post-V 8.0 QuickSim-family environment, an instance of a component placed on a
schematic references a component interface. A component interface contains a set of
descriptors that define aspects of a component, such as its functionality, graphical
representation (symbol), and timing constraints.

There can be severa variations of each descriptor for a component, such as:

« Severa functional descriptions of the component using different modeling methods
such asBLM, VHDL, or hardware models.

« Severa graphical descriptions (symbols) of the component such as ANSI,
MG_STD, or your company standard.

« Severa technology descriptions (timing constraints) of the component with
different timing grades.

The Mentor Graphics analysis tools use the value of the MODEL property as alabel to
identify the descriptors that define the model. For example, Figure 16 shows an instance
with aMODEL property of $Im. The $Im label is the default label for the functional
description of a hardware model. By examining the model table of the component
interface, a match can be found between the MODEL property and the files that
comprise the functional description of the hardware model.

April 2002 Synopsys, Inc. 243

Chapter 12: Using QuickSim Il with Synopsys Models

Simulator Configuration Guide

Mentor Graphics Schematic

ASIC1
Instance

MODEL
= $Im

i

Component
Interface

$Im

default_sym
def_tech

Tl
\—//

Functional Description

ASICl.rss 1

ASIC1.mgc_Im.attr
\—/

—
e

Graphical Description

ASIC1.smbl_1
ASIC1.mgc_symbol.attr
v

e
.

Technology Description

technology.ts
technology.tecf 1

technology.Tf_tfile_do.attr
\—/’/

Figure 16: Sample Component Interface for a Hardware Model

Mentor Graphics analysis tools use the following rules to determine the appropriate

descriptors:
1. If alabel match isfound, the analysistool uses the descriptor identified by the label.

2. If alabel match is not found, the analysis tool uses the default label for the
descriptor.

244

Synopsys, Inc.

3. If alabel match is not found and there is no default label, the descriptor is optional
and is not used.

April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Model Registration

Because multiple descriptions can exist for the same component, you must register each
model to specify the model’s component interface and descriptors. The Im_model utility
isatool for registering hardware models. If a QuickSim Il component does not already
exist, Im_model creates one, along with a component interface that specifies the
functional, graphical, and technology descriptions for the model.

Thelm_model utility registers a hardware model in three steps, using the model’s Shell
Software as sourcefiles:

1. Creates a symbol for the model and registers it with the component interface.

2. Creates, compiles, and registers atechnology File, which contains the timing
description of the model in a Mentor Graphics proprietary format. The user can
choose to use either this technology file or the Shell Software timing files during
simulation. For more information, refer to “ Timing Shell Selection” on page 254.

3. Registers the functional description with the component interface.

TheIm_model command, asillustrated in Figure 17, calls anumber of other utilities.
Thereg_mode utility and Technology Compiler (tc) are Mentor Graphics utilities; for
more information about these utilities, refer to your Mentor Graphics documentation.
For more information on the tmg_to_ts converter, refer to “Im_model Command
Reference” on page 260. For more information on the Im_model utility, refer to
“tmg_to_ts Command Reference” on page 263.

April 2002 Synopsys, Inc. 245

Chapter 12: Using QuickSim Il with Synopsys Models

Simulator Configuration Guide

Shell Software

ASIC1.MDL

ASIC1.DEV ASIC1.DCL
PGA.PKG ASIC1.TCK
PGA160.ADP| —] | ASIC1.TRK
ASIC1.0PT ASIC1.DLY
ASIC1.NAM ASIC1.FRC

_—— — a1 — -
Functional Graphical
Description Description
ASIC1. ASIC1l.mgc_
mgc_Im.attr symbol.attr
ASICl.rss 1 ASIC1.
smbl_1

technology.ts Technology
Compiler

(tc)

I

I

I
Techn_olc_)gy |
Description |
I

I

technology.
tecf 1

I
technology. I
Tf tile | |
do.attr I

I

Figure 17: Hardware Model Registration

Registering a Model with Im_model

All hardware models, whether user-created or purchased from Synopsys, must be
registered with the Im_model utility before you can use them in the QuickSim ||
simulation environment. The following list shows the basic stepsinvolved in preparing a
hardware model for simulation:

1. Running the Im_model Utility, discussed next.

2. Checking the Transcript for any errors or warnings.

246

Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

3. Editing the Symbol to meet any additional symbol conventions (optional).

4. Verifying the Technology File(not required if Shell Software timing filesare used in
place of thisfile; for more information, refer to “ Timing Shell Selection” on
page 254).

Running the Im_model Utility

You can use the Im_model shell command to register a hardware model. To run
Im_model, use the following syntax.

Syntax
Im_model input_dir [output_path] [-Dir name] [-LAbel label]
[-Mdl mdl_filename] [-Step Register|Symbol |[Timing|Update] [-Replace]

For a complete description of Im_model syntax and options, refer to “Im_model
Command Reference” on page 260.

Example

The following example shows how you might register a 74L S74 model which has a
model file named 74LS74A.MDL. This example assumes that SMGC_WD is set to
/user/models, which contains a Shell Software directory called 741s74.

| mnodel 741 s74 -m 74LS74A

This command creates a/user/model s/74LS74 component directory—if one did not
already exist—containing the files shown in Table 30.

Table 30: Sample Component Directory

File Description
7T4LS74Arss 1 Registered Shell Software
74LS74A.mgc_Im.attr Compiled and registered Shell Software
part.part_1 EDDM part
part.Eddm_part.attr EDDM part
74LS74.smbl_1 Symbol graphics
74LS74.mgc_symbol .attr Symbol graphics
TALS74A_tech.ts Source technology file
TALS74A tech.tecf 1 Compiled technology file
7TALS74A _tech.Tf _tfile do.attr | Versioned technology file

April 2002 Synopsys, Inc. 247

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

TI°5> Note
Previous versions of Im_model copied Shell Software source filesinto the
component directory and registered these files. However, the current version
registers only areference pathname to the Shell Software files and does not
copy thefiles.

Checking the Transcript

The transcript displays information about the progress of the registration, in addition to
notes, warnings, and errors.

Thelm_model utility checks that the Shell Software is syntactically and semantically
correct; thisis equivalent to running the Im Check Shell Software utility. If Im_model
encounters an error condition, it stops execution and prints a message describing the

source of the error. Warning and information messages print to the screen, but do not
halt the execution of Im_model.

If you get an error, you should fix the problem in the Shell Software and then run
Im_model again to complete the registration.

Thefollowing isan Im_model transcript for the 74LS74 model:

/1 Model Access for QuickSimll v2.0, (a.k.a. |nc_hmv2.0)
/! Imnodel v8.5 2.1 Fri Cct 18 18:32:32 PDT 1996
/1 Note: Input directory "74ls74"

/1 resolves to "/user/johnd/I nc/ ga/ | nc_hmi wor k. sss/ 741 s74".
/1 Note: Qutput directory "74LS74"

/1 resolves to "/user/johnd/I nc/ ga/ | nc_hmi wor k. sss/ 74LS74" .
/1

/1 Note: Wsing "74LS74A MDL" file for conversion.

/1 Note: Conpiling synbol generator program

/1 Note: Linking synbol generator program

/1 Note: Qeating synbol.

/[l trmg_to_ts v8.5 2.1 Sat Cct 19 20:18:24 PDT 1996

/! Falcon Framework v8.5 2.5 Thu May 30 17:31:43 PDI 1996

/1

/1 Copyright (c) Mentor G aphics Corporation, 1982-1995, Al R ghts Reserved.
/1 UNPUBLI SHED, LI CENSED SCFTWARE.

/1 QONFI DENTI AL AND PRCPR ETARY | NFCRVATION VH CH | S THE

/1 PROPERTY OF MENTCR GRAPH CS CORPCRATI ON CR | TS LI CENSCRS.

/1

/1 Mentor G aphics software executing under Sun SPARC SunCs.

/1

/1 TC - The Technol ogy Conpil er v8.5 2.2 Sat Jun 22 10:56:50 PDT 1996
/1 Falcon Framework v8.5 2.5 Thu May 30 17:31:43 PDI 1996

/1
/1 Copyright (c) Mentor G aphics Corporation, 1982-1995, Al R ghts Reserved.
/1 UNPUBLI SHED, LI CENSED SCFTWARE.

248 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

/1 CONFI DENTI AL AND PRCPRI ETARY | NFCRVATION WVH CH | S THE
/1 PRCPERTY COF MENTCR GRAPH CS CCRPCRATION CR | TS LI CENSCRS.

/1
/1 Mentor @G aphics software executing under Sun SPARC SunCs.

/1

/1
/1 Note: Imnodel conpleted successfully
Editing the Symbol

During registration, the Im_model utility reads the Shell Software to determine the
device'sinput, output, and I/O pin names. The utility then flattens all busesto individual
bits and generates a Mentor Graphics Design Architect script that creates the symbol.

The process uses the following rules to create the symbol:
« All input pins are placed starting in the lower left corner and proceeding upwards.
All output pins are placed starting in the lower right corner and proceeding upwards.

« /O pins are placed for minimizing the symbol’s height.

« All buses are grouped with the least significant bit placed lower on the symbol than
the most significant bit.

« A single grid spacing is left between buses, grouped scalar pins, input and 1/0 pins,
and output and 1/O pins.

Since symbol standards vary, you may need to use the Symbol Editor in Design
Architect to modify the appearance of the automatically-generated symbol. For more
information, refer to your Design Architect documentation.

Verifying the Technology File

During registration, Im_model callsthe tmg_to_ts converter. This converter extracts
timing information from the following Shell Software files to create a Technology File:

« Variable declarations (.DCL) file
« Timing checks (.TCK) file

. Statetracking (.TRK) file

. Delays(.DLY) file

« Forcevalues (.FRC) file

The technology file specifies propagation delays and some timing checks, aswell as
technol ogy-dependent data for the simulation model. Table 31 shows how Shell
Software timing statements are converted into technology file statements.

April 2002 Synopsys, Inc. 249

Chapter 12: Using QuickSim Il with Synopsys Models

T3> Note

Simulator Configuration Guide

Many Shell Software statements have no technology file equivalents. The
tmg_to_ts converter includes each “untranglatable” statement in the
technology file as a comment and/or generates a warning message. For this
reason, we recommend that you use the Shell Software timing files instead
of the technology file during simulation. For instructions, refer to “Timing

Shell Selection” on page 254.

Table 31: Shell Software to Technology File Conversion

Shell Softwar e Statements

Technology File Statements

cycle _time input_state (storage pin) =
timing_spec

fMIN = min_freq on storage pin (input_trans)
fMAX = max_freq on storage pin (input_trans)

decrement name

default_delay timing_spec

tP = timing_spec on eval_storage pin
(input_trans) to output_pin (output_trans)

delay from input_state (eval_storage pin) to
output_state (output_pin) = timing_spec

tP = timing_spec on eval_storage pin
(input_trans) to output_pin (output_trans)

force value output_pin = pin_value

hold after input_state1 (storage pin) of
[nput_state2 (input_pin) = timing_spec

tH = timing_spec on input_pin (input_statez) to
storage pin (input_transl)

if (condition) { statements}
else if (condition) { statements}
else { statements}

end._if

increment name

print (severity, arguments)

pulse width input_state (storage pin) = timing_speg

tW = timing_spec on storage pin (input_state)
No equivalent to maximum pulse width time.

250

Synopsys, Inc.

April 2002

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

Table 31: Shell Software to Technology File Conversion (Continued)

Shell Softwar e Statements

Technology File Statements

recovery after (condition)
during (condition)
before input_state(storage pin) =
timing_spec
else_during (condition)
before input_state(storage_pin) =
timing_spec
else
before input_state(storage pin) =
timing_spec
end_during

set name = value

setup before input_state1 (storage pin) of
[nput_state2 (input_pin) = timing_spec

tS = timing_spec on input_pin (input_statez) to
storage pin (input_transl)

stable valid (input_pin) while (store_pin =
input_state)

tSTAB = 0: O on input_pin (V) to store pin (transl,
trans2)

var enumerated list name = identifier

var counter name = number

when (condition) { statements}
else_when (condition) { statements}

else { statements}
end_when

with condition
No equivalents to else when and else clauses

Modifying a Hardware Model

Whenever you change a hardware model’s Shell Software, you need to rerun Im_model.
However, you may be able to use the -Step option to perform just the steps you need.
The following list provides some guidelines about how to take advantage of the -Step

option:

« If you change, add, or delete a pin name in the Shell Software, then you must rerun
al three steps of Im_model (the default). Because you are recreating the symbol,
you must also use the -Replace option. For example:

| m nodel 741 s74 -r

« If you change, add, or delete atiming specification in the Shell Software timing files
and you are using the Technology File in QuickSim 11, you should use Im_model
with the -Step Timing switch. For example:

| mnodel 74ls74 -s t

April 2002

Synopsys, Inc. 251

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

This step is equivalent to running tmg_to_ts to create the technology file and then
running tc to compile and register it with the component interface.

If you make any changes to the Shell Software other than changing pin names and
timing information, you should use Im_model with the -Step Register switch; for
example:

| mnodel 741s74 -s r
This step is equivalent to running reg_model.

If you have not changed any pin names and want to run both the registration and
timing steps, you can use Im_model with the -Step Update switch to update the
component interface without recreating the symbol. For example:

| mnodel 74ls74 -s u

This switch is particularly useful, because symbol generation is the most time-
consuming step of registration and you lose al manual edits you have made to a
symbol when you regenerate it.

If you already have aworking symbol, you can use -Step Update to register the
hardware model functionality with the existing component. For example, you would
use -Step Update if you have a different type of model for the same component. You
can then change the MODEL property in the schematic in order to specify whether
you want to use the hardware model or another type of model for an instance.

Simulating with Hardware Models in QuickSim Il

Once you have registered each hardware model in your design and set the MODEL
property to the appropriate label for instances that reference those models, you are ready
to simulate. You can use the SIGnal INSTance command to turn on and off anumber of
QuickSim |1 or hardware modeling features for selected instances during simulation.

Signal Instance Command Summary

Table 32 provides a summary of these features and the specific commands used to
implement them; the subsections that follow describe the features in more depth. Some
features can also be implemented through Shell Software statements or the Im utilities;
for details, refer to the Shell Software Reference Manual. For instructions on how to
select one or more instances, refer to your QuickSim Il documentation.

T3> Note

252

If the smulator is reset with the $reset_state function, any prior Signal
I nstance commands are | ost because the simulator isreset to the same state it
was at invocation.

Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

Table 32: Signal Instance Command Summary

Feature Command Description
Model evaluation | enable Enables evaluation of the instance by
QuickSim Il (default)
disable Disables evaluation of the instance by
QuickSim 11
Timing shell Ist [-p all] Selects hardware model Shell Software filesto
selection describe the instance’ s timing
nolst [-p al] Selects the Technology File to describe the
instance’s timing (Default)
Unknown Xp [-p pin_name] Maps an unknown input state to the previous
handling and state (Default)
propagation : _ .
X0 [-p pin_name] Maps an unknown input state to alogic zero
State
x1 [-p pin_name] Maps an unknown input state to alogic one
State
Xz [-p pin_name] Maps an unknown input state to afloat state
propagate Propagates unknowns through the hardware
model
nopropagate Turns off unknown propagation (default)
default _ propagation Sets the number of additional sequencesto be
-p number played to the instance when unknown
propagation is enabled (default = 0)
random_seed Sets the value of the seed for the random
-p seed sequence generator when unknown propagation
is enabled (default = 0)
Indeterminate is Maps an indeterminate strength (i) to astrong
strength mapping strength (s) (default)
iz Maps an indeterminate strength (i) to a high-
impedance strength (z)
Test vector logvectors Turns on test vector logging
logging -p filename

nologvectors

Turns off test vector logging (default)

April 2002

Synopsys, Inc. 253

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Table 32: Signal Instance Command Summary (Continued)

Feature Command Description
Timing tm [-p filename] Turns on timing measurement: returns the
measurement actual measured delaysto QuickSim 11
notm Turns off timing measurement: uses the delay

values specified in the Shell Software or in the
technology file (default)

Loop mode loop Turns on loop mode: the modeling system
repeatedly plays a pattern history to the
physical device

noloop Turns off loop mode (default)
Information dump Reports all available information about the
selected instance of a hardware modeled device
Imc Reportsthe type of timing shell (Shell Software
[-p shell|allshell] or technology file) for the selected instance
vector Reports the runtime vector count of the selected
instance

Model Evaluation

By default, al component instances are evaluated in QuickSim I1. If you want to disable
evaluation of models for selected instances, you can use the SIGnal INSTance disable
command. This command isolates sections of the design and shortens the simulation
time for debugging purposes. To turn model evaluation on again for selected instances,
you can use SIGnal INSTance enable.

Timing Shell Selection

The SIGnal INSTance Ist command lets you use the hardware model’s Shell Software
timing files instead of the default technology file during evaluation of the selected
instances. You can use the SIGnal INSTance nolst command to switch back to the
technology file for selected instances.

The optional -p all argument enables you to choose the type of timing shell for all
hardware modelsin the design, if you have at |east one instance selected. For example,
you could use the following command before simulating:

siginst Ist -p all

254 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

QuickSim |1 ignores the technology files for all hardware modelsin the design and take
the timing (delays and timing checks) directly from the Shell Software. If you decided
you wanted to use the technology filesinstead for al hardware models, you could use
the following command to switch back to the default timing shell without having to
select every instance:

sig inst nolst -p all

To select Shell Software timing every time you invoke QuickSim 11 with a particular
design, you can create or edit a quicksim.startup file under the design viewpoint. Add
the following line to the file to directly call the function that implements this Signal
Instance command:

$signal _instances("lst", "all", "/1$1");
Substitute the instance name of any hardware modeled device for /1$1.

You can aso use the actual measured delays from the device as an alternative timing
option with hardware models. For more information about this feature, refer to “ Timing
Measurement” on page 257.

Performance Monitoring

You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the ssmulator, enter the following:

% setenv LM CPTI ON “noni t or _per f or nance”

For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.

Unknown Handling and Propagation

The unknown handling and propagation commands enable you to modify the hardware
modeling system’s default handling of device input and 1/O pins that the simulator sets
to unknown.

Unknown Mapping

Since the hardware modeling system cannot present an unknown logic level to a
physical device, unknown values presented to inputs of hardware models must be
mapped to known values. The SIGnal INSTance xp, X0, x1, and xz commands map
unknowns for all instances of the selected components to the previous state, logic zero,
logic one, or high-impedance (float), respectively. By default, unknowns are mapped to
the previous state. Unknowns mapped to high-impedance are also mapped to the
previous state.

April 2002 Synopsys, Inc. 255

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

You can customize unknown handling per pin by using the -p pin_name argument. For
example, you can issue the following:

sig inst x0
siginst x1 -p clkl

These commands map all unknowns for the selected components—except for unknowns
received on the clk1 pin—to logic zero (0). Any unknowns received on clk1 are mapped
to logic one (1).

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement, and the set_previous, set_low, set_high, and set_float attributes
of thein_pin andio_pin statements. For more information, refer to the Shell Software
Reference Manual. Note that explicit Shell Software settings override any Signal
Instance commands.

Unknown Propagation

The SIGnal INSTance propagate command turns on unknown propagation for all
Instances of the selected components. The modeling system propagates the unknowns
through the model using multi-sequence pattern play. The SIGnal INSTance
nopropagate command turns off unknown propagation for all instances of the currently
selected component, which is the default behavior.

When unknown propagation is on, two pattern sequences are used by default. However,
you can specify up to twenty additional sequences with the default_propagation -p
number command, for atotal of 22 sequences. You can aso specify the value of the seed
for the random sequence generator with the random_seed -p seed command. The value
of the seed is 0 by default, but any number from 0 to 65,535 can be used.

For example, you can issue the following:
sig inst propagate

sig inst default_propagation -p 8
sig inst randomseed -p 7896

These commands turn unknown propagation on for all instances of the selected
components. The modeling system plays atotal of ten sequences (the primary,
secondary, and eight additional sequences) per instance to the device, and uses the
random sequence seed 7,896.

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement. Note that explicit Shell Software settings override any Signal
Instance commands, except for when the SIGnal INSTance nopropagate command is
used. This exception allows the ssmulator to turn off unknown propagation if the
modeling system is running out of pattern memory. For more information about
unknown propagation, refer to the Shell Software Reference Manual and the LM-family
Modeler Manual or the Model Source User’s Manual.

256 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Indeterminate Strength Mapping

The SIGnal INSTance isand SIGnal INSTance iz commands enable you to map
Indeterminate strength pin values received on inputs of hardware models to either strong
(hard) or high-impedance (float) strengths. The modeling system treats high-impedance
strength pin values as unknowns and maps or propagates them accordingly. By default,
the system maps indeterminate strengths to strong strengths.

Test Vector Logging

The SIGnal INSTance logvectors -p filename command turns on modeling system test
vector logging for the selected instance. With test vector logging enabled, the inputs to
the device and sensed outputs from the device are stored to filename. By convention, the
filename used for the test vector output is device_name.VEC. The SIGnal INSTance
nologvectors command turns off test vector logging for the selected instance, which is
the default behavior.

For example, consider the following commands:

sig inst logvectors -p ' $ASI 2/ vect ors/vector 11. VEC
dofile ' $ASI 2/ dofi | es/runll. do'
sig inst nol ogvectors

In this example, the modeling system creates atest vector file called vector11.VEC. This
file contains the vectors played to and sensed from the selected instance during the
simulation run by the dofile. The SIGnal INSTance nologvectors command turns off the
modeling system test vector logging capability.

After logging vectors, you can replay them directly to the device and note any
discrepancies using the Im Play Vectors utility. This utility is particularly useful for
ASIC verification. For more information about ASIC verification and test vector (.VEC)
file format, refer to the LM-family Modeler Manual or the Model Source User’s Manual.

Timing Measurement

The SIGnal INSTance tm [-p filename] command turns on the modeling system timing
measurement for the selected instance. The system then returns to the simulator the
actual measured delay values for that instance. If you provide an optional filename, the
system al so saves the measured delays to a timing measurement (.TIM) file. By
convention, device_name.TIM isthe filename used for the timing measurement output.

The SIGnal INSTance notm command turns off timing measurement for the selected
instance, which is the default behavior. If timing measurement is disabled, the
Technology File delays (or the Shell Software delaysif SIGnal INSTancelstis
specified) are returned to the simulator.

April 2002 Synopsys, Inc. 257

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

For example, consider the following commands:

siginst tm-p '$ASIC2/timing/timngll. TIM
dofile ' $ASI 2/ dofi | es/runll. do'
sig inst notm

In this example, the modeling system creates a timing measurement file called
timingl1.TIM. Thisfile contains the delays of the selected instance measured during the
simulation run created by the dofile. The SIGnal INSTance notm command turns off the
modeling system timing measurement capability.

This Signal Instance command performs asimilar function to that of the Im Measure
Timing utility. Timing measurement is particularly useful for ASIC verification. For
more information about ASIC verification and timing measurement (.TIM) file format,
refer to the LM-family Modeler Manual or the Model Source User’s Manual.

I Note
The timing measurement (.TIM) file can be converted to a Shell Software
delays (.DLY) file by using the Im Create Timing File utility. (For more
information, refer to the LM-family Modeler Manual or the Model Source
User’sManual.) The delaysfile can then be converted into atechnology file,
if desired, by using the Im_model utility with the -Step Timing option.

Loop Mode

The SIGnal INSTance loop command turns on the modeling system pattern looping
capability (loop mode) for the currently selected instance. In loop mode, the modeling
system continually replays the complete pattern history of the selected instance to the
device. The SIGnal INSTance noloop command turns off pattern looping.

Pattern looping isamodel development feature useful for analyzing the device behavior
and pattern history with an oscilloscope or logic analyzer connected to the device.
However, while loop mode is enabled, no other user can access the modeling system;
patterns are replayed to the selected device exclusively until loop mode is disabled. For
this reason, QuickSim |1 returns an error if this command is specified when more than
one user is accessing the modeling system.

258 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Printing Model Information

A number of Signal Instance commands are available for printing information about the
selected model instances. The SIGnal INSTance dump command prints all information
available about the currently selected instances, including:

« InstancelD

« Name of the modeling system in which the hardware model is located
« Setting for test vector logging (On or Off)

« Setting for indeterminate strength mapping (S or Z)

« Setting for Shell Software timing (On or Off)

« Maodel name, as specified in the Shell Software device_name

« Setting for timing measurement (On or Off)

« Setting for loop mode (On or Off)

« Runtime vector count

« Evaluation status (Enabled or Disabled)

The SIGnal INSTance Imc and SIGnal INSTance vector commands print subsets of the
information provided by SIGnal INSTance dump:

« The SIGnal INSTance Imc -p shell command prints the Shell Software timing
setting (On if you have specified SIGnal INSTance Ist; Off if you have not) for the
selected instances. SIGnal INSTance lmc -p allshell printsthe Shell Software timing
setting for all hardware model instances, if you have at least one instance selected. If
you do not specify one of the -p arguments, this command will print alist of the
available subcommands.

« The SIGnal INSTance vector command prints the runtime vector count of the
selected instances.

Performance Monitoring

You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the ssmulator, enter the following:

% set env LM CPTI ON “noni t or _per f or nance”

For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.

April 2002 Synopsys, Inc. 259

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Ending the Simulation Session

Termination of a normal simulation session notifies the hardware modeling system that
the simulation session has ended. All modeling system resources being used by that
simulation are then made available for other users.

If the ssimulation exits abnormally, “orphaned” processes may exist on the modeling
system, even though the simulation has terminated. If Imdaemon is running on your
workstation, it automatically deletes orphaned processes. You can aso use the Im Abort
User utility to remove the unwanted processes manually. Both of these methods release
modeling system resources. (For more information about Imdaemon and the Im utilities,
refer to the LM-family Modeler Manual or the Model Source User’s Manual.)

LM-family and Model Source modeling systems support simulation save and restore
capabilities. When asave simulation state is performed, the state of all hardware models
being used by the simulation session is automatically saved into a QuickSim |1 save
directory. Similarly, restoring the ssimulation state automatically restores the state of the
model as used by the saved simulation, including all stored pattern history.

@ Attention
If you are using Shell Software that contains enhanced features—such as
model state tracking or “when” conditions—the translation to the resulting
technology file may be incomplete and contain “ compromise” statements. If
you elect to use the technology file instead of the Shell Software during
simulation, the device may exhibit incorrect timing and/or behavior. To
eliminate this possibility, translate the technology file from pre-R2.0 Shell
Software, which does not contain these statements, or use the Shell Software
directly during simulation by issuing the SIGnal INSTance Ist command on
the hardware model instance. For more information about this procedure,
refer to “Timing Shell Selection” on page 254.

Im_model Command Reference
TheIm_model shell command registers a hardware model by invoking hardware model
registration and conversion programs.
Syntax

Im_model input_dir [output_path] [-Dir name] [-1fc interface] [-LAbel label]
[-Mdl mdl_filename] [-Step Register|Symbol |Timing|Update] [-Replace]
[-VERBos¢g] [-Help] [-Usage] [-VERSIion] [-Old] [-LM]

260 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Required Argument

input_dir

Specifies the pathname to the directory containing the files to
be registered. Thisargument is required and must appear first.
All pathname specifications use the following location
convention:

If the pathname is relative, theinput_dir is assumed to bein
the working directory, as specified by SMGC_WD. If
$MGC_WD isnot set, theinput_dir is assumed to bein the
current working directory.

If the pathname starts with adollar sign ($), the input_dir is
assumed to be in the location of the location map variable
specified after the dollar sign.

If the pathname is an absolute pathname, the input_dir is
assumed to be in the location of the absolute pathname.

Optional Arguments

output_path

-Dir name

-Ifc interface

-LAbel label

-Mdl mdl_filename

April 2002

Specifies the pathname to the directory that contains the
component information. If an output_path is not specified,
then it defaults to the parent directory of the input_dir.

Specifiesjust the new name of the output component directory
within the output_path; for example, MC68020. By defaullt,
the name is created from the base name of input_dir by
removing any leading dollar ($) characters and converting all
lowercase characters to uppercase. If the output component
directory name is the same as the input directory name,
Im_model will generate an error and fail rather than overwrite
the input directory.

Specifies the component interface(s) with which to register the
model. Multiple component interfaces can be specified. By
default, the model is registered with all component interfaces.

Specifies the label (s) to register with the component interface.
Multiple labels can be specified. By default, the model is
registered with the $Im label, which corresponds to the
functional description.

Specifies a particular model ((MDL) file within the input_dir.
By default, the system uses the model file with the same base
name as the output component directory, which is defined by
the -Dir switch.

Synopsys, Inc. 261

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

-Step Register|Symbol |[Timing|Update

-Replace

-VERBoOse
-Help

-Usage

-VERSIoONn
-Old

-LM

Examples

Selects particular registration step(s):
- Step Register registers the model’s functional description.
- Step Symbol creates and registers the symbol.

- Step Timing creates, compiles, and registers the technol ogy
file.

- Step Update is equivalent to -Step Register and -Step
Timing.

