
Simulator Configuration
Guide for Synopsys Models

April 2002

To search the entire manual
set, press this toolbar button.
For help, refer to intro.pdf.

Copyright © 2002 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

Synopsys and the Synopsys logo are registered trademarks of Synopsys, Inc. For a list
of Synopsys trademarks, refer to this web page:

http://www.synopsys.com/copyright.html

All company and product names are trademarks or registered trademarks of their
respective owners.

2 Synopsys, Inc. April 2002

Simulator Configuration Guide

http://www.synopsys.com/copyright.html

Simulator Configuration Guide Contents

April 2002 Synopsys, Inc. 3

Contents

Preface . 13
About This Manual . 13
Related Documents . 13

Some Hyperlinks May Not Work . 14
Manual Overview . 14
Typographical and Symbol Conventions . 15

Getting Help . 16
The Synopsys Website . 17

Comments? . 17

Chapter 1
Using Synopsys Models with Simulators . 19

Overview . 19
Using SmartModels with SWIFT Simulators . 20

SmartModel SWIFT Parameters . 20
Instantiating SmartModels . 22
The SWIFT Command Channel . 23
Fault Simulations . 25

Using FlexModels with SWIFT Simulators . 26
flexm_setup Command Reference . 27
Instantiating FlexModels with C-only Command Mode 28

Using MemPro Models with VHDL and Verilog Simulators 31
Using MemPro Models with VHDL Simulators . 33
Using MemPro Models with Verilog Simulators . 33
Instantiating MemPro Models . 34
Controlling MemPro Model Messages . 35
Controlling MemPro Message Output . 36
Message Level Constants . 36

Using Hardware Models with Different Simulators . 37
Linking Other Supported Simulators . 37

Chapter 2
Using VCS with Synopsys Models . 39

Overview . 39
Setting Environment Variables . 40
Using SmartModels with VCS . 41

Contents Simulator Configuration Guide

4 Synopsys, Inc. April 2002

Using FlexModels with VCS . 43
VCS FlexModel Examples . 48
Script for Running FlexModel Examples in VCS . 51
Example Simulator Run Script . 53

Using MemPro Models with VCS . 53
Using MemPro Models with VCS with Verilog Testbenches 53
Using MemPro Models with VCS with C Testbenches 55

Using Hardware Models with VCS . 57
Example Using Runtime Option . 59
Example Using DelayRange Parameter . 59
VCS Utilities . 60

Chapter 3
Using Verilog-XL with Synopsys Models . 61

Overview . 61
Setting Environment Variables . 61
Using SmartModels with Verilog-XL . 63

Verilog-XL Usage Notes for SmartModels . 64
Using FlexModels with Verilog-XL . 79
Using MemPro Models with Verilog-XL . 81

Using MemPro Models with Verilog-XL with Verilog Testbenches 81
Static Linking with LMTV . 82

Using Hardware Models with Verilog-XL . 82
Prerequisites . 83
Using Hardware Models . 84
$lm_log_test_vectors Command Reference . 93
$lm_loop_instance Command Reference . 94
$lm_timing_information Command Reference . 95
$lm_timing_measurements Command Reference . 96
$lm_unknowns Command Reference . 96
lmvsg Command Reference . 98

Chapter 4
Using NC-Verilog with Synopsys Models . 101

Overview . 101
Setting Environment Variables . 101
Using SmartModels with NC-Verilog . 103

Static Linking with LMTV . 104
Using FlexModels with NC-Verilog . 104

Static Linking with LMTV . 106
Using MemPro Models with NC-Verilog on UNIX . 107

Simulator Configuration Guide Contents

April 2002 Synopsys, Inc. 5

Static Linking with LMTV . 107
Using Hardware Models with NC-Verilog . 108

NC-Verilog Utilities . 109

Chapter 5
Using MTI Verilog with Synopsys Models . 111

Overview . 111
Setting Environment Variables . 111
Using SmartModels with MTI Verilog . 113

Static Linking with LMTV . 114
Using FlexModels with MTI Verilog . 114

Static Linking with LMTV . 117
Using MemPro Models with MTI Verilog . 117

Static Linking with LMTV . 119
Using Hardware Models with MTI Verilog . 119

MTI Verilog Utilities . 121

Chapter 6
Using Scirocco with Synopsys Models . 123

Overview . 123
Setting Environment Variables . 123
Using SmartModels with Scirocco . 124

create_smartmodel_lib Command Reference . 126
Using FlexModels with Scirocco . 127
Using MemPro Models with Scirocco . 130
Using Hardware Models with Scirocco . 132

Scirocco Utilities . 133
VHDL Model Generics with Scirocco . 133

Chapter 7
Using VSS with Synopsys Models . 139

Overview . 139
Setting Environment Variables . 139
Using SmartModels with VSS . 141

create_smartmodel_lib Command Reference . 142
Using FlexModels with VSS . 143
Using MemPro Models with VSS . 146
Using Hardware Models with VSS . 148

VSS Example with TILS299 Hardware Model . 148
VSS Utilities . 149
VHDL Model Generics with VSS . 149

Contents Simulator Configuration Guide

6 Synopsys, Inc. April 2002

Chapter 8
Using MTI VHDL with Synopsys Models . 153

Overview . 153
Setting Environment Variables . 153
Using SmartModels with MTI VHDL . 155

sm_entity Command Reference . 158
Using FlexModels with MTI VHDL . 158
Using MemPro Models with MTI VHDL . 161
Using Hardware Models with MTI VHDL . 162

MTI VHDL Example Using TILS299 Hardware Model 163
hm_entity Command Reference . 164
MTI VHDL Utilities . 166

Chapter 9
Using Cyclone with Synopsys Models . 167

Overview . 167
Setting Environment Variables . 167
Using SmartModels with Cyclone . 169
Using FlexModels with Cyclone . 169
Using MemPro Models with Cyclone . 169
Using Hardware Models with Cyclone . 170

ModelSource System Hardware and Software . 171
LM-1400/LM-family System Hardware and Software 171
Configuration Options . 171
Cyclone User Setup . 174
Using Hardware Models with Cycle-Based Simulators 178
genInterface Command Reference . 182
Cyclone Simulation . 184
Cyclone genInterface Setup Files . 186
Cyclone genInterface Processing . 187

Chapter 10
Using Leapfrog with Synopsys Models . 191

Overview . 191
Setting Environment Variables . 191
Using SmartModels with Leapfrog . 193
Using FlexModels with Leapfrog . 194
Using MemPro Models with Leapfrog . 194
Using Hardware Models with Leapfrog . 197

Leapfrog Example with TILS299 Hardware Model . 197
Leapfrog Utilities . 198

Simulator Configuration Guide Contents

April 2002 Synopsys, Inc. 7

Chapter 11
Using NC-VHDL with Synopsys Models . 201

Overview . 201
Setting Environment Variables . 201
Using SmartModels with NC-VHDL . 202
Using FlexModels with NC-VHDL . 204
Using MemPro Models with NC-VHDL . 207
Using Hardware Models with NC-VHDL . 209

NC-VHDL Example with TILS299 Hardware Model 210
NC-VHDL Utilities . 210

Chapter 12
Using QuickSim II with Synopsys Models . 213

Overview . 213
Setting Environment Variables . 213
Using SmartModels and FlexModels with QuickSim II . 215

Installing the QuickSim II SWIFT Interface . 215
Using SmartModels/FlexModels with QuickSim II . 217
Schematic Capture . 217
Logic Simulation . 224
Custom Symbols . 235

Using Hardware Models with QuickSim II . 240
Setting up Hardware Models in QuickSim II . 241
Using Hardware Models in QuickSim II . 243
Model Registration . 245
Registering a Model with lm_model . 246
Modifying a Hardware Model . 251
Simulating with Hardware Models in QuickSim II . 252
lm_model Command Reference . 260
tmg_to_ts Command Reference . 263

Chapter 13
Using VERA with Synopsys Models . 265

Overview . 265
Using VERA with FlexModels . 265

Using FlexModels with the VERA UDF Interface . 266
Creating a VERA Testbench . 268
VERA Testbench Example . 269
Incorporating FlexModels in a VERA Testbench . 271
Using VERA with VCS . 273

Using VERA with MemPro Models . 276

Contents Simulator Configuration Guide

8 Synopsys, Inc. April 2002

Mempro-VERA Overview . 276
Adding MemPro Commands to the VERA Testbench 283
Building the VERA UDF Dynamic Library . 287
Compiling the VERA Source Files . 288
Building the Simulator Executable . 289
Running the Simulation . 290

Appendix A
LMTV Command Reference . 291

Overview . 291
LMTV Command Line Switches . 291
LMTV Commands . 293

$lm_command() or $lai_command() . 294
$lm_dump_file() or $lai_dump_file() . 295
$lm_help() . 296
$lm_load_file() or $lai_load_file() . 297
$lm_monitor_enable() or $lai_enable_monitor() . 298
$lm_monitor_disable() or $lai_disable_monitor() . 298
$lm_monitor_vec_map() and $lm_monitor_vec_unmap() 300
$lm_status() or $lai_status() . 302

Index . 303

Simulator Configuration Guide Figures

April 2002 Synopsys, Inc. 9

Figures

Figure 1: run_flex_examples_in_vcs.pl Script . 52
Figure 2: Verilog-XL Design Flow . 67
Figure 3: Concept Design Flow . 69
Figure 4: The ma_verilog Software Tree . 83
Figure 5: SFI Communication with PLI . 84
Figure 6: Cyclone Configuration Guidelines . 173
Figure 7: ModelAccess for Cyclone Installation Tree . 174
Figure 8: Process Flow Chart . 176
Figure 9: Slang Hardware Model Conceptual Diagram . 179
Figure 10: Default synopsys_lm_hw.setup File . 180
Figure 11: Sample System-Dependent

Setup File (.synopsys_lm_hw.setup.hp700) . 187
Figure 12: Sample Pin and Bus Symbols . 218
Figure 13: Visible Symbol Properties . 219
Figure 14: National Semiconductor DP8429 DRAM Controller 238
Figure 15: Bus and Pin Symbols . 240
Figure 16: Sample Component Interface for a Hardware Model 244
Figure 17: Hardware Model Registration . 246
Figure 18: The MemPro-VERA Interface . 277
Figure 19: VERA Model Class Hierarchy . 278
Figure 20: Mempro-VERA Design Flow . 282

Tables Simulator Configuration Guide

10 Synopsys, Inc. April 2002

Tables

Table 1: SmartModel SWIFT Parameters . 21
Table 2: FlexModel SWIFT Parameters . 26
Table 3: FlexModel C-only Command Mode Files . 29
Table 4: MemPro Generic/Parameter Descriptions . 32
Table 5: MemPro Supported Simulators . 33
Table 6: MemPro Message Constant Descriptions . 36
Table 7: VCS SmartModel Explanation . 43
Table 8: FlexModel VCS Verilog Files . 44
Table 9: VCS With One FlexModel On Solaris Model Explanation 49
Table 10: VCS MemPro Model Explanation . 56
Table 11: Characteristics of Historic and SWIFT SmartModel Modes 65
Table 12: model.v Directories . 66
Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries 76
Table 14: FlexModel Verilog-XL Files . 79
Table 15: Test Vector Symbols . 92
Table 16: FlexModel NC-Verilog Files . 104
Table 17: FlexModel MTI Verilog Files . 114
Table 18: FlexModel Scirocco VHDL Files . 128
Table 19: FlexModel VSS VHDL Files . 144
Table 20: FlexModel MTI VHDL Files . 159
Table 21: Rules for Special Character Mapping . 188
Table 22: FlexModel NC-VHDL Files . 205
Table 23: Symbol Properties used by SWIFT Models . 219
Table 24: Symbol Properties Required for Simulation . 220
Table 25: Optional Symbol Properties . 221
Table 26: Signal State Values . 225
Table 27: QuickSim II Command Interaction . 227
Table 28: Elements in a TIBPAL22V10 Device . 233
Table 29: Mentor Graphics Vendor CPU Operating System Suffixes 241
Table 30: Sample Component Directory . 247
Table 31: Shell Software to Technology File Conversion . 250
Table 32: Signal Instance Command Summary . 253
Table 33: FlexModel Files Used with the VERA UDF Interface 266
Table 34: Link Line Object Files . 267
Table 35: VERA Header Files . 268
Table 36: FlexModel VERA Files . 271

Simulator Configuration Guide Tables

April 2002 Synopsys, Inc. 11

Table 37: Key MemPro-VERA Files . 279

Tables Simulator Configuration Guide

12 Synopsys, Inc. April 2002

Simulator Configuration Guide Preface

April 2002 Synopsys, Inc. 13

v

Preface

About This Manual
This manual contains procedures for using Synopsys models with the most widely used
simulators. The scope includes the following types of models:

● SmartModels (including FlexModels)

● MemPro Models

● Hardware Models

Note that this manual contains illustrations of third-party software files solely to
demonstrate the end user modifications needed to get Synopsys models working with
these tools. Third-party software changes frequently. Refer to the third-party tool
vendor's documentation for definitive information about their licensed software.

Related Documents
For more information about SmartModels (including FlexModels), or to navigate to a
related online document, refer to the Guide to SmartModel Documentation. For
information on supported platforms and simulators, refer to SmartModel Library
Supported Simulators and Platforms.

For detailed information about specific SmartModels (including FlexModels), use the
Browser tool ($LMC_HOME/bin/sl_browser) to access the online model datasheets.

For more information about MemPro, or to navigate to a related online document, refer
to the Guide to MemPro Documentation.

For more information about hardware models, or to navigate to a related online
document, refer to the Guide to Hardware Model Documents.

Preface Simulator Configuration Guide

14 Synopsys, Inc. April 2002

v

Some Hyperlinks May Not Work
Because this manual is included with multiple product documentation sets, some
hyperlinks do not work properly in all cases. For example, hyperlinks from this manual
to other books in the hardware model documentation set will only work from a hardware
model installation tree. Similarly, hyperlinks to other books installed in $LMC_HOME
will only work in that location.

To work around this limitation, you can visit the Synopsys Web site and navigate to the
latest documentation for all Synopsys models:

http://www.synopsys.com/products/designware/docs

Manual Overview
This manual contains the following chapters:

Preface Describes the manual and lists the typographical
conventions and symbols used in it. Tells how to get
technical assistance.

Chapter 1
Using Synopsys Models with
Simulators

Basic information for configuring and instantiating
SmartModels, FlexModels, MemPro models, and
hardware models for use in hardware simulators.

Chapter 2
Using VCS with Synopsys Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
VCS. Includes a script that you can use to run
FlexModel example testbenches in VCS.

Chapter 3
Using Verilog-XL with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Verilog-XL.

Chapter 4
Using NC-Verilog with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-Verilog.

Chapter 5
Using MTI Verilog with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI Verilog.

Chapter 6
Using Scirocco with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Scirocco. Includes a script that you can use to run
FlexModel example testbenches in Scirocco.

Chapter 7
Using VSS with Synopsys Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
VSS.

http://www.synopsys.com/products/lm/doc

Simulator Configuration Guide Preface

April 2002 Synopsys, Inc. 15

v

Typographical and Symbol Conventions
● Default UNIX prompt

Represented by a percent sign (%).

● User input (text entered by the user)

Shown in bold type, as in the following command line example:

% cd $LMC_HOME/hdl

● System-generated text (prompts, messages, files, reports)

Shown as in the following system message:

No Mismatches: 66 Vectors processed: 66 Possible

Chapter 8
Using MTI VHDL with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI VHDL.

Chapter 9
Using Cyclone with Synopsys
Models

How to configure MemPro models and hardware
models for use with Cyclone.

Chapter 10
Using Leapfrog with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Leapfrog.

Chapter 11
Using NC-VHDL with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-VHDL.

Chapter 12
Using QuickSim II with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
QuickSim II.

Chapter 13
Using VERA with Synopsys Models

How to configure FlexModels for use with Vera.
Includes a separate procedure for using FlexModels
with Vera and VCS.

Appendix A
LMTV Command Reference

Reference information for LMTV commands used
with SmartModels and FlexModels on Verilog-XL,
NC-Verilog, and MTI Verilog.

Preface Simulator Configuration Guide

16 Synopsys, Inc. April 2002

v

● Variables for which you supply a specific value

Shown in italic type, as in the following command line example:

% setenv LMC_HOME prod_dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

● Command syntax

Choice among alternatives is shown with a vertical bar (|) as in the following
syntax example:

-effort_level low | medium | high

In this example, you must choose one of the three possibilities: low, medium, or
high.

Optional parameters are enclosed in square brackets ([]) as in the following
syntax example:

pin1 [pin2 … pinN]

In this example, you must enter at least one pin name (pin1), but others are optional
([pin2 … pinN]).

Getting Help
If you have a question while using Synopsys products, use the following resources:

● Product documentation installed on your network or located at the root level of your
Synopsys CD-ROM.

● Product documentation for the latest version of all products on the Web:

http://www.synopsys.com/products/designware/docs

● Datasheets for all verification models and Design Ware Implementation IP available
using the IP Directory:

http://www.synopsys.com/products/designware/ipdir.html

http://www.synopsys.com/products/designware/docs
http://www.synopsys.com/products/designware/ipdir.html

Simulator Configuration Guide Preface

April 2002 Synopsys, Inc. 17

v

● The online Support Center available at one of the following URLs:

❍ DesignWare Macrocells, DesignWare Foundation Library, or coreBuilder Tools
customers:

http://solvnet.synopsys.com/

❍ SmartModel, FlexModel, MemPro, VMC, VhMC, and CMC customers:

http://www.synopsys.com/support/lm/support.html

If you still have questions about the following products, you can call a Synopsys support
center:

● DesignWare Macrocells, DesignWare Foundation Library, and coreBuilder Tools

❍ United States:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

❍ Canada:
Call 1-650-584-4200 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

❍ All other countries:
Find other local support center telephone numbers at the following URL:

http://www.synopsys.com/support/support_ctr/

● SmartModels, FlexModels, MemPro, VMC, and VhMC

❍ North America:
Call 1-800-445-1888 from 7:00 AM to 5 PM Pacific Time, Mon—Fri.

❍ All other countries:
Call your local sales office.

The Synopsys Website
General information about Synopsys and its products is available at this URL:

http://www.synopsys.com

Comments?
To report errors or make suggestions, please send e-mail to:

doc@synopsys.com

To report an error on a specific page, select the entire page (including headers and
footers), and copy to the buffer. Then paste the buffer to the body of your e-mail
message. This will provide us with the information we need to correct the problem.

http://solvnet.synopsys.com/
http://www.synopsys.com/support/lm/support.html
http://www.synopsys.com/support/support_ctr/
http://www.synopsys.com
mailto:doc@synopsys.com

Preface Simulator Configuration Guide

18 Synopsys, Inc. April 2002

v

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 19

v

1
Using Synopsys Models with

Simulators

Overview
There are a variety of different types of models used in the verification process. This
manual covers the following kinds:

● SmartModels (including FlexModels)

● MemPro models

● Hardware models

SmartModels and FlexModels are binary behavioral models that connect to over 30
commercial simulators through the SWIFT interface. If you are using a SWIFT
simulator that does not have a separate chapter devoted to it in this manual, refer to this
chapter for the basic information needed to get the models working on your simulator.
For information on SmartModel/FlexModel supported simulators, refer to the
SmartModel Library Supported Platforms and Simulators Manual.

MemPro models are produced in Verilog or VHDL and do not use the SWIFT interface.
They do require simulator-specific PLI/CLI/FLI code that needs to be bound in to the
supported simulator executable. MemPro is supported on the simulators listed in
Table 5.

The hardware modeler uses real silicon in combination with specialized hardware and
software to represent the full functionality of modeled devices in your simulation. It
does not have a standard interface comparable to SWIFT. Hardware models are a
combination of hardware and software, as follows:

● The hardware consists of the actual silicon of the device being modeled, installed on
a special-purpose Device Adapter and inserted into the hardware modeling system.

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

20 Synopsys, Inc. April 2002

v

● The software consists of a series of ASCII files containing Shell Software that
describes the device interface and initialization, along with optional information
such as timing delays, state tracking, and timing checks.

For simulator-specific information about using hardware models, refer first to “Using
Hardware Models with Different Simulators” on page 37 for an overview and then
consult the appropriate simulator-specific chapter in this manual for detailed setup
procedures.

The procedures in this chapter are organized into the following major sections:

● “Using SmartModels with SWIFT Simulators” on page 20

● “Using FlexModels with SWIFT Simulators” on page 26

● “Using MemPro Models with VHDL and Verilog Simulators” on page 31

● “Using Hardware Models with Different Simulators” on page 37

Using SmartModels with SWIFT Simulators
SWIFT is a standard EDA event-level simulation interface developed by Synopsys. The
SWIFT interface enables multiple simulators with different requirements to use models
from the same SmartModel Library. Each simulator provides a standard model
interface, specified by SWIFT, that allows it to load the same SmartModel Library.

When the simulator encounters a SmartModel during simulation, it uses a set of SWIFT
functions to create and configure the model, map to its ports, initialize it, and set its time
units. The SWIFT interface also allows participating simulators to integrate the
SmartModel Library into their particular framework, including application-specific
menus. For more information, refer to the documentation provided by your simulator
vendor.

SmartModel SWIFT Parameters
SmartModel attributes or parameters are model-specific values needed by the simulator
to configure a model. You configure SmartModels when you instantiate them in your
design using these SWIFT parameters. This could take the form of Verilog defparams,
VHDL generics, or symbol properties, depending on the simulator you are using. For
details, refer to the documentation for your simulator.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 21

v

Table 1 lists the SmartModel configuration parameters. All SmartModels require an
InstanceName, TimingVersion, and DelayRange. In addition, some SmartModels need a
MemoryFile, JEDECFile, SCFFile, or PCLFile attribute. FlexModels use a slightly
different set of attributes for configuration, described in “FlexModel SWIFT
Parameters” on page 26.

Table 1: SmartModel SWIFT Parameters

Parameter Name Used By Description

InstanceName All SmartModels Specifies an instance name
for a particular instance of a
SmartModel. Used in
messages to indicate which
instance is issuing the
message; also used in user-
defined timing. Can be set
by the simulator from the
hierarchical name in the
HDL description; or can be
set using the InstanceName
property on the symbol.

TimingVersion All SmartModels Specifies the timing version
a SmartModel instance
should use when scheduling
changes on its outputs or
checking setup and hold
times on its inputs.

DelayRange All SmartModels Specifies a propagation
delay range for a particular
instance of a SmartModel.
The allowed values are
“min,” “typ,” and “max.”

MemoryFile SmartModels with internal
memory such as RAMs,
ROMs, and processors
and controllers that have
on-chip RAM or ROM.

Specifies a memory image
file (MIF) to load for a
particular instance of a
SmartModel.

JEDECFile JEDEC-based PAL and
PLD models

Specifies a JEDEC file to
load for a particular instance
of a SmartModel.

SCFFile FPGAs and CPLDs Specifies a model command
file (MCF) to load for a
particular instance of a
SmartModel.

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

22 Synopsys, Inc. April 2002

v

Note8
To determine the required configuration file (i.e., MemoryFile, JEDECFile,
SCFFile, or PCLFile) for any SmartModel, refer to the model’s datasheet.

Instantiating SmartModels
If you are using an HDL-based simulator, generate a model wrapper file (model.v or
model.vhd) using your simulator vendor’s procedure. Use the model wrapper to
instantiate the model in your design. The model wrapper must map the model’s ports to
signals in your design. Modify SWIFT parameters in the model wrapper as needed. Here
are some parameter examples for a SmartModel memory model:

VHDL:

U1: cyc7150
GENERIC MAP(
TimingVersion => "cy7c150",
DelayRange => "MAX",
MemoryFile => "mem1";

Verilog:

defparam
u1.TimingVersion = "cy7c150",
u1.DelayRange = "MAX",
u1.MemoryFile = "mem1";

You can also instantiate SmartModels in schematic-capture based systems by using
model symbols and attaching values to symbol properties. For details on instantiating
SmartModels using symbols with QuickSim II, refer to “Using QuickSim II with
Synopsys Models” on page 213.

PCLFile Processor models (for
example, microprocessors
and microcontrollers);
these are usually hardware
verification models.

Specifies a compiled PCL
program file to load for a
particular instance of a
SmartModel.

Table 1: SmartModel SWIFT Parameters (Continued)

Parameter Name Used By Description

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 23

v

The SWIFT Command Channel
The SWIFT interface specification requires that simulator vendors include a minimal
command interface to the SmartModel Library. This interface is called the command
channel. The command channel supports several types of commands:

● “Model Commands” on page 23

● “SmartBrowser Commands for SmartCircuit Models” on page 23

● “Session Commands” on page 24

Model Commands
Model commands affect only a selected model instance. Following is a list of the
model commands:

DumpMemory output_file
Dumps the current memory image of a model to the specified output file. If
output_file exists, it is overwritten; otherwise, a new file is created.

ReportStatus
Prints a message that describes the configuration status of a model.

SetConstraints ON | OFF
Enables or disables timing constraint checks for a model. By default, models check
for and warn of timing constraints.

Note8
Some simulator vendors supply additional interfaces to the DumpMemory,
ReportStatus, and SetConstraints capabilities.

SmartBrowser Commands for SmartCircuit Models
In addition to the model commands which apply to all SmartModels, the command
channel also supports the following SmartBrowser commands for SmartCircuit models:

● Analyze Commands

● Assign Commands

● Examine Commands

● List Commands

● Set and Show Commands

● Trace Commands

● General Commands

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

24 Synopsys, Inc. April 2002

v

For more information about these SmartBrowser commands, refer to the SmartModel
Library Users Manual.

Session Commands
Session commands act on all models in the simulation session. You can enable session
commands by setting the LMC_COMMAND environment variable. Here is an example
that enables tracing of timing files and model versions, followed by a list of all the
session commands.

% setenv LMC_COMMAND "TraceTimeFile on;TracePath ON"

Note8
The session command strings are case-insensitive, as illustrated above
(ON and on are equivalent).