By default, Im_model performsall the registration steps.

Deletes the existing component directory and then recreatesiit.
If you try to overwrite an existing symbol without using this
switch, Im_model fails and generates an error message.

Prints additional messages while Im_model is executing.

Prints help information on each of the available options, then
immediately exits.

Expands the command line and displays each argument and
switch. After printing the usage message, Im_model
immediately exits.

Prints the single-line version message, then immediately exits.

Registers the model using the pre-V 8.3 method, for
compatibility purposes.

Does not affect Im_model execution. The system accepts this
argument for compatibility purposes.

Thelm_model utility provides several ways of specifying input and output files and
directories. The following exampleslist agiven input directory (model file) and desired
output component directory, and then show the Im_model command line you would use

to get this result.

Example 1

Input directory: /user/models/741s74 (M GC_WD is set to /user/models)
Model file: 74LS74.MDL (same as the component name)

262

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Component (output) directory: /user/models/74LS74 (default output path and
directory)

Command: | m nodel 74l s74

Example 2

Input directory: /user/model§/74ls74 (SMGC_WD is set to adirectory other than
/user/models)

Model file: 74LS74A.MDL (different from the component name)

Component (output) directory: /user/models/74L S74 (default output path and
directory)

Command: | m nodel /user/nodel s/ 741 s74 -m 74LS74A

Example 3
Input directory: /user/models/741s74 (SMGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/74LS74 (default directory; non-
default path)

Command: | m nodel 74l s74 /user/ project_xyz

Example 4
Input directory: /user/models/741s74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/latch 7474 (non-default path and
directory)

Command: | m nodel 741 s74 /user/project_xyz -d latch_ 7474

tmg _to_ts Command Reference

Thetmg_to _tsutility reads the Shell Software timing files to create atechnology file.
Comments from the Shell Software timing statements are not copied to the technology
file. You must use the technology compiler (tc) to compile the technology filethat is
created by thetmg_to_ts utility before using the technology filein QuickSim I1.

In general, you should run the Im_model utility—which calls both tmg_to tsand tc—
rather than running the stand-alone tmg_to_ts utility. If you just want to update a

model’s Technology File, you can runIm_model with the -Step Timing option. For more
information on Technology File creation, refer to “Verifying the Technology File” on
page 249.

April 2002 Synopsys, Inc. 263

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Syntax

tmg_to_tsinput_dir [-Out filename] [-Replace] [-Help] [-Usage] [-Version]

Required Arguments

input_dir

Specifies the pathname to the Shell Software timing files that
you want to convert. If the input_dir isnot afull path, itis
assumed to be relative to the current directory, specified by
$MGC_WD.

Optional Arguments

-Out filename

-Replace

-Help

-Usage

-Version

264

Specifies an alternative filename for the output file. By
default, the output file is called technology.ts. All pathname
specifications use the following location convention:

If the pathname is arelative pathname, the output fileis placed
relative to the component directory.

If the pathname starts with period and slash (./), the output file
Is placed in the current working directory as specified by
SMGC_WD, if it exists.

If the pathname starts with adollar sign ($), the output fileis
placed in the location of the location map variable specified
after the dollar sign.

If the pathname is an absolute pathname, the output fileis
placed in the location of the absol ute pathname.

Replaces the existing contents of the output directory with the
new output.

Prints help information on each of the available options, then
immediately exits.

Expands the command line and displays each argument and
switch. After printing the usage message, tmg_to_ts
immediately exits.

Prints the single-line version message, then immediately exits.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

13

Using VERA with Synopsys
Models

Overview

VERA is atestbench automation tool that works as a front-end to Verilog or VHDL
simulators. For general information on VERA, refer to:

http://www.synopsys.com/products/vera
The procedures are organized into the following major sections:
« “Using VERA with FlexModels’ on page 265
« “Using VERA with MemPro Models’ on page 276

Using VERA with FlexModels

This section explains how to use VERA with FlexModels, including a special section on
how to use VERA with FlexModels with VCS. Thisinformation is presented in the
following sections:

« “Using FlexModels with the VERA UDF Interface” on page 266
« “Creating aVERA Testbench” on page 268

« “VERA Testbench Example” on page 269

« “Incorporating FlexModelsin aVERA Testbench” on page 271
« “Using VERA with VCS’ on page 273

April 2002 Synopsys, Inc. 265

http://www.synopsys.com/products/vera

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Using FlexModels with the VERA UDF Interface

FlexModels use the VERA user-defined functions (UDF) interface. UDFs are “bodies’
(written in C) of VERA methods. They are much like Verilog, PLI, or VHDL functions.
UDFs must be declared in a VERA header (.vrh) file to be usable by VERA programs.
They must also be compiled and linked into the ssmulator executable.

To use FlexModels with VERA, you need to build the VERA dynamic library. Building
the VERA dynamic library is atwo step process:

1. Compilethe vera_user.c file to create vera_user.o.

2. Link the object file for the simulator you are using (found in Table 34 on page 267),
where the object file contains the compiled code for the UDF functions used by
FlexModels.

For more information on building the VERA dynamic library, refer to the UDF
information in the VERA User Guide.

¢ Attention
If you are building the VERA dynamic library for Verilog on Solaris, do not
use the -B symbolic. Using this switch results in unresolved symbol

warnings.

Table 33 lists files you will need in order to build the VERA dynamic library.

Table 33: FlexModel Files Used with the VERA UDF Interface

File Name Description L ocation
vera_user.c Source file containing table of UDF $LMC_HOME/sim/veralsrc
functions used by FlexModels.
vera m pli.o | Object filefor VCS, NC-VHDL, and $LMC_HOME/lib/platform.lib

Verilog-XL. Thisfile contains the compiled
code for the UDF functions used by
FlexModels.

vera ssm_mti.o | Object filefor MTI Verilog and MTI $LMC_HOME/lib/platform.lib
VHDL. Thisfile containsthe compiled code
for the UDF functions used by FlexModels.

vera_silm_vhpi.o| Object file for Scirocco. Thisfile contains | $LMC_HOME/lib/platform.lib
the compiled code for the UDF functions
used by FlexModels.

libfmi_ar.a Object filefor NC Verilog. Thisfile $LMC_HOMFE/lib/platform.lib
contains the compiled code for the UDF
functions used by FlexModels.

266 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Table 33: FlexModel Files Used with the VERA UDF Interface

File Name Description L ocation

Imtv.o Thisfile contains the compiled code for the | SLMC_HOME/lib/platform.lib
UDF functions used by SWIFT.

sim_pli.o This file contains the compiled code for the | SLMC_HOMFE/lib/platform.lib
UDF functions used by Flex.

@ Attention
You need to re-build the VERA dynamic library whenever anew version of
VERA isintroduced.

Linking VERA with the Simulator

For details on how to link VERA with individual simulators using the PLI, refer to the
VERA User Guide.

Table 34 details which object files are needed on the link line for the simulator you are
using.

Table 34: Link Line Object Files

Simulator Object Fileson theLink Line

VCS vera sim_pli.o and vera_user.o

Verilog-XL | Imtv.o, dm_pli.o, and vera user.o

NC Verilog |Imtv.o, dm_pli.o, and vera user.o

MTI Verilog | vera ilm_mti.o and and vera_user.o

MTI VHDL |vera dm_mti.o and vera_user.o

NCVHDL |usevera user.o, sim_user.o, vera sim_pli.o, and libfmi_ar.a
See the Note below thistable for special instruction on using NC VHDL.

Scirocco vera_user.o and vera_silm_vhpi.o

April 2002 Synopsys, Inc. 267

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

T=#=Note

If you are using NC VHDL, you need to modify the
$VERA HOMFE/lib/nc_vhdl/sim_user.c by

1) Adding the following line to the external declarations:
extern fm Model Tabl eT Cpi peModel Tabl e;

2) Adding the following line to the fmiLibrary Table:
{ "Qpi pe", i pehbdel Tabl e },

3) Compiling ssim_user.c file to create the sim_user.o file.

Creating a VERA Testbench
To create a VERA testbench to use with FlexModels, follow these steps:

1. Include the header files.

Table 35 lists the two required header files.

Table 35: VERA Header Files

File Name Description L ocation

flexmodel_pkg.vrh | Contains definitions for generic constants | SLMC_HOME/sim/veralsrc

useful in FlexModel commands.

model_pkg.vrh Contains definitions for model classand | $LMC_HOME/models'/model

model -specific constants useful in _fx/model_fxversion/src/vera
FlexModel commands.

268

2. Create an instance of the ModelFx (or ModelFz) class.

Before using FlexModel commands, you must create an instance of the Model Fx or
ModelFz classin the VERA testbench.

. Send commands to a FlexModel through the model’s methods.

In VERA Command Mode, you can use the same FlexModel features and
commands that you use in HDL Command Mode. There are afew differencesin
command usage, however; refer to “Command Syntax Differencesin VERA
Command Model” in the FlexModel User’s Manual. For details on specific
commands, refer to “FlexModel Command Reference” in the FlexModel User’s
Manual.

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

VERA Testbench Example

The following example shows how to incorporate FlexModels in a VERA testbench.

#i ncl ude <vera_defines. vrh> /'l Vera Defines

#i ncl ude “fl exnodel _pkg. vrh” /1 FlexModel generic constants defined
her e

#i ncl ude “nodel _pkg. vrh” /1 Model class, and nodel -specific

constants defi ned here

pr ogr am rodel _t est

{

Create an instance of the nmodel, argurment 1 to the
constructor is the string name of the instance in
top level Verilog/ VHDL test bench.

argument 2 is the path to the nodel s clock pin
Here the assunption nade is that the nodel is
instantiated in a Verilog testbench

* Since the constructor has been called, this wll

* return at the next posedge of ul. LK

*/

Model Fx nodel 1 = new “nodel I nst Nane_1", “ul. CLK');

* Ok ok k F * *

I/l Create another instance, since tine has already el apsed
/1 above, this call will return i mmediately.
Model Fx nodel _2 = new(“nodel | nst Nane_2", “u2. OLK’);

/1 NOTE : This exanpl e assunes that the agunments to the
/1 net hods have been defined in the VERA testbench.

/1 Check that no errors have occured
if (nodel _1.showStatus() == FLEX VERA FATAL ||
nodel 2. showstat us() == FLEX VERA FATAL) {

/!l Errors exist, take suitable action

}

fork
{

/!l Send commands to the Fl exMdel |nstance 1

/1 Note that the id is encapsul ated in the nodel
/1l class and thus is not an argunent to the commands.

nodel _1.wite(addressl, datal, ‘FLEX WA T _F, status);

nodel _1.wite(address2, data2, ‘FLEX WA T _F, status);
nodel _1.wite(address3, data3, '‘'FLEX WA T_F, status);

April 2002 Synopsys, Inc. 269

Chapter 13: Using VERA with Synopsys Models

270

}

nodel _1.wite(address4, data4, ‘FLEX WA T _F, status);

/1 Performa read cycle

nodel _1.read req(addressl, ‘FLEX WA T F, status);
nodel _1.read req(address2, ‘FLEX WA T F, status);
nodel _1.read_req(address3, ‘FLEX WAIT_F, status);
nodel _1.read_req(address4, ‘FLEX WAIT_F, status);

Il Get the read results back to the testbench

nodel _1.read rslt(addressl, tag, resultl, status);
nodel _1.read rslt(address2, tag, result2, status);
nodel 1.read rslt(address3, tag, result3, status);
nodel 1.read rslt(address4, tag, result4, status);

/1 Synchroni ze I nstance 1 & 2

/1 Note that the generic commands are al so sent to
/1 through the nodel ' s instance.

nodel 1. synchroni ze(2, “synch_2”, ‘tinmeout, status);

/1 Send commands to the Fl exMddel |nstance 2

nodel 2. wite(addressl, datal, ‘FLEX WA T _F, status);
nodel 2. wite(address2, data2, ‘FLEX WA T_F, status);
nodel 2. wite(address3, data3, ‘FLEX WA T _F, status);

/1 Synchroni ze I nstance 1 & 2
nodel _2. synchroni ze(2, “synch_2", ‘timeout, status);

join // End of fork

} // End of program nodel _test

Synopsys, Inc.

Simulator Configuration Guide

April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Incorporating FlexModels in a VERA Testbench

To incorporate FlexModels in your VERA testbench, use the following procedure. For
more information on creating VERA interface files and using modelsin VERA, refer to
the VERA User Guide.

1. Createaworkingdirectory and run flexm_setup to make copies of the model's
interface and examplefilesthere, as shown in the following example:
% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 36 lists the files that flexm_setup copies to your working

directory.
Table 36: FlexModel VERA Files
File Name Description L ocation
model_pkg.vr Contains FlexModel VERA class and | workdir/src/vera
method definitions.
model_pkg.vrh Contains model definitions for usein workdir/src/vera
VERA testbenches.

2. Set the VERA_HOME variableto point to the location of your VERA
installation directory:
% set env VERA HOME path_to VERA installation

3. Compilethe VERA sourcefilesinthe LMC_HOME tree.
You need to compile three files: Istmodel.vr, swiftmodel.vr, and flexmodel _pkg.vr.
The following is a sample compile script:
%vera -cnp -1$LMC_ HOW si mi vera/ src/ | st nodel . vr
%vera -cnp -1$LMC HOW si mi ver a/ src/ sw ftmodel . vr
%vera -cnp -1 $LMC HOWE si i ver a/ src/ f| exnodel _pkg. vr
If you are using VERA version 4.0 or earlier, you must compile the
flexmodel _pkg.vr object with a“VERA_4" preprocessor flag. Your compile line
would therefore look like the following example:

%vera -cnp -1 $LMC HOWE si mi ver a/ src/ f| exnmodel _pkg. vr - DVERA 4

4. Compilethe model’s VERA sourcefile, model_pkg.vr

Thisfileincludes the flexmodel _pkg.vrh file, but the VERA compiler needs to find
the other header files too; therefore, you must include the path to the other header
files. The following is a sample compile script:

%vera -cnp -1 $LMC_ HOVE/ si mivera/src -1workdir/src/vera \
wor kdi r/ src/ veral/ model _pkg. vr

April 2002 Synopsys, Inc. 271

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

T=#=Note
If you are building the VERA dynamic library on Solaris, do not use the -B
symbolic switch. Using this switch results in unresolved symbol warnings.

5. Createa VERA testbench.
For details, refer to “ Creating a VERA Testbench” on page 268.

6. Compilethe VERA testbench.

Although you need to include only the flexmodel _pkg.vrh and model_pkg.vrh files
in your VERA testbench, the VERA compiler needs to find the other header files
too; therefore, you need to include the path to the VERA header files included in
LMC_HOME. Thefollowing is a sample compile script:

%vera -cnp -1 $LMC HOW simlvera/src -1/workdir/src/vera \
vera_t est bench. vr

This step produces two files: testbench.vro and testbench.vshell.

7. Run the VERA testbench in a Verilog or VHDL simulation environment.

When you run the Verilog or VHDL simulator, the VERA simulator needs to load
your compiled VERA object files. You also need to |oad the following VERA object
files:

 Istmodel.vro
» swiftmodel.vro
» flexmodel_pkg.vro
* model_pkg.vro
* testbench.vro
For more information on loading VERA object files, refer to the VERA User Guide.

ij Attention
To prevent your simulation from ending prematurely in cases where the
VERA testbench completes before the Verilog/VHDL testbench, use the

+vera finish_on_end switch on your simulator invocation line.

272 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Using VERA with VCS

The following steps show how to use FlexModelswith VERA and VCS. Thisisjust one
way of using the VERA simulator's UDF, multiple .vro files, and so on. For more
information, refer to the VERA User Guide. All steps shown here are also documented in
that manual.

1. Build vera_local.dl:
o Compile SLMC _HOME/sim/veralsrc/vera user.c

HP-UX

% /bin/c89 -c +z -1 $VERA HOWH |i b \
$LMC_HOWE si i ver a/ src/ vera_user. c

Solaris

%cc -Kpic -c -1$VERA HOWE/ |ib \
$LMC_HOWH si i ver a/ src/ vera_user. c
o Link in $LMC_HOMFE/lib/platform.lib/vera_sm_pli.o and vera_user.o during
the link stage of building the vera local.dl.

HP-UX

%Ild -b +e syssci_prod_entry +e errno -o vera_|ocal.dl \
vera_user.o \
$LMC HOME | i b/ hp700.1ib/vera_sImpli.o \
$VERA HOME/ i b/ vl og/li bvl og_br.a \
$VERA HOW/ lib/libVERA @ -Im-Ilc

Solaris

%ld-G-z text -o vera_local.dl \
vera_user.o \
$LMC HOWE | i b/ sun4Sol aris.lib/vera_sImpli.o \
$VERA HOWE i b/ vl og/ i bvl og_br.a \
$VERA HOWE i b/ 1i bVERA a

2. Set the SSI_LIB_FILESvariableto point to thevera_local.dl that you built in
Step 1:
%setenv SSI _LIB FILES ./vera | ocal.dl
T-#=Note
If you are using multiple dynamic libraries (.dl files), use a colon-separated
list to specify the search path.

April 2002 Synopsys, Inc. 273

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

T"#=Note

274

3. Modify thesimv build.

Modify the ssimv build by adding the following:
o -P${VERA_HOME}/lib/vera pli_dyn.tab
o {VERA_HOME}/lib/libSysSciTask.a
o thevshell file created when you compiled the VERA testbench

For HP-UX, add -LDFLAGS -E.

For more information, refer to the installation and setup chapter in the VERA User
Guide.

With VERA 5.0 and VCS 6.0.1 two new VCS compile switches, -vera and
-vera_dbind, have been added. These switches automatically link into the VERA
library and include platform specific VCS compiler switches. You need to use the
+vera_udf=vera local.dl switch when compiling with —vera or —vera_dbind. For
details please refer to VERA 5.0 Release Notes.

The -vera switch can only be used for designs that do not use dynamic binding.
This means that the system clock has to be used in the FlexModel VERA interface.
To use the system clock, the model constructor must leave out the clk_path
argument and default to the system clock

(new(I nst Nare, “"))

If adirect connection to the HDL clock is desired you must use the —vera_dbind
switch and specify the full path to the clock. The VERA interface then uses the
signal_connect function to perform dynamic binding.

The model’s VERA interface will issue a warning, informing you that you have
specified a clock instead of using the default system clock. Thiswarning can be
switched off by compiling the flexmodel _pkg.vr file with the -DNO_WARNING
preprocessor flag.

. Createafilefor VERA toload at runtime.

This step assumes that the vro files are in the current working directory. You need to
create afile that looks like the following example. The file name for this example
fileisfiles to load:

./l stnodel .vro

./ swi ftnodel .vro

./ f1 exnmodel _pkg. vro

./ model _pkg. vro
./ testbench. vro

Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

For more information, refer to the documentation on vera_mload in the VERA User
Guide.

5. Run the simv executable
Add the +vera_mload switch as shown in the following example:

%sinv +vera mMoad = files to | oad +vera fini sh_on_end

T=#=Note
The +vera finish_on_end switch prevents your simulation from ending
prematurely in cases where the VERA testbench compl etes before the

Verilog testbench.

April 2002 Synopsys, Inc. 275

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Using VERA with MemPro Models

This section contains the following topics.
o “Mempro-VERA Overview” on page 276
« “Adding MemPro Commands to the VERA Testbench” on page 283
« “Building the VERA UDF Dynamic Library” on page 287
« “Compiling the VERA Source Files’ on page 288
« “Building the Simulator Executable’ on page 289
« “Running the Simulation” on page 290

Mempro-VERA Overview

The MemPro-VERA Interface

MemPro has an object-oriented VERA command interface you can use to control
MemPro models from VERA, thereby retaining the benefits of the VERA verification
language while using the MemPro testbench commands. For information abut the
MemPro VERA testbench commands, see the MemPro User’s Manual.

Figure 18 shows the MemPro-VERA interface.

276 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

MemPro-VERA

Interface files MemPro
(mempromodel.vro, HDL
Istmodel.vro) Model

VERA testbench VERA HDL
(vera_testbench.vro) Virtual Simulator

Machine
VERA Dynamic Library with /
UDF Table (vera_local.dl)
VERA-generated
HDL Shell

Top-level HDL
testbench file

Figure 18: The MemPro-VERA Interface

April 2002 Synopsys, Inc. 277

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

MemPro VERA Classes

VERA implements a number of useful features of an object-oriented language. The
MemPro-VERA interface provides a MemPro class, which contains public method
functions so that a VERA testbench can access MemPro models. The MemPro class
inherits the base class LstModel features.

Figure 19 shows the model hierarchy.

LstModel

¢

MemPro
Model

Figure 19: VERA Model Class Hierarchy

LstModel is an abstract or virtual class and cannot be instantiated directly in VERA
testbenches. Only an instance of a MemPro class can be created in a VERA Testbench.

The commands used to control MemPro models are public methods of the MemPro
class. You can send MemPro models commands from VERA only through an instance
of the MemPro class.

The following section refers often to user-defined functions (UDF). UDFs are “bodies’
(written in C) of VERA methods. They are much like Verilog, PLI, or VHDL functions.
UDFs must be declared in a VERA header (.vrh) file to be usable by VERA programs.

They must also be compiled and linked into the ssmulator executable.

Key MemPro-VERA Files

This section lists and describes files that are necessary for performing a VERA
simulation. Some are provided by Synopsys and areinstalled in your LMC_HOME
directory; others you must create.

Table 37 on page 279 lists and describes the key MemPro-VERA files.

278 Synopsys, Inc. April 2002

Simulator Configuration Guide

Chapter 13: Using VERA with Synopsys Models

Table 37: Key MemPro-VERA Files

Filename Description Origin
vera user.cd A source file containing atable of | Provided in your
- UDF functions used by MemPro | $LMC_HOME/sim/vera/src
models. You compile thisfor use | directory.
in building the VERA dynamic
library.
vera_user.o An object file containing atable | You create this file when you

of UDF functions used by
MemPro models. You use thisin
building the VERA dynamic
library.

compile vera_user.c.

vera sm pli.o

An object file for Synopsys VCS
and Cadence Verilog-XL. This
file contains the compiled code
for the UDF functions used by
MemPro models. You use thisin
building the VERA dynamic
library.

Provided in your
$LMC_HOME/lib/platform.lib
directory.

vera sim_mti.o

An object filefor MTI
ModelSim. Thisfile containsthe
compiled code for the UDF
functions used by MemPro
models. You use thisin building
the VERA dynamic library.

Provided in your
$LMC_HOME/lib/platform.lib
directory.

vera_ ssm_vhpi.o

An object file for Scirocco. This
file contains the compiled code
for the UDF functions used by
MemPro models. You use thisin
building the VERA dynamic
library.

Provided in your
$LMC_HOME/lib/platform.lib
directory.

vera_dyn_library

Thisisthe VERA dynamic
library, which isloaded during
simulation. For instructions on
loading thislibrary, seethe VERA
User Guide.

You create this file when you
build the VERA dynamic library;
the nameis arbitrary (for
example, vera local.dl)

model {v, vhd} The MemPro model filefor the | You create thisfile using
model you want to instantiate. MemSpec and MemGen,
according to instructionsin the
MemPro User’s Manual.
April 2002 Synopsys, Inc. 279

Chapter 13: Using VERA with Synopsys Models

Simulator Configuration Guide

Table 37: Key MemPro-VERA Files (Continued)

Filename

Description

Origin

Istmodel.vrh

A file containing the external
classdeclaration for the LstModel
class. Thisfileisincluded in the
mempromodel.vrh file.

Provided in your
$LMC_HOME/sim/veralsrc
directory.

mempromodel.vrh

The mempromodel header file.
Contains definitions for the
MemPro model class and for
model -specific constants useful in
MemPro commands. You include
this header in your VERA
testbench.

Provided in your
$LMC_HOME/sim/veralsrc
directory.

Istmodel .vr

A VERA source file containing
the LstModel class definition.
You compilethisfile for use
during the simulation.

Provided in your
$LMC_HOME/sim/veralsrc
directory.

mempromodel.vr

A VERA source file containing
testbench commands, along with
the MemPro model class
definition for model instantiation.
You compilethisfile for use
during simulation.

Provided in your
$LMC_HOME/sim/veralsrc
directory.

vera_testbench.vr

The user's VERA testbench file,
which creates MemPro class
instances and calls the MemPro
testbench methods.You compile
thisfile for use during ssimulation.

You create this file with a text
editor.

Istmodel.vro

The object file after compiling
Istmodel.vr. Thisfileisused
during simulation.

You create this file when you
compile Istmodel.vr.

mempromodel.vro

The object file after compiling
mempromodel.vr. Thisfileisused
during simulation.

You create this file when you
compile mempromodel.vr.

vera_testbench.vro

The object file after compiling
vera testbench.vr. Thisfileis
used during simulation.

You create this file when you
compile the VERA testbench file.

vera_shell {v, vhd}

Thisfile isthe mediator between
the model and VERA, and is used
during Verilog or VHDL
compilation.

Thisfileis generated by VERA
when you compile your testbench
file.

280

Synopsys, Inc.

April 2002

Simulator Configuration Guide

Chapter 13: Using VERA with Synopsys Models

Table 37: Key MemPro-VERA Files (Continued)

Filename

Description

Origin

design_testbench.top{v, vhd}

The top-level HDL testbench.
Thisfileisused during Verilog or
VHDL compilation.

Create thisfile with a text editor,
according to instructionsin
“Building the Simulator
Executable” on page 289.

design{v, vhd}

Your design.

You created thesefilesin order to
build your design.

files to load

Thisfile contains the pathnames
of the VERA object files
Istmodel .vro, mempromodel.vro,
and design_testbench.vro.The
simulator looks in thisfile for
VERA objectsto load during
runtime.

You createthisfilein atext editor.
The name is arbitrary.

a. A vera user.cfilealso existsin $VERA_HOME, but does not declare the MemPro and LstModel
UDF functions and does not work with MemPro. If you use avera_user.c file other than the one
provided in SLMC_HOME, make sure you include the function declarations found in the

$LMC_HOME version.

Prerequisites to Using the VERA-MemPro Interface

The discussion of the MemPro-VERA design flow assumes that you have already
generated your memory models, have instantiated the models in your design, and have
created both the top-level HDL testbench and the VERA testbench.

MemPro-VERA Design Flow

Figure 20 on page 282 shows the MemPro-VERA design flow. First, add MemPro
commands to the VERA testbench, vera_testbench.vr. Next, to be able to use MemPro
models with the VERA User-Defined Functions (UDF) interface, you must build a
simulator-specific VERA dynamic library, to be linked into your ssmulator executable.
Next, you compile the VERA testbench, along with the Synopsys-supplied source files
Istmodel .vr and mempromodel.vr, to obtain object files *.vro. In addition, the compile
process generates the vera_shell {v, vhd} file.

Next, you build the simulator executable, linking in the HDL files (model .{ v, vhd}, the
top-level HDL testbench, and vera_shell {v, vhd}). Finally, you run the simulation.

April 2002

Synopsys, Inc.

281

Chapter 13: Using VERA with Synopsys Models

vera_testbench.vr

N

Simulator Configuration Guide

Add MemPro Commands to
the VERA Testbench

TN

vera_testbench.vr

era_sIm_pli.o | vera_sIlm_mti.o | vera_slm_vhpi.o

vera_user.o ﬂ '/_/

Build the VERA UDF

Dynamic Library | o vera dyn_lib

Istmodel.vr vera_testbench.vr
mempromodel.vrﬁ '/'

Compile the

vera_shell {v, vhd}

| |

Build the Simulator
Executable

Run the
Simulation

VERA Source vera_shell {v, vhd}

vera_testbench.vro
Istmodel.vro
mempromodel.vro

model.{v, vhd}

files_to_load
'K design_testbench.top.{v, vhd}

vera_dyn.lib will be
dynamically loaded

Figure 20: Mempro-VERA Design Flow

282 Synopsys, Inc.

April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Adding MemPro Commands to the VERA Testbench

The following steps describe how to add MemPro commands to a VERA testbench so
that you can use it with MemPro models.

1. Open your VERA testbench in atext editor.
2. In order to include the MemPro class in the mempromodel.vrh file, add the line

#i ncl ude "nenpro nodel . vrh"
after theline

#i ncl ude <vera_defines. vrh>
3. Create an instance of the MemPro class for each MemPro model in your design.

In order to use the MemPro class methods, you must use the “new” constructor to
create aMemPro object that maps to a MemPro model instance in your HDL
design. The “new” constructor expects one integer argument, the MemPro model
instance ID, which is the numeric instance ID given to the MemPro model (in the
Verilog or VHDL testbench). The constructor uses this argument to get an instance
handle for the MemPro model. If the instance ID passed isinvalid, the model issues
an error message and sets a flag in the class indicating the severity of the error.

T=#=Note
Always call inst.showStatus() after inst = new (inst_id); to ensure that the
MemPro class constructor worked properly and that you provided the ID of
aMemPro model.

The following example creates an instance of the VERA MemPro object connected
to the HDL model with aninstance ID of 67, and checksfor errors.