TraceTimeFile ON | OFF
Enables or disables trace messages that list the timing files loaded at simulation
startup. The default is OFF.

TracePath ON | OFF
Enables or disables tracing of paths to files used to determine versions of models.
The default is OFF.

Verbose ON | OFF
Enables or disables the generation of error messages when a SmartModel instance
cannot be created. The default is OFF.

NoLicenseFatal ON | OFF
When set to ON, causes the SWIFT session to send a fatal error message to the
simulator and terminate if any SmartModel in the simulation fails to authorize. The
default is OFF.

AttentionV
You must invoke the TraceTimeFile, TracePath, and NoLicenseFatal
commands before the start of the simulation run if you want them to take
effect for that session.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 25

v

Fault Simulations
The SmartModel Library fault simulation capability is folded into the logic simulation
SmartModel Library so that only one set of directories and utilities need to be installed
and maintained. Fault simulation availability depends on the:

● Model—Note that the following types of models are incompatible with fault
simulation:

❍ Hardware verification (HV) models are driven by PCL commands rather than
machine instructions and do not respond adequately to propagated faults. Fault
simulation results may not be as accurate when HV models are present in the
circuit.

❍ FlexModels do not support fault simulation.

❍ SmartCircuit models do not support fault simulation.

● Simulator—Fault analysis is supported by Mentor’s QuickFault II, VEDA’s
VerdictFault, and Teradyne’s LASAR. For more information about fault simulation
support, refer to your simulator documentation.

In most cases you can use the same circuit description for both logic and fault
simulation. However, you may need to supply different circuit stimuli for each type of
simulation. All model messages except version, copyright, and configuration error
messages are suppressed in fault simulation. Usage and timing messages are suspended
because they are meaningless in a fault simulation. In order to work efficiently during a
fault simulation, each model manages its own diverge and converge operations.

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

26 Synopsys, Inc. April 2002

v

Using FlexModels with SWIFT Simulators
Regardless of which simulator you are using, you must configure FlexModels by
defining the required SWIFT parameters or attributes shown in Table 2 for each
FlexModel instance in your design. You configure FlexModels when you instantiate
them in your design using these SWIFT parameters. This could take the form of Verilog
defparams, VHDL generics, or symbol properties, depending on the simulator you are
using.

Table 2: FlexModel SWIFT Parameters

Parametera Data Type Description

FlexTimingMode FLEX_TIMING_MODE_OFF
(default)
FLEX_TIMING_MODE_ON
FLEX_TIMING_MODE_CYCLE

Disables/enables timing simulation.
(For Verilog, prepend a back quote
(‘) to the constant.)
Note: C-only Command Mode users
can set this parameter to:

- “0” for timing mode off
- “1” for timing mode on
- “2” for cycle-based timing

TimingVersion Model timing version The FlexModel timing version. Refer
to the individual FlexModel
datasheets for available timing
versions.

DelayRange “MIN”, “TYP”, “MAX” (default) If you set FlexTimingMode to on,
you can select MIN, TYP, or MAX
delay values with this parameter.

FlexModelId “instance_name” A unique name that identifies each
FlexModel instance. This name is
also used by the flex_get_inst_handle
command to get an integer instance
handle.
Note: Used only with _fx models

FlexModelId_cmd_stream “instance_name” A unique name that identifies each
FlexModel instance or command
stream. This name is also used by the
flex_get_inst_handle command to
get an integer instance handle. For
information on cmd_stream names,
refer to the individual FlexModel
datasheets.
Note: Used only with _fz models.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 27

v

flexm_setup Command Reference
In addition to specifying SWIFT parameters, you must run the flexm_setup utility each
time you install a new or updated FlexModel into your $LMC_HOME tree. This
ensures that you pick up the latest package files for that version of the model.

Syntax
 flexm_setup [-help] [-dir path] model

Argument
model Pathname to the FlexModel you want to set up.

Switches
-help Prints help information.

FlexCFile “path_to_C_file -u | -c” Specifies the path to an executable C
program and whether to start up in
coupled (-c) or uncoupled (-u) mode.
Uncoupled mode is the default.
Note: Used only with _fx models for
C-only Command Mode.

FlexModelSrc_cmd_stream “path_to_C_file -u | -c” If you want to control a FlexModel
using C-only Command Mode,
change the default value for
cmd_stream (HDL) to the name of
the command stream defined in the
individual FlexModel datasheets.
Use this parameter to specify the path
to an executable C program and
whether to start up in coupled (-c) or
uncoupled (-u) mode. Uncoupled
mode is the default.
Note: Used only with _fz models for
C-only Command Mode.

a. Some FlexModels have additional SWIFT parameters that need to be specified to configure internal
memory (for example, the usbhost_fz). For details, refer to the individual FlexModel datasheets.

Table 2: FlexModel SWIFT Parameters (Continued)

Parametera Data Type Description

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

28 Synopsys, Inc. April 2002

v

-d[ir] path Copies the contents of the FlexModel’s versioned src/verilog
and src/vhd directories into path/src/verilog and path/src/vhdl.
The directory specified by path must already exist.

Examples
When run without the -dir switch, flexm_setup just prints the name of the versioned
directory of the selected model’s source files

Lists name of versioned directory containing source files
% flexm_setup mpc860_fx

When run with the -dir switch pointing to your working directory, flexm_setup copies
over all the versioned package files you need to that working directory.

Creates copy in ‘flexmodel’ directory of model source files
% mkdir workdir
% flexm_setup -dir workdir mpc860_fx

Instantiating FlexModels with C-only Command Mode
C-only Command Mode is how you use FlexModels on SWIFT simulators with
standard FlexModel integrations. With C-only Command Mode, all model commands
come from an external compiled C program that you point to using the FlexCFile
SWIFT parameter. For users familiar with Synopsys Hardware Verification models, this
is similar to setting the PCLFile parameter to point to the location of a compiled PCL
program. In addition, you must also set the FlexModelId parameter, which does not have
a default value. To generate model wrappers and instantiate models, you use the same
simulator-specific procedures as you would for traditional SmartModels.

Note that the individual FlexModel datasheets document the command syntax and
examples for issuing model commands from Verilog, VHDL, VERA, or C. However,
only simulators with custom integrations allow you to issue FlexModel commands from
Verilog, VHDL, VERA, C , or some combination of these. SWIFT simulators with
standard integrations must stick to C-only Command Mode for issuing commands to
FlexModels.

To use C-only Command Mode, follow these steps:

1. If you are using an HDL-based simulator, generate a model wrapper file
(model_fx.v or model_fx.vhd) using your simulator vendor’s procedure. Use the
model wrapper to instantiate the model in your design. Add the FlexCFile
parameter to the model instantiation and point it to the location of
your_compiled_C_file that you create to drive commands into the model. Modify
other SWIFT parameters in the model wrapper as needed. Here are some examples
for how to instantiate a model for use with C-only Command Mode:

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 29

v

VHDL:

U1: pcimaster
 GENERIC MAP(
 FlexModelId => "modelId_1",
 FlexCFile => "./tb.o",
 FlexTimingMode => "1",
 TimingVersion => "pcimaster",
 DelayRange => "MAX"

Verilog:

defparam
 u1.FlexModelId = "modelId_1",
 u1.FlexCFile = "./tb.o",
 u1.FlexTimingMode = "1",
 u1.TimingVersion = "pcimaster",
 u1.DelayRange = "MAX";

For both of these examples, the C testbench file must have the same instance name,
as follows:

int Id_1, status;
 char *sInstName = "modelId_1";

/* Get the instance handle */

 flex_get_inst_handle(sInstName,&Id_1, &status);

2. Create a working directory and run flexm_setup to make a copy of the model’s C
object file there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 3 lists the files that flexm_setup copies to your working
directory.

Table 3: FlexModel C-only Command Mode Files

File Name Description Location

model_pkg.o Model-specific functions for UNIX. workdir/src/C/

model_pkg.obj Model-specific functions for NT. workdir/src/C/

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

30 Synopsys, Inc. April 2002

v

3. Compile the C object files in with the C program that you write to drive commands
into the model (represented in the following examples as your_C_file.c). Note that
these examples include creation of a working directory (workdir) and running
flexm_setup, as explained in the previous step. The compile line differs based on
your platform:

a. On HP-UX, you need to link in the -LBSD library as shown in the following
example:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% /bin/c89 -o executable_name \
your_C_file.c \
workdir/src/C/hp700/model_pkg.o \
$LMC_HOME/lib/hp700.lib/flexmodel_pkg.o \
-I$LMC_HOME/sim/C/src \
-Iworkdir/src/C \
-lBSD

b. On Solaris, you need to link in the -lsocket library as shown in the following
example:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% cc -o executable_name \
your_C_file.c \
workdir/src/C/solaris/model_pkg.o \
$LMC_HOME/lib/sun4Solaris.lib/flexmodel_pkg.o \
-I$LMC_HOME/sim/C/src \
-Iworkdir/src/C \
-lsocket

c. AIX:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% /bin/cc -o executable_name \
your_C_file.c \
workdir/src/C/ibmrs/model_pkg.o \
${LMC_HOME}/lib/ibmrs.lib/flexmodel_pkg.o \
-Iworkdir/src/C \
-I${LMC_HOME}/sim/C/src \
-ldl

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 31

v

d. Linux:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% egcs -o executable_name \
your_C_file.c \
workdir/src/C/x86_linux/model_pkg.o \
${LMC_HOME}/lib/x86_linux.lib/flexmodel_pkg.o \
-Iworkdir/src/C \
-I${LMC_HOME}/sim/C/src

e. On NT, you need to link in a Windows socket library as shown in the following
example.

> md workdir
> flexm_setup -dir workdir model_fx
> cl -O2 -MD -DMSC -DWIN32 -Feexecutable_name
your_C_file.c
workdir\src\C\pcnt\model_pkg.obj
%LMC_HOME%\lib\pcnt.lib\flexmodel_pkg.obj
-I%LMC_HOME%\sim\C\src
-Iworkdir\src\C
wsock32.lib

Note8
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

The C executable file that you created in this step is the program that you point to using
the FlexCFile SWIFT attribute for the model instance in your design.

Using MemPro Models with VHDL and
Verilog Simulators

Regardless of which simulator you are using, you must configure MemPro models by
defining the required parameters or attributes shown in Table 4 for each MemPro model
instance in your design. You configure MemPro models when you instantiate them in
your design using these generics or parameters.

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

32 Synopsys, Inc. April 2002

v

Table 4: MemPro Generic/Parameter Descriptions

Name Data Type Description

model_id Integer Either the model_id or model_alias generic or parameter
specifies a unique user handle for a specified model instance.
This user handle is used to address a memory model using
testbench commands.
Note: You do not have to assign all MemPro model instances
a model_id or model_alias, only those instances on which you
wish to use the testbench interface. However, each model with
a model_id or model_alias must be assigned a unique handle.

model_alias String

memoryfile String Specifies the file name of the memory image file to preload
during model initialization. If memoryfile is set to a null
string (memoryfile = “”), memory image preloading during
initialization is disabled. Supported files formats are
SmartModel Memory Image, Motorola S-Record, Intel Hex,
and Verilog $readmemh. Memory models can also be loaded
using the mem_load command.

default_data String Specifies the default data returned from all uninitialized
memory addresses.
Note: Models in non-volatile memory classes may not have
their Default Memory Value set to anything except all ones.
Any other setting is ignored and MemGen issues an warning.

message_level Integer Specifies the type or types of messages returned by the
model. For a detailed description of message types, refer to
“Controlling MemPro Model Messages” on page 35

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 33

v

MemPro models are supported on the simulators listed in Table 5.

Each of the simulators in Table 5 has its own chapter in this manual that explains the
simulator-specific procedure for using MemPro models in those environments.

Using MemPro Models with VHDL Simulators
This section describes how to include MemPro memory models and testbench interface
commands in your design. The MemPro VHDL interface code is contained in the
following files:

slm_hdlc.vhd Simulator-specific HDL-to-C interface code.

mempro_pkg.vhd MemPro-specific module containing the VHDL
implementation of the MemPro testbench interface.

rdramd_pkg.vhd RDRAM-specific module.

All of these files are located in the $LMC_HOME/sim/simulator/src directory.

Using MemPro Models with Verilog Simulators
This section describes how to include MemPro memory models and testbench interface
commands in your design. The following files define MemPro PLI routines and
interface commands:

slm_pli.o PLI routines. This file is located in the
$LMC_HOME/lib/platform.lib directory.

mempro_pkg.v Verilog testbench task definitions for MemPro interface
commands. This file is located in the
$LMC_HOME/sim/pli/src directory.

Table 5: MemPro Supported Simulators

Verilog Simulators VHDL Simulators

VCS Scirocco

Verilog-XL VSS

NC-Verilog Cyclone

MTI Verilog Leapfrog

MTI VHDL

NC-VHDL

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

34 Synopsys, Inc. April 2002

v

mempro_c_tb.h C testbench function definitions for MemPro interface
commands. This is located in the $LMC_HOME/include
directory.

Instantiating MemPro Models
You instantiate MemPro models just like any other HDL models, as shown in the
following DRAM examples.