/!l 67 is the nodel instance id, defined in the
/1 top-level HOL testbench.
MenPr o nmenl = new 67);
i f (menil. showstat us()!= SLM TESTBENCH SUGCCESS) {
[/ Error handling
exit(1);

}
You can then call MemPro testbench methods for MemPro object “mem1”.

April 2002 Synopsys, Inc. 283

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

4. Send commands to a MemPro model through the model object’s testbench methods.

The VERA testbench methods are similar to the C testbench functions. However,
there are some differencesin the way they are caled. The VERA/Mempro
testbench interface is implemented using the object-oriented features of VERA.
The testbench functions are available as methods of the MemPro class.

The following exampl e sets the message level to issue al messages.
neni. set_nsg |l evel (SLMALL_MSGS, status);

Note that the method does not take the model instance ID as an argument. The
mem1 object storesitsinstance ID when it is constructed and therefore does not
need the instance ID when any of the testbench methods are called.

For details on testbench setup, see the VERA User Guide.

VERA Testbench Example

The following example shows MemPro models controlled from a VERA testbench.

#def i ne QUTPUT_EDGE PHOLD
#def i ne QUTPUT_SKEW #1
#define | NPUT_EDGE PSAWPLE

#i ncl ude <vera_defines. vrh>
#i ncl ude "Mengpecl.if.vrh"
#i ncl ude " nenpr onodel . vrh"

program MenSpecl test
{ [/l start of top bl ock

/1 gl obal variables

integer data w dth, addr_width, status;
string instance _nane, class_nane;

bi t[2047:0] tData;

i nteger nsglLevel ;

/!l MenPro instance variabl e
MenPro nent;

/111 Start of MenBpecl test ////

[/ Greate an instance of the MenPro nodel with nodel _id =5
nmenl = new(5);
i f (meml. showSt at us()! = SLM TESTBENCH SUCCESS) {
printf (“Error: failure instantiating MenPro Mdel /n”);
exit (1);

284 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

/1 Retrieve the instance info
nmend. i nstance_info(data wi dth, addr_w dth, instance narne,
cl ass_nane, status);
printf("instance_info status = %\ n", status);
if (status == SI M TESTBENCH SUCCESS) ({
printf("Data width = %\ n", data w dth);
printf("Addr_width = %\ n", addr_width);
printf("lInstance_name = 9%\n", instance_nane);
printf("dass_nane = %\n", class_nane);

}
el se {
printf ("Error: Could not set info for meni\n");
exit(.);
}

/1 Set the nessage |evel
nenil. set _message | evel (SLM ALL_MSGS, status); }
printf(" Set nsg | evel status = %\ n", status);

/!l Retrieve the message | evel

nend. get _message | evel (nsgLevel, status);
printf(" Get nsg |evel status = %\ n", status);
printf(" nmsg level = %l\n", nsglLevel);

if (meglLevel !'= SLMALL MSGS) {
printf("Error: incorrect message |evel returned - %\ n",
nmsgLevel) ;

}

/1 Poke sone val ues into nenory
nmend. poke(128' h00, 66' hlf, status);
nmend. poke(128' hFF, 66' hff, status);

/1l Load a nenory inmage file
nmeni. |l oad("./nenory_i mages/sraml. mf", status);

[/ Peek at some mernory | ocations

nmend. peek(128' hFF, tData, status);
printf(" Peek status = %\ n", status);
printf(" Peek data = %\ n", tData);

nmend. peek(128' h0O, tData, status);
printf(" Peek status = %\ n", status);
printf(" Peek data = %\ n", tData);

/1 Unload part of the nenory
neni. unl cad(128' haO, 128' hff, status);

/1 Dunp the menmory contents in Verilog format

April 2002 Synopsys, Inc. 285

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

mend. dunp("./menory_i mages/sran2. mf", “SLM FMI_VLOG 128" h0O,
128' hffff, status);

printf(" Dunp status = %l\n", status);

} /1 end of program MenBpecl test

A top-level HDL testbench fileisrequired to connect your VERA testbench to the
MemPro HDL model. The following two VERA testbench examples show aVERA
testbench paired with a Verilog testbench top module and aV ERA testbench paired with
aVHDL testbench top module.

VERA Testbench Paired with Top-level Verilog Testbench
1. Top-level Verilog Testbench Example

nodul e top;

Sta'.[icmmUl(.io(io), .we(we), .ce(ce), .oe(oe), .a(a));
def par am
UlL.nodel _id =5; //set IDof UL
2. VERA Testbench Example

program nmodel _test {
MenPr o i nst 1;

instl = new(5); // instl corresponds to UL in Verilog testbench
if (instl.showStatus()!= SLM TESTBENCH SUCCESS) {
[/ Error handli ng

286 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

VERA Testbench Paired with Top-level VHDL Testbench
1. Top-level VHDL Testbench Example

entity top if end top;

architecture test of topis

UL : Stati cRam
generic map (nmodel _id =>5) // set IDof Ul
port map (
io=>1io0
we => we
ce => ce
oe => oe
a =>a
);
2. VERA Testbench Example

program nmodel _test {
MenPr o i nst1;

instl = new(5); // instl corresponds to UL in VHDL code

if (instl. showStatus()!= SLM TESTBENCH SUCCESS){
[/ Error handling

Building the VERA UDF Dynamic Library

The MemPro VERA testbench interface accesses MemPro internal testbench commands
viathe VERA User-Defined Functions (UDF) interface. In order to use MemPro
models with VERA, you must build a dynamic library that contains the VERA UDF
declarations for MemPro.

When building the VERA dynamic library, you compile the vera_user.c file, and link a
Synopsys-supplied object file (vera_sim_pli.o, vera sm_miti.o, or vera_sim_vhpi.o) for
the ssmulator you are using. For information about other simulators, see the VERA User
Guide.

The following are VERA dynamic library build examples for VCS 6.0 with VERA 5.0.

April 2002 Synopsys, Inc. 287

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Solaris

cc -Kpic -c -1. -1$VERA HOW/ lib \
${ LMC_HOME} / si i ver al/ src/ vera_user. c

Id -G-z text -0 ./vera local.dl ./vera user.o \
${LMC_HOME}/ | i b/ sund4Sol aris.lib/vera_slmpli.o\
-Isocket -Insl -lintl -lc -Idl

HP-UX

c89 -c +z -1. -1$VERA HOW/ lib \
${ LMC_HOME} / si i ver a/ src/ vera_user. c

Id -b +e syssci_prod_entry +e errno \
-0 ./vera_local.dl ./vera user.o\
$VERA HOW/ lib/l1ibVERA @ -1c -Im

Linux

gcc -fpic -c -1. -1$VERA HOW/ lib \
${ LMC_HOME}/ si i ver a/ src/ vera_user. c

Id -shared -Bdynanic -0 vera_local.dl \
${LMC_ HOME} /i b/ x86_linux.lib/vera sImpli.o \
vera_user. o

Compiling the VERA Source Files

MemPro provides VERA source files that contain the classes and methods from the
MemPro testbench interface. You must compile these files, along with your VERA
testbench that uses these methods, into object files (.vro) that are loaded by the simulator
at runtime.

To compile the required VERA source files follow these steps:
1. Compilethe VERA source files for the MemPro/VERA Testbench Interface.

You need to compile two files: Istmodel.vr and mempromodel.vr. Thefollowing is
a sample compile script:
vera -cnp $LMC HOWH si nivera/ src/l stmodel . vr \
-1 $LMC_ HOWE/ si ni vera/ src

vera -cnp $LMC_HOWE si i ver a/ sr c/ menpr onodel . vr \
-1 $LMC_ HOWE/ si ni veral src

288 Synopsys, Inc. April 2002

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

2. Compile the VERA testbench.

You also need to include the path to the VERA header filesin LMC_HOME. The
following is a sample compile script:

vera -cnp vera_testbench.vr -1$LMC HOW si ndveral/src

MTI ModelSim users should add the -mti switch. Scirocco users should add the -sro
switch. An examplefor MTl is

vera -cnp -mti vera_testbench.vr -1$LMC HOW simiveral/src

For details on compiling VERA source files with different smulators, see the VERA
User Guide.

Building the Simulator Executable
To build asimulator executable, follow these steps.

1. Optionally, create aload file that contains the pathnames of the VERA object filesto
be loaded during simulation, asin the following example:

./l stnodel .vro
./ menpr onodel . vro
./vera_testbench.vro

Alternatively, you can enter the names of thefilesto be loaded, when you invoke the
command to build the simulator. For details on loading VERA object files, see the
VERA User Guide.

2. Build the executable.
An example for VCS 6.0 commands, using files built with VERA 5.0:

vcs -0 sinv \
-vera \
+vera_moad=files_to_| oad \
./vera_ testbench.test top.v ./MnPro_nodel.v \
./vera_testbench. vshel |l \
SLMC LIBDRsImpli.o\
-P $LMC_ HOW/ simipli/src/slmpli.tab \
+i ncdi r+$LMC_ HOME/ sinmipli/src

where
on Sol ari s:
LMC LIB DR = $LMC HOME/ | i b/ sund4Sol aris.lib
on HP-UX
LMC LIB DR = $LMC HOME |'i b/ hp700. 1i b
on Li nux:

LMC LIB DIR = $LMC HOVE/ | i b/ x86_I i nux. i b

April 2002 Synopsys, Inc. 289

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Running the Simulation

Refer to the following examples for simulating with your VERA testbench. For
information about using VERA with different simulators, see the VERA User Guide.

An example for VCS 6.0 commands, using files built with VERA 5.0:

sinv +vera_udf=./vera_l ocal .dl

290 Synopsys, Inc. April 2002

Simulator Configuration Guide Appendix A: LMTV Command Reference

A

LMTV Command Reference

Overview

LMTV isaPLI application that is used to interface SmartM odels and FlexM odels with
Verilog-XL, NC-Verilog, and MTI Verilog. Note that VCS uses the SWIFT interface
and not LMTV. You can control the features of the LM TV interface by using:

o “LMTV Command Line Switches’ on page 291
e “LMTV Commands’ on page 293

LMTV Command Line Switches

LMTV command line switches have a session-wide scope that impacts all SmartModel
instances. Notice that the +laiobj switch, used by the LAI interface, is not used in either
mode of the LMTYV interface. Following are brief descriptionsfor each of the command
line switches that you can use with the LMTV interface:

+notimingchecks Disables timing checks (for example, setup and hold
times) and their accompanying messages. The default
isto perform the timing checks.

+[min | typ | max]delays Specifies asingle delay range for all SmartModel
instances. The default isto use the delay range in the
SmartModel’s DelayRange or RANGE attributes.

+Imudtmsg or +laiudtmsg Generates alist of the timing files loaded at simulation
startup. Thisis equivalent to setting the command
channel command TraceTimeFileto ON. The default
Isnot to list the timing files. For more information
about the command channel. refer to the SmartModel
Library User’s Manual.

April 2002 Synopsys, Inc. 291

Appendix A: LMTV Command Reference Simulator Configuration Guide

+Imoldstr

+Imoldtrans

+Imresstr

292

Maps all SmartModel Library signal strengthsto
“strong” for al output events that have resistive
strength. The default isto use resistive strength to
reflect the true state of the SWIFT pin. Usethisswitch
if you have adesign that was created in the Verilog-XL-
specific SmartModel Library environment and you
want simulation conditions to match the Verilog-XL-
specific SmartModel Library.

Indicates that the historic styleisto be used for
transcribing messages. The historic style message
contains references only to timing version names and
does not specify any time units. The default is that
messages contain references to both timing version
names and model names. Timing valuesare in
nanoseconds (ns). Usethisswitchif you want to match
the Verilog-XL-specific SmartModel Library
simulation conditions.

Disables mapping of SmartModel Library signal
strengths to “strong” strength, even if a historic model
model.v file (vshell) is detected. Use this switch if you
want your historic-mode design to use true resistive
strengths. This switch only works with the SWIFT
interface.

Synopsys, Inc. April 2002

Simulator Configuration Guide Appendix A: LMTV Command Reference

LMTV Commands

LMTV commands are predefined tasks that you place within your testbench or design.
LMTV commands all begin with an $im_ prefix. Some of them have historic
counterparts, which begin with an $lai_ prefix. You can use any or all commandsin
either the SWIFT or the Historic SmartModel modes, except for the
$Im_monitor_vec_map() command, which can be used only in SWIFT SmartM odel
mode.

T3> Note

The $lai_ commands are provided to support older designs. Therefore, you
do not have to convert $lai_ commandsto $Im_commands. However,
when starting anew design it is best to use the $Im_ commands and not the
$lai_ commands.

Hereisalist of the LMTV interface commands:

“$Im_command() or $lai_command()” on page 294

“$Im_dump_file() or $lai_dump_file()” on page 295

“$Im_help()” on page 296

“$Im_load_file() or $lai_load file()” on page 297
“$Im_monitor_enable() or $lai_enable_monitor()” on page 298
“$Im_monitor_disable() or $lai_disable_monitor()” on page 298
“$Im_monitor_vec_map() and $Im_monitor_vec_unmap()” on page 300
“$SIm_status() or $lai_status()” on page 302

April 2002 Synopsys, Inc. 293

Appendix A: LMTV Command Reference Simulator Configuration Guide

$Im_command() or $lai_command()

These commands provide access to the SWIFT command channel. You can use them to
send a command to the session or to amodel instance.

Syntax

$Im_command (“session_cmmd_string”);
$Im_command (inst_path, “model_cmmd_string”);
$lai_command (“session_cmmd_string”);
$lai_command (inst_path, “model_cmmd_string”);

Arguments

session_cmmd_string The SWIFT interface command to be sent to the
session.

inst_path The path name to the SmartModel instance to send the
command to. Used only with model commands.

model _cmmd_string The SWIFT interface command to be sent to the model

instance.
For more information about the SWIFT command channel, refer to “ The SMIFT
Command Channel” on page 23.

Examples

The following example sends the ReportStatus command to the instance “U1”, causing
It to generate a message reporting its configuration status.

% $l m command ("ULl", "ReportStatus");

The following example sends the TraceTimeFile off command to the session, causing it
to stop issuing trace messages. Note that the absence of an instance name identifies the
command as session-specific.

% $l m comrand ("TraceTineFile off")

294 Synopsys, Inc. April 2002

Simulator Configuration Guide Appendix A: LMTV Command Reference

$Im_dump_file() or $lai_dump_file()

Use these commands to dump the memory contents of the instance inst_path into thefile
filename. Thisworksonly for memory models. If the specified file already exists, it is
overwritten. Using this command eliminates the read cycles required to verify the
success of atest.

You can reload the dumped file into a memory model using the $Im_load_file()
command. The format of the dumped file is the same as the Synopsys memory image
file format required by a memory model at initialization.

Syntax
$Im_dump_file (inst_path, “ filename” [,“file_type’]);
$lai_dump_file (inst_path, “filename” [,"file_type’]);

Arguments

inst_path The path name to the SmartModel instance whose
memory information isto be dumped.

filename The path name to the file that is to receive the dumped
memory information from the model instance.

file type The type of configuration file to be dumped. The only

allowed valueis MEMORY, which is al so the defaullt.
This argument is provided for compatibility with the
historic environment.

April 2002 Synopsys, Inc. 295

Appendix A: LMTV Command Reference Simulator Configuration Guide

$Im_help()

Use this command to display the syntax for all of the SWIFT interface commands.

Syntax
$im_help();

Examples
The following example shows the results of issuing the command $im_help.

Q2 > $I mhel p;

LMIV comrands:
I m command("session_command"): execute a sessi on conmand.
| m command(inst_path, "nodel _command"):
execut e a nodel command.
I mdunmp _file(inst_path, "file_name", ["file_type"]):
dunp nenory into file.
Imload file(inst_path, ["file_name", "file type"]):
load file of programrabl e devi ce or menory.

Imnonitor_enable(inst_path [, "win_elenent” [,...]]):
enabl e wi ndow Moni t or.
Imnonitor _disable(inst_path [, "win elenment” [,...]]):

di sabl e wi ndow Moni t or
| mnonitor_vec_nmap(var_nane, inst_path, "win_ element" [, index]):
map windowto a variable for nonitoring.
| mnonitor_vec_unmap([var_name,] inst_path):
unmap w ndow to stop nonitoring.
Imstatus(inst_path): dunp instance status.

Commands conpatible with old rel ease :

| ai _enable nonitor("inst_path", [wn_elenent],...):
enabl e wi ndow Moni t or.
lai _disable monitor("inst_path", [win_ elenent],...):

di sabl e wi ndow Moni t or.

lai _dunp file("inst_path", "file nane", "file type"):
dunp nenory into file.

lai _load file("inst_path", "file name", "file type"):
load file of programmabl e device or nenory.

lai _status("inst_path"): dunp instance data.

296 Synopsys, Inc. April 2002

Simulator Configuration Guide Appendix A: LMTV Command Reference

$Im_load file() or $lai_load_file()

Use these commands to |oad the memory contents of the file filename into the instance
inst_path, which can be either a programmable device or amemory model. Using these
commands eliminates the write cycles required to set up the contents of the model.

Theload_file operation causes the selected model to reset itsinternal state to simulation
startup conditions and then read the specified file. After thefileisread, the model is
evaluated as a function of the new internal state and the current inputs and outputs are
scheduled with zero delay. After thisinitial evaluation phase, the model behaves as it
would normally.

You can load amodel with any file type that would normally be accepted by the model at
initialization. Additionally, the new configuration file you load is used for the specified
model instance after any subsequent command to reset or reinitialize.

Syntax
$im_load file (inst_path [, “filename”, “file type’]);
$lai_load_file (inst_path [, “filename”, “file_type']);

Arguments

inst_path The path nameto the SmartM odel instance into which
the contents of filename is to be loaded.

filename The path name to the configuration file that is to be
loaded for the model instance specified by inst_path.
The default isto use a path name defined with the
defparam statement in the design.

file _type The type of fileto be loaded. Allowed values are

MEMORY, JEDEC, PCL, and SCF. The defaultisto
use the file type of the file defined with the defparam
statement in the design.

April 2002 Synopsys, Inc. 297

Appendix A: LMTV Command Reference Simulator Configuration Guide

$Im_monitor_enable() or $lai_enable_monitor()

$Im_monitor_disable() or $lai_disable_monitor()

Use these commands to enable or disable SmartModel Windows for one or more
window elements of a model instance specified by inst_path. The SmartModel
Windows feature allows you to view and change the contents of a model's interna
registers through predefined windows, which usually reflect the model'sinterna state.
After enabling SmartModel Windows, you can read from the register using an
appropriate Verilog command or by adding the path name to the list of signals being
traced. If you attempt to read from an internal register without enabling SmartM odel
Windows the window content is not read.

The $Im_monitor_enable() and $Im_monitor_disable() commands are provided for
compatibility with the historic environment. You cannot access arrays of registers, asin
memory window elements, using these commands. In addition, you cannot create
dynamic windows needed for SmartCircuit modelsif you define awindow in a
configuration file. The $Im_monitor_vec_map() and $Im_monitor_vec_unmap()
commands provide these capabilities.

175> Note
Accessing internal statesis memory-intensive, so you may notice some
performance degradation when SmartModel Windows is enabled.

Syntax
$Im_monitor_enable (inst_path [, “window_element” [,...]]);

$Im_monitor_disable (inst_path [, “window_element” [,...]]);
$lai_enable_monitor (inst_path [, “window_element” [,...]]);
$lai_disable_monitor (inst_path [, “window_element” [,...]]);

Arguments

inst_path The path name to the SmartModel instance for which
SmartModel Windows isto be enabled.

window_element The name of the internal register toread. Thiscan bea

singlevalue or alist. The default isto read all internal
registers of the instance.

298 Synopsys, Inc. April 2002

Simulator Configuration Guide Appendix A: LMTV Command Reference

Examples

Thefollowing example enables SmartModel Windowsfor all windowsininstance“U1”,
then reads from the predefined window element IENA. Notice that you must enable
SmartModel Windows before attempting to read from the window element.

/| somewhere in the testbench ...

/'l enabl e access to all w ndows in instance Ul
$I m noni tor_enabl e(UL);

/1 display contents of w ndow el enent | ENA

$di splay("Val ue of register |ENAis %", $IENAY;

The following example disables the window explicitly for the register IENA.
% $I mnoni tor_disable(UL, "IENA");

The following example disables all windows in instance U1.
% $l m noni tor_di sable(UL);

The following example does not read the register IENA, because SmartModel Windows
was not enabled.

/1 somewhere in the testbench ...
$di splay("Val ue of register |ENAis %", $IENA;

April 2002 Synopsys, Inc. 299

Appendix A: LMTV Command Reference Simulator Configuration Guide

$Im_monitor_vec_map() and
$Im_monitor_vec_unmap()

Use these commands to enable or disable direct mapping between the user-defined
variable var_name and a model instance'sinternal register window_element. This
mapping allows you to read from, write to, or trace the internal register through your
user-defined variable. You must define this variable with a width corresponding to that
of the predefined window somewherein the design hierarchy (typically in the testbench)
before using these commands. Note that these commands only work in SWIFT
SmartModel mode.

Using $Im_monitor_vec_map(), you can access arrays of registers, which is useful for
addressing specific memory locations, as in the memory window elements feature. In
addition, $Im_monitor_vec_map() alows dynamic window creation. Thus, if a
SmartCircuit model changesits configuration file so that more windows are created, you
can add those names to your testbench, and enable tracing directly.

Syntax
$Im_monitor_vec_map (var_name, inst_path, “window_element” [,index]);

$Im_monitor_vec_unmap ([var_name,] inst_path);

Arguments

var_name The name of a user-defined variable to map to
window_element. The variable must be already
defined somewhere in the design hierarchy. The
default for $Im_monitor_vec_unmap() isto unmap all
mapped variables for that instance.

inst_path The path name to the SmartModel instance whose
internal register isto be mapped to the user-defined
variable var_name.

window_element The name of the internal register to be mapped to
var_name. Can be part of an array.

index The index of the array, if the window element isa
memory window. The defaultisO.

Examples

The following example defines three variables and maps them to specific memory
locations in the memory array UMEM for memory model instance “U1”. Note that
these tasks cannot be performed using $Im_monitor_enable(). Although the example
features an array of registers, the tasks are equally useful for scalar windows, where you
can omit the index option or set it to O.

300 Synopsys, Inc. April 2002

Simulator Configuration Guide Appendix A: LMTV Command Reference

/] Assunme a 4Kx8 nenory nodel, on a controller board.

/1 Such a nodel would typically have one w ndow cal | ed UVEM
[/ This windowis a 4K deep array of 8 bit registers. In
[/l particular, the user is interested in these 3 |ocations:
/!l Interrupt service routine, LONADDRESS: 100

[/ Interrupt service routine, HGH ADDRESS: 101

[/l Control store : 200

[/ that are significant to the design.

reg [7:0] ISRLON // variable to map to |ocation 100
reg [7:0] ISRHGt // variable to map to |ocation 101
reg [7: 0] CONTRCL; // variable to map to | ocation 200

[/ enabl e nonitoring of these variabl es
$Immonitor_vec_map(ISR LON UL, "UVEM, 100);
$Imnmonitor_vec_map(ISRHGH UL, "UMEM, 101);

$l mnoni tor_vec_map(OONTRCL, UL, "UMVEM, 200);

/[l ... at this time, you can read, wite, or trace these
[/ variables. For exanple, assign the address of the interrupt
/] service routine to be 0x5000

| SR LON= 0x00 ;
SR H&H = 0x50 ;

/1 or the same assignnent can be done as foll ows:

define ISR{ISRHGH ISR LOY

| SR = 16h5000 ;

/1 this one staterment will access two different

/1 and i ndependent menory | ocations at once.

// later in the simulation, you can disabl e nmonitoring

[/ for the ' GONTRCL' register:

$I m moni t or _vec_unmap(OONTRQL, UL);

/] or you can disable nonitoring of all w ndows in that instance:
$l m noni tor_vec_unmap(UL);

April 2002 Synopsys, Inc. 301

Appendix A: LMTV Command Reference Simulator Configuration Guide

$Im_status() or $lai_status()

Use these commands to report the current status of the model instance inst_path. The
report includes the names and values of internal windows.

Syntax
$Im_status (inst_path)
$lai_status (inst_path);

Arguments

inst_path The path name to the SmartModel instance whose
statusisto be reported.

Examples

The following example shows the output of the $im_status() command for model
instance “U1".

Cl > $Imstatus(UlL);

Note: <>

Model tenplate: mem

Version: not avail abl e

I nst anceNane: DES|I G\ UL

Ti m ngVersi on: MEM O

Del ayRange: NAX

MenoryFile: nenory. 1

Timng Constraints:

Smart Model | nstance DESI GN UL(nem MEM 0), at tinme 1000.0 ns

Not e: Smart Mbdel Wndows Descri pti on:

UVEM 2048] "2K x 8 Static RAM:

Smart Model Wndows not enabl ed for this nodel .

Smart Model | nstance DESI GN UL(nem MEM 0), at tinme 1000.0 ns

302 Synopsys, Inc. April 2002

Simulator Configuration Guide

Index

Index

Symbols

$add_instance command 223, 224
$display command 74

$lai_command command 294
$lai_disable_ monitor command 70, 298
$lai_dump_file command 295

$lai_enable_monitor command 70, 72, 73,
298

$lai_load file command 297
$lai_status command 70, 72, 302
$Im_command command 294
$Im_dump_file command 295
$Im_help command 296

$Im load file command 297
$Im_log_test_vectors 93

$Im_loop _instance 94
$Im_monitor_disable command 70, 298

$Im_monitor_enable command 70, 71, 72,
73, 298

$Im_monitor_vec_map command 70, 71,
74, 300

$Im_monitor_vec_unmap command 70,
300

$Im_status command 70, 72, 302
$Im_timing_information 95
$Im_timing_measurements 96
$Im_unknowns 96

+vera finish_on_end switch 272

A

add breakpoint command 232
add bus command 233

add lists command 231, 233
add monitors command 231
add primitive command 224
add synonym command 233
add traces command 231
Admin tool 216

AlX

April 2002

compiling C files 30
AMPLE_PATH environment variable 216
Anaysistools
Mentor Graphics 243
rules to determine descriptors 244
ANSI C compiler
with Cyclone 187
Attributes
SmartModel 20

B

Breakpoints
setting with SmartModels 232
Bus symbols
SmartModel 218
Buses
renaming with hardware models 188

C

C compiler 187
ccn_report command 71
cds.lib path 205

CDS _INST_DIR environment variable
102

CDS VHDL environment variable 192
cflags 187
Characters, mapping 188
Characters, replacing special 188
Check Shell Software utility 248
Command Channel

SWIFT 227
Command interaction

QuickSim |1 227
Command line

switches, LMTV 77

switches, QuickSim Il 226
Commands

$add _instance 223, 224

$display 74

Synopsys, Inc. 303

Index

$lai_command 294

$lai_disable monitor 70, 298
$lai_dump_file 295
$lai_enable_monitor 70, 72, 73, 298
$lai_load file 297

$lai_status 70, 72, 302
$im_command 294

$Im_dump_file 295

$Im_help 296

$Im load_file 297
$im_log_test_vectors 93
$Im_loop_instance 94
$Im_monitor_disable 70, 298
$im_monitor_enable 70, 71, 72, 73, 298
$Im_monitor_vec_map 70, 71, 74, 300
$Im_monitor_vec_unmap 70, 300
$im_status 70, 72, 302
$Im_timing_information 95
$Im_timing_measurements 96
$Im_unknowns 96

add breakpoint 232

add bus 233

add lists 231, 233

add monitors 231

add primitive 224

add synonym 233

add traces 231

ccn_report 71

command channel 23
create_smartmodel_lib 126, 143
flexm_setup 27

force 232

geninterface 182
Im_disable_timing_checks 198, 210
Im_enable_timing_checks 198, 210
Im_log_test vectors 198
Im_loop_instance 198, 211

Im m%cslseé 243, 245, 246, 248, 249, 251,

Simulator Configuration Guide

Imsi list 133

Imsi logon 133

Imsvg 98

LMTV 291

LMTV SmartModel windows 70
Imvc_template 57

ncelab 207

ncshell 202

ncsim 203

ncverilog 108

ncvhdl 203

nologvectors signal instance 257
propagation 255

reg_model 236, 245, 252

reread modelfile 235

restore state 234

save state 234

signal instance 227, 252, 257, 258, 260
simv 275

sm_entity 155, 158

tmg_to_ts 245

tmg_to_ts, syntax 263

unknown handling 255

vcom 157, 160

VERA 272

vhdlan 129, 131

vhdisim 145

vlib 157

vaim 157, 161

Comments

submitting 17

COMP property 221
Compiling Cfiles

AIX 30
HP-UX 30
Linux 31
NT 31
Solaris 30

Component interface 245
Component registration 236
Concept
procedure 69
C-only Command Mode
compiling C files 30
with FlexModels 28

Im_model, syntax 260
Im_pam_shortage 198, 211
Im_pattern_history 199, 211
Im_timing_measurements 198, 210
Im_unknowns 198, 210
Im_vconfig 98