MemPro Verilog Instantiation
dram1x64 bank1
 (.ras (rasr),
 .ucas (ucasr),
 .lcas (lcasr),
 .we (wer),
 .oe (oer),
 .a (adrr),
 .dq (dataw));

defparam bank1.model_id = "tbench.bank1",
 bank1.memoryfile = "dram.dat",
 bank1.message_level = `SLM_XHANDLING | `SLM_TIMING | `SLM_WARNING,
 bank1.default_data = 64'hxxx;

MemPro VHDL Instantiation
U1 : dram1x64
 generic map (model_id => 10,
 memoryfile => "dram.dat",
 message_level => (SLM_TIMING + SLM_XHANDLING + SLM_WARNING),
 default_data => "XXXX");
 port map
 (a => adrw,
 dq => dataw,
 ras => rasw,
 lcas => lcasw,
 ucas => ucasw,
 we => wew,
 oe => oew);

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 35

v

Controlling MemPro Model Messages
MemPro model messages are grouped into categories that you can individually enable
or disable for each model instance. Several message categories are applicable to all
models; additional categories may be defined for specific models or model types. The
general categories are:

Fatal
Fatal messages are always enabled. When a fatal error is detected, the simulation stops
immediately after reporting the message. For example, referencing an unknown
MemPro model instance handle causes a fatal error.

Error
Error messages apply to incorrect situations from which the model is able to recover,
allowing simulation to continue. For example, MemPro generates an error message
when the model receives a command that would put it in an illegal state.

Warning
Warning messages apply to situations that users may want to check, but are not
obviously wrong. For example, MemPro generates a warning message when significant
bits of an address are ignored.

Info
Info messages inform you of the status or behavior of the model. MemPro generates
info messages infrequently. For example, when a memory model is initialized from a
file, MemPro issues an info message.

Timing
MemPro uses timing messages to report timing constraint violations. Typical situations
that cause timing messages are setup or pulse-width violations.

X-Handling
MemPro generates X-handling messages if a model samples unknowns on input ports
when valid data was expected.

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

36 Synopsys, Inc. April 2002

v

Controlling MemPro Message Output
There are three ways to control messaging for MemPro models:

1. Set individual Message Settings when you specify the model message categories
(except Fatal).

2. Use the message_level generic or parameter. For more information, refer to
“Message Level Constants” on page 36.

3. Use a command stream or testbench command.

By default, MemPro models display all the general message categories (Fatal, Error,
Warning, Info, Timing, and X-handling). If you set a generic or parameter for a model
instance, that setting overrides the default behavior. In turn, if the command stream or
testbench interface is used, it overrides the generic or parameter value.

Message Level Constants
MemPro provides constants for setting message levels on each instantiated model. The
constants described in Table 6 are defined in mempro_pkg.v (for Verilog simulators) and
mempro_pkg.vhd (for VHDL simulators).

You can combine these constants to get any combination of messages you desire. The
following Verilog and VHDL code fragments define a model instantiation having
timing, X-handling, and warning (as well as fatal) messages enabled.

Table 6: MemPro Message Constant Descriptions

Constant Valuea

a. Note that bits 5 through 27 are unused but reserved.

Description

SLM_ERROR 1 Fatal and error messages generated.

SLM_WARNING 2 Fatal and warning messages generated.

SLM_TIMING 4 Fatal and timing messages generated.

SLM_XHANDLING 8 Fatal and X-handling messages generated.

SLM_INFO 16 Fatal and info messages generated.

SLM_ALL_MSGS 228−1 All message types generated.

SLM_NO_MSGS 0 Only fatal messages generated.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

April 2002 Synopsys, Inc. 37

v

Verilog
bank1.message_level = `SLM_XHANDLING | `SLM_TIMING | `SLM_WARNING,

VHDL
message_level => (SLM_TIMING + SLM_XHANDLING + SLM_WARNING),

Using Hardware Models with Different
Simulators

After you install your hardware modeling system, the final task is to link your simulator
with the Synopsys Simulator Function Interface (SFI). Procedures for linking the
simulator with the SFI are specific to the particular simulator.

Synopsys provides four ModelAccess products, supporting QuickSim II, Cyclone,
Verilog-XL, and NC-Verilog. For usage information, refer to the following sections in
this book:

● “Using Hardware Models with QuickSim II” on page 240

● “Using Hardware Models with Cyclone” on page 170

● “Using Hardware Models with Verilog-XL” on page 82

● “Using Hardware Models with NC-Verilog” on page 108

Linking Other Supported Simulators
Because many hardware modeling features are provided through the SFI software, the
functionality of your environment is determined by the version of the SFI that is
integrated with your simulator. Some simulators can be dynamically or statically linked
on site with the most recent SFI. For the current list of simulators and versions that are
supported for dynamic or static linking on site with the SFI, refer to Hardware Modeling
Supported Platforms and Simulators.

If you use one of the simulators on this list, you can link your simulator with the most
recent version of the SFI libraries on the distribution media, allowing you to take
advantage of the latest hardware modeling system software enhancements and bug fixes.
Some simulators have additional requirements. For information, refer to your simulator
vendor’s documentation.

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

38 Synopsys, Inc. April 2002

v

If you use a simulator that is not on the list, consult your simulator vendor about which
version of the SFI has been integrated with your simulator. Depending on the version of
the SFI, you should be able to install and use the most recent Runtime Modeler
Software, although you may not be able to take advantage of all hardware modeling
system software enhancements and fixes.

IKOS Voyager
For information on this interface, refer to the Voyager/LM Hardware Interface chapter of
the Voyager Series User’s Guide, Volume 4.

Do not install the hardware modeling system software under the $VOYAGER_HOME
directory, or files could be overwritten and the installation corrupted. The IKOS-created
sms directory (under $VOYAGER_HOME) and the Synopsys-created sms directory
must be kept separate.

Teradyne LASAR
You can dynamically link the SFI with LASAR. For complete Teradyne-specific
installation information, refer to Teradyne's LASAR Manager Guide for UNIX Systems.

VEDA Vulcan
You can dynamically link the SFI with Vulcan at simulator runtime. For current linking
information, please contact VEDA technical support directly.

Viewlogic Fusion ViewSim
You can statically link the SFI on-site with ViewSim. For information, refer to the
Viewlogic Fusion ViewSim manual or contact Viewlogic technical support directly at 1-
800-223-8439. In addition, Synopsys provides a SOLV-IT! article with some
information. For instructions on accessing SOLV-IT!, refer to “Getting Help” on
page 16.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 39

v

2
Using VCS with Synopsys Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VCS. These procedures are centered on VCS v5.1, but contain
notes about other versions of VCS as well. The procedures are organized into the
following major sections:

● “Setting Environment Variables” on page 40

● “Using SmartModels with VCS” on page 41

● “Using FlexModels with VCS” on page 43

● “Using MemPro Models with VCS” on page 53

● “Using Hardware Models with VCS” on page 57

Hint/
This chapter includes a script that you can use to run any FlexModel
examples testbench with minimal setup required. You can cut-and-paste the
script right out of this PDF file. Refer to “Script for Running FlexModel
Examples in VCS” on page 51.

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

40 Synopsys, Inc. April 2002

v

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 41

v

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

5. Set the VCS_HOME variable to the location of your VCS installation tree, as shown
in the following example, and make sure that VCS is set up properly in your
environment:

% setenv VCS_HOME VCS_install_path

6. Set the VCS_SWIFT_NOTES variable to 1, as shown in the following example:

% setenv VCS_SWIFT_NOTES 1

VCS_SWIFT_NOTES enables the printf Processor Control Language (PCL)
command.

Using SmartModels with VCS
To use SmartModels with VCS, follow this procedure:

1. Synopsys provides a tool, vcs_sg, that allows you to generate multiple model
wrapper files. You must select VCS as your Verilog simulator during the
SmartModel installation in order to have vcs_sg available. It will be installed as

$LMC_HOME/bin/vcs_sg

The vcs_sg tool also extends the usefulness of the model wrapper files generated by
VCS in two ways:

❍ it adds statements that allow the DelayRange to be controlled by the VCS
command line +define parameters (or a defparam in your testbench)

❍ it adds a check for the VCS command line +define+SwiftChecksOff parameter
that turns constraints off.

You can change the default name of the generated wrapper files (<model>.swift.v),
as well as the location that the generated wrappers are written to. Invoke

$LMC_HOME/bin/vcs_sg -h

to return the usage message for the vcs_sg tool.

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

42 Synopsys, Inc. April 2002

v

2. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on the required SWIFT parameters and SmartModel
instantiation examples, refer to “SmartModel SWIFT Parameters” on page 20.

3. Invoke the VCS simulator as shown in the following examples:

Solaris:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI

HP-UX:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI \
-LDFLAGS "-a shared -lm -lc -a archive"

AIX:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI \
-LDFLAGS -lld

Linux:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI \
-LDFLAGS -rdynamic

where model.swift.v is the template you created in the previous step and model_tb.v
is the testbench where the model is instantiated. Each model instantiated in the
testbench must have a model.swift.v wrapper file listed on the VCS invocation line.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 43

v

VCS SmartModel Explanation
Table 7 lists each line in the invocation examples above, along with explanations for
what each one does.

Using FlexModels with VCS
To use FlexModels with VCS, follow this procedure. VCS links the external PLI
routines that contain the custom FlexModel integration code during compilation of your
design. This procedure covers users on UNIX and NT. If you are on NT, substitute the
appropriate NT syntax for any UNIX command line examples (percent signs around
variables and backslashes in paths).

1. Synopsys provides a tool, vcs_sg, that allows you to generate multiple model
wrapper files. You must select VCS as your Verilog simulator during the
SmartModel installation in order to have vcs_sg available. It will be installed as

$LMC_HOME/bin/vcs_sg

The vcs_sg tool also extends the usefulness of the model wrapper files generated by
VCS in two ways:

❍ it adds statements that allow the DelayRange to be controlled by the VCS
command line +define parameters (or a defparam in your testbench)

❍ it adds a check for the VCS command line +define+SwiftChecksOff parameter
that turns constraints off.

Table 7: VCS SmartModel Explanation

Line Reference Description

$VCS_HOME/bin/vcs
-lmc-swift model.swift.v model_tb.v

Path to the file that starts the VCS simulator, a
switch that causes VCS to load the SWIFT
interface, and then the specified model wrapper and
Verilog testbench files.

-l vcs_sim.log Specifies a log file where VCS writes compilation
and simulation messages.

-Mupdate This specifies incremental compilation, which
causes VCS to compile only the modules that have
changed since the last run.

-RI This makes VCS run interactively. VCS invokes the
XVCS GUI after compilation and pauses the
simulator at time zero.

-LDFLAGS switches Additional platform-specific switches that may be
needed.

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

44 Synopsys, Inc. April 2002

v

You can change the default name of the generated wrapper files (<model>.swift.v),
as well as the location that the generated wrappers are written to. Invoke

$LMC_HOME/bin/vcs_sg -h

to return the usage message for the vcs_sg tool.

Note8
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 8), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 8 lists the files that flexm_setup copies to your working
directory.

Table 8: FlexModel VCS Verilog Files

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also
references the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user
customizations.

workdir/src/verilog/

model_fx_vcs.v A SWIFT wrapper that you can use to
instantiate the model.

workdir/examples/verilog/

model.v A bus-level wrapper around the SWIFT
model. This allows you to use vectored
ports for the model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/verilog/

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 45

v

3. Update the clock frequency supplied in the model_user_pkg.inc file to correspond to
the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

4. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

Note8
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

5. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vcs.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam
 U1.FlexModelId = “TMS_INST1”;

Example using bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam
 U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
 U1.TimingVersion = “timingversion”,
 U1.DelayRange = “range”,
 U1.FlexModelId= “TMS_INST1”;

6. Invoke VCS to compile and simulate your design as shown in the following
examples:

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

46 Synopsys, Inc. April 2002

v

Solaris

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog

% simv

HP-UX

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog \
-LDFLAGS "-a shared -lm -lc -a archive"

% simv

AIX

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/ibmrs.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog \
-LDFLAGS -lld

% simv

Linux

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/x86_linux.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog \
-LDFLAGS -rdynamic

% simv

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 47

v

NT

> vcs -o simv .\examples\verilog\model.v
workdir\examples\verilog\model_fx_vcs.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog
testbench.v
-lmc-swift -P
%LMC_HOME%\sim\pli\src\slm_pli.tab
%LMC_HOME%\lib\pcnt.lib\slm_pli_vcs.lib

> simv.exe

Note8
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

48 Synopsys, Inc. April 2002

v

VCS FlexModel Examples
First we present a basic one-model example and then show you how to use more than
one FlexModel in the same simulation in the following sections:

● “One FlexModel on Solaris” on page 48

● “Two FlexModels on Solaris” on page 50

● “Three FlexModels on HP-UX” on page 50

One FlexModel on Solaris
To use one FlexModel with VCS on Solaris, invoke the simulator as shown in the
following example:

% $VCS_HOME/bin/vcs \
`$LMC_HOME/bin/flexm_setup model_fx`/examples/verilog/model_tst.v \
`$LMC_HOME/bin/flexm_setup model_fx`/examples/verilog/model.v \
`$LMC_HOME/bin/flexm_setup model_fx`/examples/verilog/model_fx_vcs.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+`$LMC_HOME/bin/flexm_setup model_fx`/src/verilog \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
+incdir+$LMC_HOME/sim/pli/src \
-l vcs_sim.log \
-Mupdate \
-RI \
-lmc-swift

where model is the name of the FlexModel you are using.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 49

v

Table 10 lists each line in the invocation example above, along with explanations for
what each one does.