304 Synopsys, Inc. April 2002

Simulator Configuration Guide

Constraint mode switch 226
Conversions
shell software 250
technology file 250
Converter
tmg_to_ts 245
create_smartmodel lib command 126, 143
Custom symbols 235
mapping 237
Cyclone
elaboration warnings with hardware
models 185
setup options with hardware models 186
with FlexMocdels 169
with MemPro models 169
with SmartModels 169
cylab, -4-statein 185
cysim, -4 statein 185

D

Declarations, variable 249
defparam statement
with hardware models 88
Delay files 249
DelayRange 26
Delays, propagation 249
Descriptions
functional 243, 245
graphical 243, 245
technology 245
timing 245
Descriptors, determining for hardware
models 244
Design
capture, Verilog-XL 68
flow, Verilog-XL 66
Design Architect
SmartModé library menusto 216
with SmartModels 216
Design Architect menus
building designs with SmartModels 221
levels 222

Index

Design environment, MGC 243
Designs
building, using menus 221
building, without menus 223
-DLM_HW_DEBUG flag 187
-DLM_HW_PIN_DEBUG flag 187
Drive strengths 225

E

Environment variables

AMPLE _PATH 216

CDS_INST_DIR 102

CDS VHDL 192

LAl _LIB 77

LAI_OBJ77

LD_LIBRARY_PATH 40, 41, 62, 63,
102, 112, 140, 154, 168, 192,
202, 214

LM_DIR 40, 62, 112, 140, 154, 192

LM_LIB 40, 62, 112, 140, 154, 192

LM_LICENSE _FILE 40, 62, 102, 112,
124,140, 153, 167, 192, 201, 213

LM_OPTION 88, 184

LMC _HOME 40, 61, 77

LMC _PATH 77

LMC_SFI 57

LMC _TIMEUNIT 203

LMC _VLOG 77

MA_CY 175

setting for LMTV 77

SHLIB_PATH 41, 63, 103, 112, 140,
154, 168, 192, 202, 214

SNPSLMD_LICENSE FILE 40, 62,
102, 112, 124, 140, 153, 167,
192, 201, 213

SSI_LIB FILES 271, 273

SYNOPSY S 139

SYNOPSYS SIM 123, 139

VCS HOME 41

VCS LMC 57

VCS LMC_HM_ARCH 57

VCS SWIFT_NOTES 41

Error message "Keys do not match”" 185

system 222 Errors
messages 229
April 2002 Synopsys, Inc. 305

Index

registration 248
Evauation
hardware modelsin QucikSim Il 254
Examples
FlexModel VHDL instantiation 45, 80,
105, 115, 129, 145, 160
FlexModels with VCS 48

F

Fault simulation
with SmartModels 25
Files

cds.lib 205

delay (.DLY) 249

force value (.FRC) 249

IfsmLibPck 193

Imtv.o 82, 104, 106, 107, 114, 117, 119

mapping, pin 237

MCF 226

model.vhd 105, 115, 159

model_fx_comp.vhd 159

model_fx_sim.vhd 104, 114, 159

model_tst.vhd 105, 115, 159

modelsim.ini 155, 160

ncshell 205

ncsim 207

pin_map 237

pin_map, example 238

SMiLibrary.vhd 193

SMLibrary.vhd 203

SMpackage.vhd 193

state tracking (.TRK) 249

synopsys_vss.setup 128

technology 245, 249, 260

technology, types 249

timing 247

timing check (.TCK) 249

variable declaration (.DCL) 249

veriuser.c 82, 104, 106, 107, 114, 117,
119

vhdlsm 146

vsystem.ini 160

306 Synopsys, Inc.

Simulator Configuration Guide

FlexCFile 27
flexm_setup 27, 29
FlexModel
attributes 21
examples with VCS 48
fault smulation 25
FlexModel SWIFT parameters 26
FlexModelld 26
FlexModels
dynamic linking with PL1 104, 114
example isnatiations 203, 206
model.vhd 79
model_fx_sim.vhd 79
model_pkg.inc 79
model_tst.vhd 79
PLI static linking 106, 117
using with MTI VHDL 158
VHDL instantiation 203, 206
with Cyclone 169
with Leapfrog 169, 194
with MTI-Verilog 114
with NC-VHDL 204
with Scirocco 127
with VCS 43
with VERA 265
with VSS 143
FlexModel Src 27
FlexTimingMode 26
FMI libary 194, 204, 207
Force command 232
Force valuesfile 249

G

genilterface command 182
geninterface
deleting intermediate files 180
example 184
examples 183
how it works 175
options per model 181
overwriting files 181
overwriting pin names per model 182
processing 187
running 182

April 2002

Simulator Configuration Guide Index

syntax 182 with QuickSim Il 243, 252
Getting help 16 with Scirocco 132
Graphical descriptions 245 with Teradyne LASAR 38

with VEDA Vulcan 38
H with ViewLogic Fusion 38
Hardware model functional descriptions APUX -
with QuickSim I 245 compiling C files 30
Hardware models

dynamic linking with PLI 89, 108, 119 |
elaborating and simulating design 184 Iflags 187

functional descriptionswith QuickSim1l IKOS Voyager 38
_ 243 N with hardware models 38
installation prerequisites 174 | ndeterminate strength mapping 257
instantiating 88 Information, signal instance 259
instantiating in Verilog-XL 88 Installation prerequisites
keyword replacement 189 hardware model 174
linking simulators 37 Instantiation
linking with SFI 37 FlexModel VHDL 42, 45, 63, 80, 103,
loop mode 258 105, 113, 115, 129, 145, 160
modifying 251 Instruction
performance monitoring 88, 184, 255, tracing, execution 232

259, 260 ’

! Intel NT

propagation delays 249 using MTI Verilog 114
registering 245, 246 using MTI VHDL 158
registration 245

Interfaces

rules for determining descriptors 244 hardware model component 245

script for Scirocco 135
SFI 84
shell timing 254
test vector symbols 92
timing
measurement 257
timing checks 249
timing checks with Cyclone 178
timing delays with Cyclone 178
understanding test vector files 92
unknown propagation 256
variable declarations 249
verilog.log file example 89
with Cyclone 179
with IKOS Voyager 38
with Leapfrog 197
with MTI Verilog 119
with MTI VHDL 162
with NC-Verilog 108

April 2002 Synopsys, Inc. 307

Index

J
JEDECFile property 220

K
Keys do not match, error message 185

L

LAI_LIB environment variable 77
LAI_OBJenvironment variable 77
Id linker 187
LD LIBRARY_PATH environment
variable 40, 41, 62, 63, 102, 112,
140, 154, 168, 185, 192, 202, 214
-LDFLAGS -E switch 274
Leapfrog
with FlexModels 169, 194
with hardware models 197
with MemPro 194, 207
Lespfrog utilities
with hardware models 198
IfsmLibPck file 193
Libraries
CLI functions 144
FMI 194, 204, 207
model_pkg.inc 44, 114
model_pkg.o 29
model _pkg.vhd 159
model _pkg.vr 271
model_pkg.vrh 271
model _user pkg.vhd 159
sim_lib 129, 145, 160, 207
sim_pli.o 29
sm_pli_dyn 82, 106, 108, 117, 119
SmartModel Library menus 216
SmartModel, LMTV/SWIFT 76
SmartModel, Verilog-XL 76
SMpackage.vhd 203
swiftpli 63, 79, 80, 81, 103, 104, 106,
107,113, 114, 117
vera loca_dil 273

308 Synopsys, Inc.

Simulator Configuration Guide

LIBRARY statement 129, 145, 160, 203,
206

license file settings
Model Source 177

linker 187

Linux
compiling C files 31
with MemPro 161

LM_DIR environment variable 40, 62,
112, 140, 154, 192

Im_disable timing_checks command 198,
210

Im_enable_timing_checks ommand 198,
210

LM_LIB environment variable 40, 62,
112, 140, 154, 192

LM _LICENSE_FILE environment
variable 40, 62, 102, 112, 124,
140, 153, 167, 192, 201, 213

Im_log_test vectors command 198
Im_loop_instance command 198, 211

Im_model command 243, 245, 246, 248,
249, 251, 252, 260

Im_model symbol generation 249

LM_OPTION environment variable 88,
184

Im_pam_shortage command 198, 211
Im_pattern_history command 199, 211

Im_timing_measurements command 198,
210

Im_unknowns command 198, 210
Im_vconfig command 98
LM-1200 171
LM-1400 171
LMC_COMMAND
setting SWIFT session commands 24

April 2002

Simulator Configuration Guide Index

LMC_HOME environment variable40, 61, pin 237
77,101,111, 123, 139, 153, 167, PIN_NAME 236

191, 201, 213 pins, conditional 239
LMC_PATH environment variable 77/ rules for special characters 188
LMC_SFI environment variable 57 unknowns 255
LMC _TIMEUNIT environment variable MCF file 226

203 with SmartModels 226
LMC_VLOG environment variable 77 Measurement, timing 257
LMC_VLOG environment variables 77 MemoryFile property 219
Immsi logon command 133 MemPro
Imsi list command 133 with NC-VHDL 207
LMSI_DELAY_TYPE VHDL generic MemPro models

134,150 controlling message output 36
LMSI_LOG VHDL generic 134, 150 dynamic linking with PLI 81, 108, 117
LMSI_TIMING_MEASUREMENT error messages 35

VHDL generic 133, 150 fatal messages 35
LMTV generics 31

command reference 291 info messages 35
command-line switches 77, 291 instantiating 34
historic SmartModel mode for Verilog- message level constants 36

XL 64 parameters 31
modes of operation for Verilog-XL 64 PLI static linking 82, 107, 119
simulating older designs with Verilog- timing messages 35

XL 76 using with ssimulators 31

static linking with PLI 82, 106, 107, 117 warning messages 35
SWIFT SmartModel mode with Verilog- with Cyclone 169

XL 64 with Leapfrog 194, 207
Imvc_template command 57 with MTI Verilog 117
Imvsg command 84 with MTI VHDL 161
Imvsg commnd 98 with NC-Verilog 108
L ocation maps with Scirocco 130
variables, Mentor Graphics 216 with VCS 53
Logging test vectors 257 with Verilog-XL 81
Logic smulation 224 with VSS 146
with SmartModels 224 X-handling messages 35
Loop mode, with hardware modelsin Mentor Graphics
QuickSim Il 258 analysistools 243
design environment 243
M location map variables 216
user tree management 215
MA_CY environment variable 175 M essages
ma_cyclone software tree 174 constants, level with MemPro 36
Manual overview 13 controlling output with MemPro 36
Mapping MemPro error 35
indeterminate strength 257 MemPro fatal 35

April 2002 Synopsys, Inc. 309

Index

MemPro info 35

MemPro timing 35

MemPro warning 35

MemPro X-handling 35

SmartModel error 229

SmartModel format 229

SmartModel note 229

SmartModel trace 229

SmartModel warning 229
MGC component interface 243
Model Access

Cycolne configuration options 171
Model files

model_fx_sim.vhd 159
MODEL property 220
model.v files generated by crshell 85
model.v files, generating 84
model.vhd 115, 159
model.vhd file 105
model_fx_comp.vhd 159
model_fx_sim.vhd 114, 159
model_fx_sim.vhd file 104
model_pkg.o 29
model _pkg.vhd 159
model_tst.vhd 115, 159
model _tst.vhd file 105
model_user pkg.vhd 159
Model Access

for Cyclone 170

for QuickSim Il 240

for Verilog 85
ModelAccess for Cyclone

version number 170
Model Access for QuickSim 11

version number 240
ModelAccess for Verilog

version number 89
modelsim.ini file 155, 160
Model Source

license file settings 177

system hardware and software 171

310

Simulator Configuration Guide

MS-3200 171
MS-3400 171
MTI Verilog
simulatingusing LMTV 113
with FlexModels 114
with Hardware models 119
with MemPro models 117
MTI VHDL
with FlexModels 158
with hardware models 162
with MemPro models 161
with SmartModels 155, 193

N

ncshell command 202
ncshell file 205
ncsim command 203
ncsim file 207
NC-Verilog
simulating with LMTV 103
with hardware models 108
with MemPro models 108
with SmartModels 103
ncverilog command 108
NC-VHDL
with FlexModels 204
with MemPro 207
with SmartModels 202
ncvhdl command 203
nologvectors signal instance command 257
NT
compiling C files 31

P

Parameters
also called attributes 20
DelayRange 26
FlexCFile 27
FlexModelld 26
FlexModelSrc 27
FlexTimingMode 26
TimingVersion 26

Synopsys, Inc. April 2002

Simulator Configuration Guide

PCLFile property 220
pin names, overwriting by genlnterface 182
PIN property 220, 236
Pin symbols 218
pin_map file 237
example 238
PIN_NAME mapping 236
PIN_NAME property 221, 236
pin_name_ovr statement 182
PIN_NO property 221
Pins
mapping 237
mapping, conditional 239
PINTY PE property 220
PKG property 221
PLI
communication with Simulator Function
Interface (SFI) 84
dynamic linking with FlexModels 114
dynamlic(:) El?»l nking with Hardware models
dynamic linking with MemPro models
108, 117
dynamli(i g nking with SmartModels 63,
static linking with FlexModels 106, 117
static “ﬂg ng with MemPro models 107,
static linking with SmartModels 114
PLIWizard 82, 104, 106, 107
Properties
COMP 221
editing 229
JEDECFile 220
MemoryFile 219
MODEL 220, 243
PCLFile 220
PIN 220, 236
PIN_NAME 221, 236
PIN_NO 221
PINTY PE 220
PKG 221
REF 221
SCFFile 220
SWIFT 235

April 2002

Index

SWIFT_TEMPLATE 220
symbol 218
symbol, required for simulation 220
TimingVersion 219
propogation command 255

Q

QuickSim 11
changing timing 229
command interaction 227
command line switches 226
component interface 243
constraint checking 229
constraint, switch 226
default timing 225
installing SWIFT interface 215
interactive commands 227
managing user trees 215
model symbol properties 220
simulating logic models 252
SmartModel windows with 231
SWIFT interface 215
-time_scale switch 226
timing,switch 226
with hardware models 243

R

Reconfiguration

models, for ssimulation 228
REF property 221
reg_model command 236, 245, 252
Register elements

combining with SmartModels 233
Registration 252

component 236

errors, dealing with 248

hardware models 245

logic models 245, 246

models 245

Synopsys, Inc. 311

Index

Registration tools, reference 260
Related documents 13

reread modelfile command 235

restore state command 234
run_flex_examples_in_vcs.pl Script 53
running verifySetup 175

S

save state command 234
SCFFile property 220
Schematic capture

adding SmartModel to schematic 217
Schematic Editor

creating instances 223, 224
Scirocco

hardware model utilities 133

script for hardware models 135

VHDL generics 133

with FlexModels 127

with hardware models 132

with MemPro models 130

with SmartModels 124
Scripts

run_flex_examples in_vcs.pl 53
Selection, timing shell 254
Session, ending the simulation 260
setup file, editing 180
SFI

linking hardware models 37
SFI. see Simulator Function Interface
Shell Software

conversion to VHDL 189

names 189
Shell Software Cconversions with

hardware models 250

Shell, timing

with hardware models 254

312 Synopsys, Inc.

Simulator Configuration Guide

SHLIB_PATH environment variable 41,
63,103, 112, 140, 154, 168, 192,
202,214

signal instance command 227, 252, 257,
258, 260

signal renaming, rules 188

Signal strength

with SmartModels 77
Simulation session, ending 260
Simulations

fault 25

reconfiguring models for 228

single-step 232
Simulator Function Interface (SFI) 84

version number 89
Simulator integration

Cyclone 169

Leapfrog 194, 207

ModelSim 158

ModelSim VHDL 161

MTI VHDL 158

V-System 5.0 158

simv command 275

Slang hardware model 179

Slang interface 179

sm_entity command 155, 158

SmartCirctuit models

Models

SmartCircuit 203

SmartCircuit models

with SWIFT Cxmmand Channel 23
SmartModel Library

documentation 13

fault smulation 25

message formats 229
SmartModel Windows

in SWIFT SmartModel mode 72

in Verilog-XL historic mode 71
SmartModel windows

elements 234

how they work 231

LMTV, commands 70

tracing instruction execution 232

with QuickSim 1l 231

April 2002

Simulator Configuration Guide

with Verilog-XL 70
SmartModels
adding to schematic 217
attributes, required 21
changing program flow 234
changing program flows 234
changing timescale 76
creating instances in QuickSim 223
customizing timing 76
drive strengths 225
dynamic linking with PL1 63, 103, 113
editing properties 229
evaluation 254
fault smulation 25
functional descriptionsin Quickim Il 243
graphi 5213 descriptions with QuickSim Il

instantiating 22

library menus, to Design Architect 216

LMTV/SWIFT libraries 76

logic simulation 224

message format 229

message formats 229

pin and bus symbols 218

PLI static linking 104, 114

reconfiguring for simulation 228

renaming instances in QuickSIM 233

signal levels 225

status checking 228

support levels 225

SWIFT usage notes for MGC users 217

symbol properties used by SWIFT 219

symboals, creating new 235

symbols, modifying 235

technology descriptions with QuickSim
11 243

timing constraint checks 229

trace messages 229

user-defined window elements 70

using with SWIFT simulators 20

Verilog-XL libraries 76

warning messages 229

Windows, SWIFT mode 72

with Cyclone 169

with MTI VHDL 155, 193

April 2002

Index

with NC-Verilog 103
with NC-VHDL 202
with Scirocco 124
with VCS41
with Verilog-XL 63, 64
with VSS 141
SMILibrary.vhd file 193
SMLibrary.vhd 203
SMpackage.vhd 203
SMpackage.vhd file 193
SNPSLMD_LICENSE_FILE environment
variable 40, 62, 102, 112, 124,
140, 153, 167, 192, 201, 213
Solaris
compiling C files 30
Special characters
mapping rules 188
replacing 188
SSI_LIB_FILES environment variable
271,273
State tracking 249
Statements
technology file 249
SunOS, changing global settings on 180
Support levels
SmartModels 225
SWIFT 19
SWIFT Command Channel 23, 227
SWIFT interface
properties 235
QuickSim 1, installing 215
symbol properties 218
usage notes for MGC users 217
SWIFT parameters
with FlexModels 26
with SmartModels 20
SWIFT_TEMPLATE property 220
swiftpli 63, 79, 80, 81, 103, 104, 106,
107,113, 114, 117
Switches
+vera finish_on end 272
command line, QuickSim Il 226
constraint mode 226
-LDFLAGS-E. 274

Synopsys, Inc. 313

Index

time scale 226

timing mode 226

VCS-Zp4 55, 56
Symbol properties

required for ssmulation 220
Symbols 217, 252

alternate, selecting 224

buses 218

creation 245

custom 235

editing 249

pins 218

properties 218

registration 245

rules for creating 249

SmartModel, creating new 235

SmartModel, modifying 235
SYNOPSY S environment variable 139
synopsys_Im_hw.setup file 180
synopsys _Im_hw.setup.sunos file 180
SYNOPSYS SIM environment variable

123,139

synopsys vss.setup file 128, 145

T

Technology descriptions 245
Technology files 245, 249, 260
conversions 250
types 249
Teradyne LASAR
with hardware models 38
Test vector logging 257
Test vector logging, hardware model
example 90
Timescale
changing with SmartModels 76
switch with SmartM odels 226
Timing checks
with hardware models 249
Timing descriptions 245
Timing files 247
Timing measurement
with hardware models 90

314 Synopsys, Inc.

Simulator Configuration Guide

Timing modes
changing 229
default 225
switch 226
Timing shell selection 254
TimingVersion 26
TimingVersion property 219
tmg_to_ts command 263
tmg_to_ts converter 245
Tools
Admin 216
analysis, Mentor Graphics 243
flexm_setup 27, 29
Im_mozczlseé 243, 245, 246, 248, 249, 251,
Im_model, syntax 260
reg_model 236, 245, 252
registration, reference 260
tmg_to_ts 245
tmg_to_ts, syntax 263
Tracing
instruction, execution 232
Tracking, state 249
Transcript, registration - checking 248
Trees
management, Mentor Graphics 215
Triggering
word, setting 232
Typographical conventions 15

U

Unknown mapping

with hardware models 255
Unknown propagation

with hardware models 256
USE statement 129, 145, 160, 203, 206
Using 82
Using FlexModels

with C-only Command Mode 28

with SWIFT simulators 28
Using MemPro models

with Verilog simulators 33

with VHDL simulators 33

April 2002

Simulator Configuration Guide

Utilities
called by Im_model command 245
Check Shell Software 248

Im_model 243, 245, 246, 248, 249, 251,

252

\Y

Variables
location map, Mentor Graphics 216
vcom command 157, 160
VCS
FlexModel examples run script 51
invoking on AlX 42
invoking on HP-UX 42
invoking on Linux 42
invoking on Solaris 42
with FlexModels 43
with MemPro models 53
with SmartModels 41
with VERA 273
VCS utilities
with hardware models 60
VCS HOME environment variable 41
VCS LMC environment variable 57
VCS LMC_HM_ARCH environment
variable 57
VCS SWIFT_NOTES environment
variable 41
Vectors, test, logging 257
VEDA Vulcan
with hardware models 38
VERA
compiling source files 271
compiling testbench 272
testbench creation 268
testbench example 269
UDF interface 266
with FlexModels 265
with FlexModels in testbench 269
with VCS 273

Index

executing 175

Verilog

include pkgs 115
sim_pli.0 29

Verilog-XL

capturing designs 66
compiling and simulating 89
Concept procedure 69
design
capture with Concept 68
design capture 68
design flow 66
design flow with SmartModels 67
executable 89
save and restore 93
simulating and compiling 89
simulating using LMTV 76
using SmartModel windows with 70
using with SmartModels 64
with MemPro 81
with SmartModels 63
Version numbers, finding 89
VHDL generics
LMSI_DELAY_TYPE 134, 150
LMSI_LOG 134, 150
LMSI_TIMING_MEASUREMENT
133, 150
with Scirocco 133
with VSS 149
VHDL keywords, unacceptable as signal
names 189
VHDL shell, creating for Cyclone 187
vhdlan command 129, 131
vhdlsim command 145
vhdlsim file 146
ViewLogic Fusion
with hardware models 38
Visua C++ 31, 47
vlib command 157
vsim command 157, 161

VSS
VERA command 272 -
vera local.dll library 273 VDL generics 149,
verifySetup with MemPro models 146
error message 175
April 2002 Synopsys, Inc. 315

Index

with SmartModels 141
V-System 158
vsystem.ini file 160

w

Windows
LMTV SmartModel commands 70
SmartModel, elements 234
SmartModel, tracing instruction
execution 232
SmartModels, how they work 231
SmartModels, with QuickSim |1 231
Word triggering
setting 232
Wrappers
SWIFT 104

Z
-Zp4 switch for VCS 55, 56

316 Synopsys, Inc.

Simulator Configuration Guide

April 2002

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Some Hyperlinks May Not Work
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website

	Comments?

	1 Using Synopsys Models with Simulators
	Overview
	Using SmartModels with SWIFT Simulators
	SmartModel SWIFT Parameters
	Instantiating SmartModels
	The SWIFT Command Channel
	Fault Simulations

	Using FlexModels with SWIFT Simulators
	flexm_setup Command Reference
	Instantiating FlexModels with C-only Command Mode

	Using MemPro Models with VHDL and Verilog Simulators
	Using MemPro Models with VHDL Simulators
	Using MemPro Models with Verilog Simulators
	Instantiating MemPro Models
	Controlling MemPro Model Messages
	Controlling MemPro Message Output
	Message Level Constants

	Using Hardware Models with Different Simulators
	Linking Other Supported Simulators

	2 Using VCS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VCS
	Using FlexModels with VCS
	VCS FlexModel Examples
	Script for Running FlexModel Examples in VCS
	Example Simulator Run Script

	Using MemPro Models with VCS
	Using MemPro Models with VCS with Verilog Testbenches
	Using MemPro Models with VCS with C Testbenches

	Using Hardware Models with VCS
	Example Using Runtime Option
	Example Using DelayRange Parameter
	VCS Utilities

	3 Using Verilog-XL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Verilog-XL
	Verilog-XL Usage Notes for SmartModels

	Using FlexModels with Verilog-XL
	Using MemPro Models with Verilog-XL
	Using MemPro Models with Verilog-XL with Verilog Testbenches
	Static Linking with LMTV

	Using Hardware Models with Verilog-XL
	Prerequisites
	Using Hardware Models
	$lm_log_test_vectors Command Reference
	$lm_loop_instance Command Reference
	$lm_timing_information Command Reference
	$lm_timing_measurements Command Reference
	$lm_unknowns Command Reference
	lmvsg Command Reference

	4 Using NC-Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-Verilog
	Static Linking with LMTV

	Using FlexModels with NC-Verilog
	Static Linking with LMTV

	Using MemPro Models with NC-Verilog on UNIX
	Static Linking with LMTV

	Using Hardware Models with NC-Verilog
	NC-Verilog Utilities

	5 Using MTI Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI Verilog
	Static Linking with LMTV

	Using FlexModels with MTI Verilog
	Static Linking with LMTV

	Using MemPro Models with MTI Verilog
	Static Linking with LMTV

	Using Hardware Models with MTI Verilog
	MTI Verilog Utilities

	6 Using Scirocco with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Scirocco
	create_smartmodel_lib Command Reference

	Using FlexModels with Scirocco
	Using MemPro Models with Scirocco
	Using Hardware Models with Scirocco
	Scirocco Utilities
	VHDL Model Generics with Scirocco

	7 Using VSS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VSS
	create_smartmodel_lib Command Reference

	Using FlexModels with VSS
	Using MemPro Models with VSS
	Using Hardware Models with VSS
	VSS Example with TILS299 Hardware Model
	VSS Utilities
	VHDL Model Generics with VSS

	8 Using MTI VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI VHDL
	sm_entity Command Reference

	Using FlexModels with MTI VHDL
	Using MemPro Models with MTI VHDL
	Using Hardware Models with MTI VHDL
	MTI VHDL Example Using TILS299 Hardware Model
	hm_entity Command Reference
	MTI VHDL Utilities

	9 Using Cyclone with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Cyclone
	Using FlexModels with Cyclone
	Using MemPro Models with Cyclone
	Using Hardware Models with Cyclone
	ModelSource System Hardware and Software
	LM-1400/LM-family System Hardware and Software
	Configuration Options
	Cyclone User Setup
	Using Hardware Models with Cycle-Based Simulators
	genInterface Command Reference
	Cyclone Simulation
	Cyclone genInterface Setup Files
	Cyclone genInterface Processing

	10 Using Leapfrog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Leapfrog
	Using FlexModels with Leapfrog
	Using MemPro Models with Leapfrog
	Using Hardware Models with Leapfrog
	Leapfrog Example with TILS299 Hardware Model
	Leapfrog Utilities

	11 Using NC-VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-VHDL
	Using FlexModels with NC-VHDL
	Using MemPro Models with NC-VHDL
	Using Hardware Models with NC-VHDL
	NC-VHDL Example with TILS299 Hardware Model
	NC-VHDL Utilities

	12 Using QuickSim II with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels and FlexModels with QuickSim II
	Installing the QuickSim II SWIFT Interface
	Using SmartModels/FlexModels with QuickSim II
	Schematic Capture
	Logic Simulation
	Custom Symbols

	Using Hardware Models with QuickSim II
	Setting up Hardware Models in QuickSim II
	Using Hardware Models in QuickSim II
	Model Registration
	Registering a Model with lm_model
	Modifying a Hardware Model
	Simulating with Hardware Models in QuickSim II
	lm_model Command Reference
	tmg_to_ts Command Reference

	13 Using VERA with Synopsys Models
	Overview
	Using VERA with FlexModels
	Using FlexModels with the VERA UDF Interface
	Table 33: FlexModel Files Used with the VERA UDF Interface
	Table 34: Link Line Object Files

	Creating a VERA Testbench
	Table 35: VERA Header Files

	VERA Testbench Example
	Incorporating FlexModels in a VERA Testbench
	Table 36: FlexModel VERA Files

	Using VERA with VCS

	Using VERA with MemPro Models
	Mempro-VERA Overview
	Figure 18: The MemPro-VERA Interface
	Figure 19: VERA Model Class Hierarchy
	Table 37: Key MemPro-VERA Files
	Figure 20: Mempro-VERA Design Flow

	Adding MemPro Commands to the VERA Testbench
	Building the VERA UDF Dynamic Library
	Compiling the VERA Source Files
	Building the Simulator Executable
	Running the Simulation

	A LMTV Command Reference
	Overview
	LMTV Command Line Switches
	LMTV Commands
	$lm_command() or $lai_command()
	$lm_dump_file() or $lai_dump_file()
	$lm_help()
	$lm_load_file() or $lai_load_file()
	$lm_monitor_enable() or $lai_enable_monitor()
	$lm_monitor_disable() or $lai_disable_monitor()
	$lm_monitor_vec_map() and $lm_monitor_vec_unmap()
	$lm_status() or $lai_status()

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