Table 9: VCS With One FlexModel On Solaris Model Explanation

Line Reference Description

$VCS_HOME/bin/vcs Path to the file that starts the VCS simulator.

`$LMC_HOME/bin/flexm_setup model_fx`
/examples/verilog/model_tst.v

Specifies the path to the model testbench file.

`$LMC_HOME/bin/flexm_setup model_fx`
/examples/verilog/model.v

Specifies the path to the model Verilog
wrapper file.

`$LMC_HOME/bin/flexm_setup model_fx`
/examples/verilog/model_fx_vcs.v

Specifies the path to the model VCS template
file.

+incdir+$LMC_HOME/sim/pli/src Includes the path to the flexmodel_pkg.inc
file, which contains Verilog task definitions
for general FlexModel interface
commands.

+incdir+`$LMC_HOME/bin/flexm_setup
model_fx`/src/verilog

Includes the path to the model-specific
Verilog task files, including model_pkg.inc.

-P $LMC_HOME/sim/pli/src/slm_pli.tab Specifies the FlexModel/MemPro PLI table
entry file.

$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o Specifies the platform-specific PLI object
file.

-l vcs_sim.log Specifies a log file where VCS writes
compilation and simulation messages.

-Mupdate This specifies incremental compilation,
which causes VCS to compile only the
modules that have changed since the last run.

-RI This makes VCS run interactively. VCS
invokes the XVCS GUI after compilation and
pauses the simulator at time zero.

-lmc-swift This switch causes VCS to load the SWIFT
interface.

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

50 Synopsys, Inc. April 2002

v

Two FlexModels on Solaris
This example shows how to use the mpc740_fx and mpc750_l2_fx FlexModels together
with VCS on Solaris. Invoke the simulator as shown in the following example:

% $VCS_HOME/bin/vcs \
`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/examples/verilog/mpc750_l2_tst.v \
`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/examples/verilog/mpc750_l2.v \
`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/examples/verilog/mpc750_l2_fx_vcs.v \
`$LMC_HOME/bin/flexm_setup mpc740_fx`/examples/verilog/mpc740.v \
`$LMC_HOME/bin/flexm_setup mpc740_fx`/examples/verilog/mpc740_fx_vcs.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/src/verilog \
+incdir+`$LMC_HOME/bin/flexm_setup mpc740_fx`/src/verilog \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
+incdir+$LMC_HOME/sim/pli/src \
-l vcs_sim.log \
-Mupdate \
-RI \
-lmc-swift

Three FlexModels on HP-UX
This next example shows how to use the PCI system testbench and the pcimaster_fx,
pcislave_fx, and pcimonitor_fx FlexModels together with VCS on HP-UX. Follow these
steps:

1. Set up the PCI system testbench as shown in the following example:

% mkdir pci_tb
% cp -rf `$LMC_HOME/bin/flexm_setup pcimaster_fx`/* pci_tb
% cp -rf `$LMC_HOME/bin/flexm_setup pcimonitor_fx`/* pci_tb
% cp -rf `$LMC_HOME/bin/flexm_setup pcislave_fx`/* pci_tb

2. Invoke the VCS simulator as shown in the following example:

% $VCS_HOME/bin/vcs \
./pci_tb/examples/verilog/pcisys_tst.v \
./pci_tb/examples/verilog/pcimaster.v \
./pci_tb/examples/verilog/pcimaster_fx_vcs.v \
./pci_tb/examples/verilog/pcislave.v \
./pci_tb/examples/verilog/pcislave_fx_vcs.v \
./pci_tb/examples/verilog/pcimonitor.v \
./pci_tb/examples/verilog/pcimonitor_fx_vcs.v \
+incdir+./pci_tb/src/verilog \
+incdir+$LMC_HOME/sim/pli/src \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-l vcs_sim.log \
-Mupdate \
-RI \

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 51

v

-lmc-swift \
-LDFLGS "-a shared -lm -lc -a archive"

Script for Running FlexModel Examples in VCS
On page 52 is a Perl script (Figure 1) that you can use to run VCS on a FlexModel
examples testbench. You can use this script on any installed FlexModel because each
one comes with a prebuilt testbench example that shows how to use the model
commands and all the Verilog wrapper and task definition files that you need. This script
runs on HP-UX, Solaris, and NT.

To invoke VCS on a FlexModel and its example testbench, follow these steps:

1. Use the Acrobat Reader’s text selection tool to select the script shown in Figure 1
and copy the contents to a local file named run_flex_examples_in_vcs.pl.

2. Save the file and change the permissions so that the file is executable (chmod 775 in
UNIX).

3. If you are on NT, you also need to copy the following line to a file named
run_flex_examples_in_vcs.cmd and put it in your working directory:

%LMC_HOME%\lib\pcnt.lib\sl_perl.exe run_flex_example_in_vcs.pl %*

On NT you invoke this cmd wrapper, which subinvokes the Perl script.

4. Invoke the script as shown in the following examples:

UNIX

% run_flex_examples_in_vcs.pl model_fx

NT

> run_flex_examples_in_vcs.cmd model_fx

where model_fx is the name of the FlexModel you want to run.

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

52 Synopsys, Inc. April 2002

v

Note8
This script was developed for internal use and is made available for user
convenience. It is not actively maintained as part of the licensed software.

Figure 1: run_flex_examples_in_vcs.pl Script

#!/usr/local/bin/perl
$Revision$
$output_file = "Example_Simulator_Run_Script";
die "\nERROR running $0: ", "No FlexModel name given\n\n", unless($ARGV[0]);
$LmcHome = $ENV{ LMC_HOME }; die "ERROR running $0: ", "The LMC_HOME environment
variable must be set.\n" unless($LmcHome);
$VcsHome = $ENV{ VCS_HOME };
die "ERROR running $0: ", "The VCS_HOME environment variable must be set.\n" unless(
$VcsHome);$VcsSwiftNotes = $ENV{ VCS_SWIFT_NOTES };
die "ERROR running $0: ", "The VCS_SWIFT_NOTES environment variable must be set.\n",
"\nSet VCS_SWIFT_NOTES to the value 1\n\n", unless($VcsSwiftNotes);
require "$LmcHome/lib/bin/libmdl01003.pl";
$Platform = GetPlatform();
$Platform_lib = PlatformToLibDir($Platform);
#%platform_suffix = (hp700 => "o", solaris => "o", pcnt => "lib");
$suffix = $platform_suffix{ $Platform };$flexmodel_name = $ARGV[0];
$model_path = $LmcHome . "/models/" . $flexmodel_name;
if (-e $model_path) {}
else { die "\nERROR running $0: ", "FlexModel $flexmodel_name Does not Exist in
Library\n\n"; }$version_path = `$LmcHome/bin/flexm_setup $flexmodel_name`;
chomp($version_path);
if ($flexmodel_name =~ /_fx/) { $flexmodel_name =~ s/_fx//g; $flex_or_c = "_fx";}
elsif ($flexmodel_name =~ /_fz/) {
$flexmodel_name =~ s/_fz//g;
$flex_or_c = "_fz";}
else { die "\nERROR running $0: ", "$flexmodel_name is not a FlexModel. Model must
have an _fx or _fz to be a FlexModel\n\n";}
$execute_command = $VcsHome . "/bin/vcs -Mupdate -RI -l vcs_sim.log "
. $version_path . "/examples/verilog/"
. $flexmodel_name . "_tst.v +incdir+"
. $version_path . "/src/verilog +libext+.inc "
. $version_path . "/examples/verilog/" . $flexmodel_name . ".v "
. $version_path . "/examples/verilog/"
. $flexmodel_name . $flex_or_c . "_vcs.v ";
if ($Platform eq "pcnt") {
$execute_command = $execute_command . $LmcHome . $Platform_lib . "slm_pli_vcs." .
$suffix;}
else {
$execute_command = $execute_command . $LmcHome . $Platform_lib . "slm_pli.o" .
$suffix;}
$execute_command = $execute_command . " -P " . $LmcHome . "/sim/pli/src/slm_pli.tab"
. " -lmc-swift +incdir+" . $LmcHome . "/sim/pli/src"; print "$execute_command\n";
open(OFILE,"> $output_file") || die " Could not create file : $output_file\n";
print OFILE ("# This is an example of VCS command line to run the\n");
print OFILE ("# supplied FlexModel testbench.\n");
print OFILE ("# Note: The model version was calculated using the flexm_setup
command\n");print OFILE ("\n$execute_command\n");
close(OFILE); system($execute_command);

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 53

v

Example Simulator Run Script
The run_flex_examples_in_vcs.pl script also creates an example simulator run script in
your current working directory for the specified model. You can use this run script to
invoke VCS after running the run_flex_examples_in_vcs.pl script. The following
example shows the contents of the “Example_Simulator_Run_Script” after running the
run_flex_examples_in_vcs.pl script using the mpc860_fx model.

This is an example of VCS command line to run the supplied FlexModel
testbench.
Note: The model version was calculated using the flexm_setup command

/d/vcs501/vcs5.0.1A/bin/vcs -Mupdate -RI -l vcs_sim.log
/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/examples/veri
log/mpc860_tst.v
+incdir+/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/src/v
erilog +libext+.inc
/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/examples/veri
log/mpc860.v
/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/examples/veri
log/mpc860_fx_vcs.v /d/lmgqa2/install/lmc_home/lib/hp700.lib/slm_pli.o -
P /d/lmgqa2/install/lmc_home/sim/pli/src/slm_pli.tab -lmc-swift
+incdir+/d/lmgqa2/install/lmc_home/sim/pli/src

Using MemPro Models with VCS
To use MemPro models with VCS, use the following procedures for Verilog testbenches
and for C testbenches. VCS links external PLI routines during compilation of your
design. You do not need to rebuild the VCS simulator.

Using MemPro Models with VCS with Verilog
Testbenches

1. If you are using MemPro HDL testbench interface commands in your design, add
the following line to your Verilog testbench; otherwise, skip to step 2.

`include "mempro_pkg.v"

For more information on using the MemPro HDL testbench interface, refer to the
“HDL Testbench Interface” chapter in the MemPro User’s Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 34.

3. Invoke VCS to compile your design:

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

54 Synopsys, Inc. April 2002

v

Solaris:

If you are using the MemScope Dynamic Data Exchange feature:

% vcs Verilog_modules MemPro_model_files \
+vcs+lic+wait \
-Xstrict=0x01 -syslib “-lpthread” \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI

If you are not using the MemScope Dynamic Data Exchange feature:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI

Solaris example:

% vcs tbench.v mydram.v mysram.v \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI

HP-UX:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS "-Wl,-a,default -ldld -lc -lm -lBSD"

Linux:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/x86_linux.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS -rdynamic

NT:

> vcs Verilog_modules MemPro_model_files
%LMC_HOME%\lib\pcnt.lib\slm_pli_vcs.lib
-p %LMC_HOME%\sim\pli\src\slm_pli.tab
+incdir+%LMC_HOME%\sim\pli\src -RI

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 55

v

AttentionV
If you are using VCS 5.0 or earlier, add the “-Zp4” switch to your VCS
command and replace the “slm_pli_vcs.lib” library with the
“slm_pli_v4vcs.lib” library. If you are using VCS 5.1 or later, add the “-ldl”
switch to your VCS command.

4. Invoke VCS and simulate your design:

% simv

Using MemPro Models with VCS with C Testbenches
If you are using the MemPro C testbench interface functions in your design, use the
following procedure.

1. Develop a C testbench with your own C routines that call MemPro C interface
functions. For more information on using the MemPro C testbench interface, refer
to the “C Testbench Interface” chapter in the MemPro User’s Manual.

2. Add the following line to your C testbench.

#include "mempro_c_tb.h"

3. Make a local copy of slm_pli.tab by copying from
$LMC_HOME/sim/pli/src/slm_pli.tab and adding the following line for each C
routine you have developed:

$your_task_name call=your_func_name

4. Instantiate MemPro models in your Verilog design. Define ports and generics as
required. For information on generics used with MemPro models, refer to
“Instantiating MemPro Models” on page 34.

5. Add calls to the Verilog tasks that correspond with your C routines, from your local
slm_pli.tab file, to your Verilog design. For example:

$your_task_name();

6. Invoke VCS to compile your design:

Solaris:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
-P local_slm_pli.tab your_testbench.c \
-CFLAGS “-I$LMC_HOME/include” \
+incdir+$LMC_HOME/sim/pli/src -RI

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

56 Synopsys, Inc. April 2002

v

HP-UX:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
-P local_slm_pli.tab your_testbench.c \
-CFLAGS “-I$LMC_HOME/include” \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS “-Wl,-a,default -ldld -lc -lm -lBSD”

Linux:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/x86_linux.lib/slm_pli.o \
-P local_slm_pli.tab your_testbench.c \
-CFLAGS “-I$LMC_HOME/include” \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS -rdynamic

NT:

> vcs Verilog_modules MemPro_model_files
%LMC_HOME%\lib\pcnt.lib\slm_pli_vcs.lib
-P local_slm_pli.tab your_testbench.c
-CFLAGS “-I%LMC_HOME%\include”
+incdir+%LMC_HOME%\sim\pli\src -RI

AttentionV
If you are using VCS 5.0 or earlier, add the “-Zp4” switch to your VCS
command and replace the “slm_pli_vcs.lib” library with the
“slm_pli_v4vcs.lib” library. If you are using VCS 5.1 or later, add the “-ldl”
switch to your VCS command.

7. Invoke VCS and simulate your design:

% simv

VCS MemPro Model Explanation
Table 10 lists each line in the invocation examples above, along with explanations for
what each one does.

Table 10: VCS MemPro Model Explanation

Line Reference Description

$VCS_HOME/bin/vcs
mempro_model.v mempro_model_tb.v

Path to the file that starts the VCS simulator,
followed by the specified model and testbench
Verilog files.

-P $LMC_HOME/sim/pli/src/slm_pli.tab Specifies the MemPro PLI table entry file.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 57

v

Using Hardware Models with VCS
To use hardware models with VCS, follow this procedure:

1. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/platform/ $path)

2. Set the VCS_LMC environment variable to the hm directory in the VCS install, as
shown in the following example:

% setenv VCS_LMC $VCS_HOME/platform/lmc/hm

3. Set the LM_SFI environment variable to the SFI directory in the hardware
modeling tree, as shown in the following example:

% setenv LM_SFI hardware_modeler_install_path/sms/lib/platform/

4. Set the VCS_LMC_HM_ARCH environment variable so that you can later use the
-lmc-hm switch. This variable must be set to find the SFI directory in the sms/lib
tree, as shown in the following examples:

Solaris

% setenv VCS_LMC_HM_ARCH sun4.solaris

HP-UX

% setenv VCS_LMC_HM_ARCH pa_hp102

5. Create a Verilog HDL template for the hardware model using the lmvc_template
script provided by VCS, as shown in the following example:

% lmvc_template model_file

$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o Specifies the platform-specific MemPro PLI
object file.

-Mupdate This specifies incremental compilation, which
causes VCS to compile only the modules that
have changed since the last run.

-RI This makes VCS run interactively. VCS invokes
the XVCS GUI after compilation and pauses the
simulator at time zero.

-LDFLAGS switches Additional platform-specific switches that may
be needed.

Table 10: VCS MemPro Model Explanation (Continued)

Line Reference Description

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

58 Synopsys, Inc. April 2002

v

where model_file is the name of the hardware model's .MDL file.

For example, if your model is the TILS299, enter:

% lmvc_template TILS299.MDL

This step produces a TILS299.lmvc.v file that contains the module definition with
all the calls, declarations, and assignments necessary to make the file a valid VCS
module.

Note8
The lmvc_template program looks for Shell Software files in the directories
indicated by the LM_LIB environment variable. You can modify the port list
generated by the lmvc_template to match the existing model instantiations
by editing the .NAM file.

6. Compile your description. Make sure to include the hardware model template and
supporting PLI and library files. To interface the hardware modeler to VCS, add the
-lmc-hm switch to the VCS command line, as shown in the following example:

% vcs +plusarg_save -RI test.v TILS299.lmvc.v -lmc-hm -o simv \
+override_model_delays +maxdelays -l vcs.log &

You can optionally invoke VCS without the -lmc-hm switch by using the -P switch
to point to the $VCS_LMC/lmvc.tab file and including the $VCS_LMC/lmvc.o
object file and $LM_SFI/lm_sfi.a library, as shown in the following example:

% vcs +plusarg_save -RI test.v TILS299.lmvc.v -P $VCS_LMC/lmvc.tab \
$VCS_LMC/lmvc.o $LM_SFI/lm_sfi.a -o simv \
+override_model_delays +maxdelays -l vcs.log &

where:

• vcs is the compiler

• test.v is the file that is part of the top level system source files

• TILS299.lmvc.v is the vcs template for the HW model

• lmvc.tab is the VCS file for lmvc calls for vector logging, and timing
measurement

• lmvc.o is the object code for LMC C file (lmvc.c), which contains the
definitions for all the lmvc tasks/functions.

• lm_sfi.a is the simulator function interface software that links the VCS
simulator to the hardware modeler.

• +override_model_delays is a switch that allows you to specify timing other
than typical.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

April 2002 Synopsys, Inc. 59

v

Note8
the -RI option is not required to generate the simv file. It is used to have the
simulator automatically execute after compilation and to use the xvcs
debugger.

For more information on using the .tab/.c files and options with VCS, refer to the VCS
Users's Guide.

Note that in the previous VCS releases, the hardware model could only be simulated
with typical delays. The VCS 5.2 release has removed this restriction, so you can now
either use a runtime option on the command line or make the change in the delayrange
parameter. Note that the runtime option does override any delayrange parameter
specification. The following excerpt is from the VCS 5.2 Release Notes:

VCS 5.2 has a new runtime option, +override_model_delays that enables
you to use the +mindelays, typdelays, or +maxdelays runtime option to
specify timing in SWIFT SmartModels or Synopsys hardware models and
in so doing override the DelayRange parameter in the template files for
these models that otherwise specifies the timing for the model.

Example Using Runtime Option
Here is an example using the runtime option:

% vcs +plusarg_save -RI test.v TILS299.lmvc.v -P $VCS_LMC/lmvc.tab \
$VCS_LMC/lmvc.o $LM_SFI/lm_sfi.a -o simv +override_model_delays \
+maxdelays -l vcs.log &

Example Using DelayRange Parameter
Here is an example using the DelayRange parameter:

 TILS299 hwm_1 (.\SL (shift_left), .\CLK (clock), .\SR
(shift_right), .\NCLR (clear),
 .\-G2 (g2), .\-G1 (g1), .\S1 (select_1), .\S0
(select_0),
 .\D/QD (bit_4), .\F/QF (bit_6), .\B/QB (bit_2),
.\C/QC (bit_3),
 .\A/QA (bit_1), .\G/QG (bit_7), .\E/QE (bit_5),
.\H/QH (bit_8),
 .\QA (high_bit), .\QH (low_bit));
`ifdef MAX
defparam hwm_1.DelayRange = "MAX" ;
`endif

Run your simulation as usual. After running the vcs compiler, you should see a
compiled simv file. To run your simulation, type in simv.

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

60 Synopsys, Inc. April 2002

v

You need an additional passcode to use the hardware model interface. If you do not have
a passcode, contact VCS Simulation Support at 800-837-4564.

VCS Utilities
If you want to turn on test vector logging or timing measurement, you can invoke tasks
'lm_log', 'lm_log_off', 'lm_measure_time', or 'lm_measure_time_off'.

instance_name.lm_measure_time;
instance_name.lm_measure_time_off;

where instance_name is a string that is the hierarchical path name of the instance for the
hardware model. For example, assuming that our instance is top.hwm_1 with these
features, it would look like the following example:

module top;
TILS299 hwm_1();

 initial begin
 top.hwm_1.lm_measure_time;
 top.hwm_1.lm_log ("file_name");
 #7000;

 top.hwm_1.lm_measure_time_off;
 top.hwm_1.lm_log_off;
 end

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 61

v

3
Using Verilog-XL with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Verilog-XL. The procedures are organized into the following
major sections:

● “Setting Environment Variables” on page 61

● “Using SmartModels with Verilog-XL” on page 63

● “Using FlexModels with Verilog-XL” on page 79

● “Using MemPro Models with Verilog-XL” on page 81

● “Using Hardware Models with Verilog-XL” on page 82

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

62 Synopsys, Inc. April 2002

v

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

Note8
On NT, these hardware modeler environment variables are set automatically
when you install the software.

4. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,
as shown in the following example, and make sure that Verilog-XL is set up
properly in your environment:

% setenv CDS_INST_DIR path_to_Cadence_installation

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 63

v

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Using SmartModels with Verilog-XL
SmartModels work with Verilog-XL using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate the SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and a model
instantiation example, refer to “Using SmartModels with SWIFT Simulators” on
page 20.

2. There is no need to build a Verilog executable. You can use the one that Cadence
provides at $CDS_INST_DIR/tools/bin by adding it to your path variable.

3. To use the swiftpli shared library, invoke the Verilog simulator to compile and
simulate your design as shown in the examples below:

UNIX

% verilog testbench model.v +loadpli1=swiftpli:swift_boot \
+incdir+$LMC_HOME/sim/pli/src

NT

> verilog testbench model.v +loadpli1=swiftpli:swift_boot
+incdir+%LMC_HOME%\sim\pli\src

Note8
For information on LMTV commands that you can use with SmartModels
on Verilog-XL, refer to “LMTV Commands” on page 293.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

64 Synopsys, Inc. April 2002

v

Verilog-XL Usage Notes for SmartModels
This section describes the Synopsys Logic Models To Verilog (LMTV) interface. You
can use LMTV to instantiate and work with SmartModels in Verilog-XL, as described in
the following sections:

● LMTV Modes of Operation

● Capturing and Simulating the Design

● Using SmartModel Windows with Verilog-XL

● Customizing Model Timing

● Simulating an Older Design Using LMTV

● Using FlexModels with Verilog-XL

LMTV Modes of Operation
To take advantage of the SWIFT SmartModel Library while maintaining compatibility
with the older Verilog-XL-specific SmartModel Library, the LMTV interface has two
modes of operation, SWIFT SmartModel Mode and Historic SmartModel Mode.

SWIFT SmartModel Mode
In SWIFT SmartModel mode, the models you instantiate are SWIFT SmartModels. This
is the mode intended for primary use. Use this mode if you are implementing a new
design using the SWIFT SmartModel Library, if you are a new Verilog-XL user, or if
you want to transition your existing design into this mode.

Two sets of v shells support SWIFT SmartModel mode: swift and swift-uc. With
swift-uc, module names and attribute names are provided in all uppercase. The two sets
of v shells provide compatibility with most third-party tools.

Historic SmartModel Mode
In Historic SmartModel mode, the models you instantiate have the characteristics of the
Verilog-XL-specific SmartModels. Historic SmartModel mode is provided only for
backward-compatibility for designs that use models from the Verilog-XL-specific
SmartModel Library. Use the Historic SmartModel mode only if you are continuing
with an older design that was captured using the Verilog-XL-specific SmartModel
Library.

Note8
You must use the same mode throughout a design. You cannot mix modes
within a design.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 65

v

Table 11 lists the different characteristics of the SWIFT and Historic SmartModel
modes.

Table 11: Characteristics of Historic and SWIFT SmartModel Modes

Differences

SWIFT SmartModel Mode
Historic SmartModel

Modeswift swift-uc

Model Attributes TimingVersion
ModelType
DelayRange
MemoryFile
JEDECFile
SCFFile
PCLFile

TIMINGVERSION
MODELTYPE
DELAYRANGE
MEMORYFILE
JEDECFILE
SCFFILE
PCLFILE

COMPONENT
MODELTYPE
RANGE
MEMORYFILE
JEDECFILE
CGAFILE
PCLFILE

Module Names Alphabetic
characters are
lowercase

Alphabetic
characters are
uppercase

Alphabetic characters are
uppercase

Port Ordering Numeric—for example, ports of bus
A[0:11] are in this order: A0, A1, A2, A3,
..., A9, A10, A11.

Alphanumeric—for
example, ports of bus
A[0:11] are in this order:
A0, A1, A10, A11, ..., A8,
A9)

Command Names Begin with $lm_ Begin with $lai_

Switch Names Begin with +lm Begin with +lai

Message Format Refers to model names and timing version
names. Timing units are in nanoseconds
(ns).

Refers only to timing
version names. No timing
units specified.

Ignored +laiobj ignored
LAI_OBJ ignored

+laiobj ignored
LAI_OBJ ignored

User-defined
Windows

model.v files do not have to be modified model.v files must be
modified

Resistive Strength Reports true resistive strength of outputs Maps resistive strength of
outputs to “strong”

Memory Windows Supports memory windows Does not support memory
windows.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

66 Synopsys, Inc. April 2002

v

Implementing SWIFT Mode or Historic SmartModel Mode
Both the SWIFT and the Historic SmartModel modes reference the SWIFT SmartModel
Library, but they use different sets of model.v files (vshells) to invoke the models. For
each mode, there is a specific directory, shown in Table 12, that contains model.v files to
be referenced by that mode. You determine the mode that will be used both during
design capture and when you invoke Verilog-XL, as follows:

1. During design capture, use the appropriate model attributes, port ordering,
command channel, memory access, user-defined windows, module names, and
resistive strength output expectations shown in Table 11.

2. When you invoke Verilog-XL, reference the appropriate model.v directory using the
-y switch, as described in “Concept Design Capture” on page 68.

Capturing and Simulating the Design
Capturing and simulating the design in Verilog-XL involves the following steps, each of
which is described in detail in this section:

● “Verilog-XL Design Flow” on page 66

● “Preparing to Use Verilog-XL” on page 67

● “Verilog-XL Design Capture” on page 68

● “Concept Design Capture” on page 68

● “Concept Procedure” on page 69

Verilog-XL Design Flow
Figure 2 shows the Verilog-XL design flow, with two paths. You choose one path or the
other based on the task at hand:

● LMTV SWIFT SmartModel mode—recommended for new designs

● LMTV Historic SmartModel mode—recommended for older designs that use the
Verilog-XL-specific SmartModel Library

Table 12: model.v Directories

Mode Directory

SWIFT SmartModel Mode $LMC_HOME/special/cds/verilog/swift

SWIFT SmartModel Mode - Uppercase $LMC_HOME/special/cds/verilog/swift-uc

Historic SmartModel Mode $LMC_HOME/special/cds/verilog/historic

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 67

v

You can create a design file (design.v) textually with an HDL description or graphically
using Concept. FlexModel users should also use the appropriate Verilog wrapper file
from the model_fx/examples/verilog directory. This file is copied to your working
directory using the flexm_setup tool. For information on flexm_setup, refer to
“flexm_setup Command Reference” on page 27.

When Verilog-XL simulates the design, it references either the SWIFT SmartModel
mode model.v files or the Historic SmartModel mode model.v files. You must specify
one of these directories when you invoke Verilog-XL. A design cannot reference both
directories.

Figure 2: Verilog-XL Design Flow

Preparing to Use Verilog-XL
Before you use Verilog-XL in either mode, make sure that your executable search path
points to the Verilog-XL executable that contains the LMTV interface.

SWIFT
model.v files design.v file

verilog.v file

Verilog-XL

SWIFT SmartModel Mode

Historic
model.v files design.v file

verilog.v file

Verilog-XL

Historic SmartModel Mode

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

68 Synopsys, Inc. April 2002

v

Verilog-XL Design Capture
You instantiate models from the SWIFT SmartModel Library by creating HDL
descriptions for Verilog-XL. The following example shows the Verilog-XL code for
instantiating a simple NAND gate (ttl00) in a design.v file for the LMTV SWIFT
SmartModel mode. For instance U1, the TimingVersion and DelayRange parameter
values have both been changed from the defaults. For instance U2, only the DelayRange
attribute value has been changed from the default.

 top_mod contains:
 module TOP_MOD;
 defparam
 U1.TimingVersion = "54F00-FAI",
 U1.DelayRange = "min",
 U2.DelayRange = "typ";

 ttl00 U1(.I1(clk), .I2(enable), .O1(output));
 ttl00 U2(.I1(clk), .I2(enable), .O1(output));
 endmodule

The following example shows the Verilog-XL code for the same instantiation, but for the
LMTV Historic SmartModel mode. Notice that the attribute names are different and
that the alphabetic characters in the model name are upper case.

 top_mod contains:
 module TOP_MOD;
 defparam
 U1.COMPONENT= "54F00-FAI",
 U1.RANGE= "min",
 U2.RANGE= "typ";

 TTL00 U1(.I1(clk), .I2(enable), .O1(output));
 TTL00 U2(.I1(clk), .I2(enable), .O1(output));
 endmodule

Concept Design Capture
As an alternative, you can capture a design using the Concept design flow (refer to
Figure 3). First, diagram the design in Concept using a custom symbol library.

Next, execute vloglink to generate the vloglink.v file. Finally, for the SWIFT
SmartModel mode only, execute the mod_param utility provided by Synopsys to convert
model instance parameter names to SWIFT-compliant names in the vloglink.v file.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 69

v

Figure 3: Concept Design Flow

Concept Procedure
To create a design file graphically using Concept, follow these steps:

1. Merge the file into your master.local file.

2. Invoke Concept, instantiate the symbols, and write the schematic.

3. Execute vloglink.

4. If you are using the SWIFT SmartModel mode, use one of these methods to prepare
vloglink.v for simulation:

❍ Run verilog with the -u switch

 --or--

❍ Run mod_param on the vloglink.v file

This converts parameter names to SWIFT-compliant form. (For more information about
the mod_param utility, run mod_param with the -h to display the usage message.)

design.v file

SWIFT-compliant
vloglink.v file

Create Design
Diagram Using Concept

Execute
vloglink

Execute
mod_param

SWIFT
SmartModel

Mode?

Done

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

70 Synopsys, Inc. April 2002

v

Using SmartModel Windows with Verilog-XL
SmartModel Windows, also referred to as “Windows,” is a SmartModel Library feature
that allows you to view and change the contents of internal registers during simulation,
for models and simulators (including Verilog-XL) that support this feature. For general
information about SmartModel Windows, refer to the SmartModel Library User’s
Manual. This section provides information about using SmartModel windows with
Verilog-XL.

LMTV SmartModel Windows Commands
The following commands allow you to work with SmartModel Windows during Verilog-
XL simulation. Commands are instance-specific, which means that they must be issued
once for each instance. These commands are most often placed in the testbench, but can
also be issued at the command line. For details and examples, refer to the specific
command descriptions.

$lm_monitor_enable(), $lai_enable_monitor()
Enables SmartModel Windows for one or more window elements in a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$lm_monitor_disable(), $lai_disable_monitor()
Disables SmartModel Windows for one or more window elements in a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$lm_monitor_vec_map(), $lm_monitor_vec_unmap()
Enables or disables a direct mapping between a user-defined variable and a window
element in a specified model instance. The window element can be part of an array.
Can be used only in SWIFT SmartModel mode.

$lm_status(), $lai_status()
Displays the names and values of internal windows for a specified model instance. Can
be used in both Historic and SWIFT SmartModel modes.

Creating User-Defined Window Elements
You can create user-defined window elements only for SmartCircuit FPGA or CPLD
models. The way you create these window elements depends on whether you will
access the window elements using $lm_monitor_enable(), which can be used in either
the Historic or the SWIFT SmartModel mode; or $lm_monitor_vec_map(), which can
be used only in SWIFT SmartModel mode.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 71

v

Both $lm_monitor_enable() and $lm_monitor_vec_map() need to be given the names of
the model’s window elements. However, these two commands receive the window
element names differently, as follows:

● The $lm_monitor_enable() command expects to find the window element names in
the model.v files. Therefore, before invoking $lm_monitor_enable(), you must use
ccn_report to modify the model.v files so that they contain the window element
names. For details on how to use the ccn_report tool, refer to the SmartModel
Library User’s Manual.

● The $lm_monitor_vec_map(), on the other hand, expects to be passed the window
element names through its own window_element argument, and does not look in the
model.v files. Therefore, you do not need to create modified model.v files before
executing the $lm_monitor_vec_map() command.

For more information about creating window elements using auto windows, refer to the
SmartModel Library User’s Manual.

In Historic SmartModel Mode
In Historic SmartModel mode, you can access user-defined windows only by using the
$lm_monitor_enable() command. This means that you must create user-defined
windows for SmartCircuit FPGA and CPLD models by creating modified model.v files.

1. If you do not already have a compiled configuration netlist (CCN) file, generate one
by executing smartccn on your design. For details on how to use the smartccn tool,
refer to the SmartModel Library User’s Manual.

2. Generate a windows definition file by executing ccn_report on your CCN file, as
shown in the following example.

 % ccn_report ccn_filename -m model_name -A1 windows_file

3. Generate a modified model.v file that contains the window information by executing
ccn_report again, as shown in the following example.

 % ccn_report ccn_filename -m model_name -v -w windows_file \
 -y $LMC_HOME/special/cds/verilog/historic \
 -mn module_name -o modified_model.v

4. Add the windows definition file to your Model Command File (MCF) in the form of
a do command statement, as follows:

 do windows_file

5. Make sure that your design references the modified_model.v file.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

72 Synopsys, Inc. April 2002

v

In SWIFT SmartModel Mode
In SWIFT SmartModel mode, you can access user-defined windows either through
$lm_monitor_enable() or $lm_monitor_vec_map(). The $lm_monitor_enable()
command is provided in SWIFT SmartModel mode for backward compatibility. We
recommend that you use this command only for existing designs. The
$lm_monitor_vec_map() command is intended for use with new designs.

Follow the same procedure as described in “Historic SmartModel Mode” on page 64
except that in Step 3, when invoking ccn_report, use this value for the -y argument:

 -y $LMC_HOME/special/cds/verilog/swift

Accessing Window Elements
The way you access SmartModel window elements depends on whether you are running
in SWIFT mode or Historic SmartModel mode. The following sections provide
instructions for both modes.

In Historic SmartModel Mode
In Historic SmartModel mode, you can access only scalar window elements. You
cannot access the vectored memory window elements available in SWIFT SmartModel
mode. You read and write to predefined window elements using the
$lm_monitor_enable() or $lai_enable_monitor() commands. To access window
elements in Historic SmartModel mode, follow these steps.

1. Enable SmartModel Windows for the model instance, either for specific window
elements or for all window elements. For example, to enable SmartModel Windows
for instance U4 for all window elements, use this command:

 $lm_monitor_enable (U4);

2. To enable only window elements A_REG and D_REG for U4, use this command:

 $lm_monitor_enable (U1, "A_REG", "D_REG");

3. To read from a specific window element, use the $monitor, $strobe, $write, and
$display Verilog commands. For more information, refer to the Cadence
documentation.

4. To display the contents of all window elements, use $lm_status (or $lai_status). For
example, to display all window elements for instance U1, use this command:

 $lm_status("U1");

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 73

v

The information is returned in the following format:

Note: SmartModel Windows Status:
 INREG "Input Register":000
 OUTREG "Output Register"000
 IO_INREG "I/O Input Register":000
 HREG "Hidden Register":0

5. To write to a window element, assign a value to the window element, in this format:

 instance.window_element=value

For example, to clear Bit 3 of the window element HREG in the instance U1
(assuming that HREG has write access), use this command:

 U1.HREG[3]=0;

Note8
Refer to the individual model datasheets for information about the
read/write capabilities of model window elements.

In SWIFT SmartModel Mode
In SWIFT SmartModel mode, you can use the $lm_monitor_enable() or
$lai_enable_monitor() commands to monitor scalar windows, in exactly the same way
as described in “In Historic SmartModel Mode” on page 72. However, as before, you
cannot use these commands to access vectored memory windows.

To use memory windows, available in SWIFT but not in Historic SmartModel mode,
you must use the $lm_monitor_vec_map() command. This command works for both
scalar and vectored windows.

Hint/
For simplicity, when implementing new designs in SWIFT SmartModel
mode, use the $lm_monitor_vec_map() command for both scalar and
vectored windows applications. It is best not to use the
$lm_monitor_enable() or $lai_enable_monitor() commands at all.

To access window elements using the $lm_monitor_vec_map() command, follow these
steps:

1. Define a register for the window element. You can give the register the same name
as the window element, or a different name. For example, to define the register
MY_A_REG to map to the 32-bit register A_REG, you could use this definition:

 reg [31:0] MY_A_REG;

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

74 Synopsys, Inc. April 2002

v

2. Enable the window element and map it to the register. For example, to enable the
window element A_REG for instance U1 and map A_REG to the register
MY_A_REG, you could use this command:

 $lm_monitor_vec_map (MY_A_REG, U1, “A_REG”);

3. To read from a window element, use any appropriate Verilog command to examine
the contents of the register mapped to that window element. For example, to read
the contents of window element A_REG, you could use this command:

 $display (“Address is %b”, MY_A_REG);

4. To write to a window element, assign a value to the register mapped to that window
element. For example, to set Bit 4 of the window element A_REG you could use
this command:

 MY_A_REG[4]=1;

Example 1
The following example shows the predefined scalar window elements w0 and w2, as
they might appear in a typical testbench.

 reg MY_VAR_W0; // users can choose descriptive variable
 reg MY_VAR_W2; // names to fit their applications.
 // the next two lines map the variable names to the
 // window elements and enable the window elements.
 $lm_monitor_vec_map(MY_VAR_W0, "U1", "w0", 0);
 $lm_monitor_vec_map(MY_VAR_W2, "U1", "w2", 0);

Once these window elements are set up in your testbench, you can use the graphical or
monitoring capabilities of Verilog-XL to read, write, or trace the variables
MY_VAR_W0 and MY_VAR_W2, which now hold the values of the window elements
w0 and w2.

Example 2
The following example illustrates the use of the $lm_monitor_vec_map() command to
use memory window elements to track transactions on a memory device. In the
example, a 4K x 8 bit memory model with instance name U1 has these predefined
memory window elements:

● Memory array window element: MEM 4K x 8 bits

● Memory address window element: Mem_addr 12 bits

● Memory read/write window element: Mem_rw 2 bits

For more information about memory windows, refer to the SmartModel Library User’s
Manual.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 75

v

The following example code monitors the memory device. If there is a memory write,
the code checks to see if the write was to any location in the address range between
‘h100 and ‘h200 (not allowed) and if so, issues an error message.

If the Mem_addr window element (which contains the most recently accessed address)
contains unknown values, no test is performed and another error message is issued.

ram_model U1();
// Declare registers for the address, rw, and memory data window
elements
 reg [11:0] ADDR;
 reg [1:0] RW;
 reg [7:0] DATA;
 initial
// Map the ADDR and RW registers to the MEM_addr and MEM_rw windows
begin
 $lm_monitor_vec_map (ADDR, U1, "MEM_addr");
 $lm_monitor_vec_map (RW, U1, "MEM_rw");
end
// Whenever there is a memory transaction, check the address
// and the direction for an illegal write, and the address for
// unknown values.
always @(RW)
 begin
 if (ADDR >= 'h100 && ADDR <= 'h200 && RW[1] == 0 && ADDR != 'hx)
 begin
 // There was an illegal write.
 // Temporarily map DATA register to address pointed to by ADDR
 // and enable MEM array window element to get value of data
 $lm_monitor_vec_map (DATA, U1, "MEM", ADDR);
 $display("Illegal write of value %h at address %h", DATA, ADDR);
 // Turn off enabling of memory array
 $lm_monitor_vec_unmap (DATA, U1);
 end
 if (ADDR==‘hx)
 $display("Warning! Multiple simultaneous transactions.");
 end

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

76 Synopsys, Inc. April 2002

v

Customizing Model Timing
You can customize the timing of SmartModels by changing the timescale or creating
custom timing files.

Changing the Timescale
As with the Verilog-XL-specific SmartModel Library, you can change the timescale of
SmartModels from the default of 100 ps (picoseconds) time_units and 100 ps precision,
defined in the module definitions. These values are specified by the first line of the
module definition, as shown in the following example.

 ‘timescale 100 ps / 100 ps

For both the SWIFT and Historic SmartModel modes, to change the timescale, you must
copy the affected model.v files into a separate directory. Then modify each ‘timescale
compiler directive to the desired value. When invoking the simulator, use the -y switch
to indicate the path to the directory that contains your modified model.v files.

Creating Custom Timing Files
You can create and use custom timing files in both the SWIFT and Historic SmartModel
modes. The procedure is the same for both. For more information on User-Defined
Timing, refer to the SmartModel Library User’s Manual.

Simulating an Older Design Using LMTV
If you have an older design that was created using the Verilog-XL-specific SmartModel
Library, you can simulate it in either mode:

● Historic SmartModel mode—in this case you do not have to modify the design

● SWIFT SmartModel mode—in this case you must modify the design

In both cases, you must make some modifications to the simulation environment as
described in the following sections.

LMTV/SWIFT and Verilog-XL-Specific SmartModel Libraries
Table 13 lists the differences between the LMTV/SWIFT and Verilog-XL-specific
SmartModel Libraries.

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries

LMTV/SWIFT SmartModel Library Verilog-XL-specific SmartModel Library

Uses simplified search algorithm for user-
defined timing files.

Uses complex search algorithm for user-defined
timing files.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 77

v

Environment Modifications
This section describes environment modifications you need to make if you want to
simulate an existing design in either the LMTV SWIFT or Historic SmartModel mode.

Environment Variables
For both modes, set the LMC_PATH and LMC_HOME environment variables instead
of the LMC_VLOG, LAI_OBJ, and LAI_LIB environment variables, which are ignored
by the LMTV interface. For more information about user configuration, refer to the
SmartModel Library Administrator’s Manual.

Command Line Switches
The LMTV interface ignores the +laiobj and +lailib switches, regardless of which mode
you are using. However, LMTV does recognize the +laiudtmsg and +lmudtmsg
switches, which are equivalent.

Resistive Strength
For SWIFT SmartModel mode only, the SWIFT interface reports the true resistive
strength of output pins, instead of mapping them all to “strong” as is done in the
Verilog-XL-specific SmartModel Library. You might want to modify your expected
output accordingly. However, if you want only a quick comparison and do not want to
modify your expected output, you can revert to the Verilog-XL-specific behavior by
using the +lmoldstr command switch. For more information about setting switches, refer
to “Using FlexModels with Verilog-XL” on page 79.

In SWIFT SmartModel mode, reports true
resistive strength of outputs; a switch
optionally maps all to strong. In Historic
SmartModel mode, mimics Verilog-XL-
specific SmartModel Library.

Always maps resistive strength of outputs to
strong.

Supports the Verilog $reset and $restart
commands.

Does not support the Verilog $reset and $restart
commands.

Always uses only $LMC_HOME to find
models; uses no other switches/variables.

Uses +laiobj, $LAI_OBJ, +lai_lib, $LAI_LIB
as well as $LMC_VLOG to find models.

LMTV interface does not support Cadence
fault simulation.

Supports Cadence fault simulation.

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries (Continued)

LMTV/SWIFT SmartModel Library Verilog-XL-specific SmartModel Library

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

78 Synopsys, Inc. April 2002

v

Edits to Design File
This section describes edits you need to make to your design file if you want to simulate
an existing design in the LMTV SWIFT SmartModel mode.

Note8
Note that lai_* commands are recognized by the LMTV interface, so you do
not have to change command names for either mode.

Model Parameter Names
Change the parameter names to the corresponding SWIFT SmartModel mode entries, as
shown in Table 11 on page 65.

Model Names
Change the alphabetic parts of model names to all lower case. (If you use SWIFT-UC
mode, this step is not required.)

Port Names
If you have used explicit port naming in your module instantiations (that is, if you have
explicitly mapped each net name to the corresponding port name in the model
instantiation statement), you do not need to do anything about port names.

If, on the other hand, you have used implicit port naming (that is, if you have listed the
nets in the model instantiation statement in the same order as the ports were declared in
the .v file), you need to ensure that your port names conform to the ordering scheme
used in the SWIFT SmartModel mode, as described in Table 11 on page 65.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 79

v

Using FlexModels with Verilog-XL
FlexModels work with Verilog-XL using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib.

To use the prebuilt swiftpli, follow this procedure:

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 14 lists the files that flexm_setup copies to your working
directory.

2. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding $CDS_INST_DIR/tools/bin to your path
statement.

3. Update the clock frequency supplied in the model_user_pkg.inc file to correspond to
the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

Table 14: FlexModel Verilog-XL Files

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also references
the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user customizations. workdir/src/verilog/

model_fx_vxl.v A SWIFT wrapper that you can use to instantiate
the model.

workdir/examples/verilog/

model.v A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and shows
how to use basic model commands.

workdir/examples/verilog/

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

80 Synopsys, Inc. April 2002

v

4. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

Note8
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

5. Instantiate the FlexModel in your design, defining the ports and defparams as
required (refer to the example testbench supplied with the model). You use the
supplied bus-level wrapper (model.v) in the top-level of your design to instantiate
the supplied bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam
 U1.FlexModelId = “TMS_INST1”;

Example using supplied bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam
 U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
 U1.TimingVersion = “timingversion“,
 U1.DelayRange = “range,“
 U1.FlexModelId= “TMS_INST1”;

6. Invoke the Verilog-XL simulator to compile and simulate your design as shown in
the examples below:

UNIX

% verilog testbench +loadpli1=swiftpli:swift_boot \
 ./workdir/examples/verilog/model.v \
 ./workdir/examples/verilog/model_fx_vxl.v \
 +incdir+$LMC_HOME/sim/pli/src \
 +incdir+workdir/src/verilog

NT

> verilog testbench +loadpli1=swiftpli:swift_boot
workdir\examples\verilog\model.v
workdir\examples\verilog\model_fx_vxl.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 81

v

Note8
For information on LMTV commands that you can use with FlexModels on
Verilog-XL, refer to “LMTV Commands” on page 293.

Using MemPro Models with Verilog-XL
To use MemPro models with Verilog-XL, use the following procedures for Verilog
testbenches and for C testbenches. MemPro models work with Verilog-XL using a PLI
application called LMTV that is delivered in the form of a swiftpli shared library in
$LMC_HOME/lib/platform.lib. If you cannot use the swiftpli, refer to “Static Linking
with LMTV” on page 82.

Using MemPro Models with Verilog-XL with Verilog
Testbenches

To use the prebuilt swiftpli, follow this procedure:

1. If you are on NT, make sure %LMC_HOME%\bin is in your Path variable.

2. To include MemPro testbench interface commands in your design, add the
following line to your testbench:

`include "mempro_pkg.v"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User’s Manual.

3. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 34. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 35.

4. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding $CDS_INST_DIR/tools/bin to your path
statement.

5. Invoke the Verilog-XL simulator to compile and simulate your design as shown in
the examples below:

UNIX

% verilog testbench Verilog_modules MemPro_model_files \
+incdir+$LMC_HOME/sim/pli/src \
+loadpli1=swiftpli:swift_boot

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

82 Synopsys, Inc. April 2002

v

NT

> verilog testbench Verilog_modules MemPro_model_files
+incdir+%LMC_HOME%\sim\pli\src
+loadpli1=swiftpli:swift_boot

Note8
If you are also using SmartModels or FlexModels in your design, you do not
need to load the swiftpli again, since the same library is used to enable all
three types of models in Verilog-XL.

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using Hardware Models with Verilog-XL
This section describes how to configure Release 3.5a of ModelAccess for Verilog.
ModelAccess is the software you use to interface hardware models with the simulator.
To dynamically link the SFI with Verilog-XL, you must have version 2.8 or later of
Verilog-XL on UNIX and version 3.0 on NT. You also need Release 3.5a of
ModelAccess for Verilog. The hardware modeling information is presented in the
following sections of this chapter:

● “Prerequisites” on page 83

● “The ma_verilog Software Tree” on page 83

● “Using Hardware Models” on page 84

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 83

v

Prerequisites
If you have not already done so, perform these tasks:

● Install the Verilog-XL simulator according to instructions provided by Cadence
Design Systems, Inc.

● Perform the complete installation and configuration of the hardware modeling
system, including hardware and software (R3.5a or later) as outlined in the Quick
Reference in Chapter 1 of either the ModelSource Hardware Installation Guide or
the LM-family Hardware Installation Guide.

● Boot the modeler if it is not already booted.

The ma_verilog Software Tree
The ModelAccess for Verilog (ma_verilog) directory structure is illustrated in Figure 4.

Figure 4: The ma_verilog Software Tree

sun4_5.6/

pa_hp102/

include/
mav_include.h
mav_include_code.h

bin/

mav.o

rs6000_4.1.5/

 mav.o

 mav.o
 mav.so

 sun4_5.6/
 lmvsg

 lmvsg

 pa_hp11/
 lmvsg

 rs6000_4.1.5/
 lmvsg

mav.imp

ma_verilog/

 pcnt/ pcnt/
lmvsg.exemav.lib

mav.dll

lm_vconfig

lib/

mav.sl

mav.sl

 mav.o
mav.sl

mav_mti.lib
mav_mti.dll
mav_static.lib

 pa_hp102/

 pa_hp11/

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

84 Synopsys, Inc. April 2002

v

Generating the Verilog-XL Model Shell
You must use the Logic Modeling Verilog Shell Generator (lmvsg) to generate new
Verilog HDL shells (model.v files) for the hardware models you are using. Note that
you cannot use any model.v files that might have existed prior to your use of
ModelAccess for Verilog. All model.v files must be newly generated.

For each hardware model, both UNIX and Windows NT users issue this command at the
operating system prompt:

% lmvsg -d destination_model.MDL

The complete syntax of the lmvsg command is provided in “lmvsg Command
Reference” on page 98.

Using Hardware Models
To instantiate hardware models in Verilog-XL, ModelAccess for Verilog maps the
Cadence PLI to the Simulator Function Interface (SFI), as shown in Figure 5. For
information about the SFI, refer to the Simulator Integration Manual.

Figure 5: SFI Communication with PLI

SFI
Interface

ModelAccess for
Verilog-XL

PLI
Interface

Verilog-XL

ModelSource
System

Synopsys

Cadence

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 85

v

ModelAccess for Verilog Methodology
To simulate with hardware models using ModelAccess for Verilog consists of these
tasks:

● “Simulation Example” on page 85

● “Creating the Model Shell” on page 85

● “Instantiating the Hardware Model” on page 88

● “Performance Monitoring” on page 88

● “Compiling and Simulating” on page 89

● “Examining the Output verilog.log File” on page 89

Simulation Example
This simulation example illustrates how to use hardware models in a Verilog-XL
simulation using ModelAccess for Verilog. This example assumes that all ModelAccess
for Verilog configuration tasks have been accomplished.

Creating the Model Shell
If you use ModelAccess for Verilog, you cannot use existing model.v files that were
generated by crshell; you must regenerate the model.v files as described.

The task of creating a model shell should have been accomplished by executing lmvsg,
as described in “Generating the Verilog-XL Model Shell” on page 84. For example, to
create the model shell (model.v file) for the TILS299 hardware model (an 8-bit universal
shift/storage register with 3-state outputs) in the current working directory, execute the
following:

% lmvsg TILS299.MDL

(By default, if no destination is specified, the current working directory is the
destination directory for the TILS299.v file. For complete syntax of the lmvsg script,
refer to “lmvsg Command Reference” on page 98.)

The following illustration shows the TILS299.v file that contains a listing of the model’s
pin names, pin declarations, parameter declarations, and the model invocation, which
references the model.MDL file (in this case, TILS299.MDL).

// Generated by lmvsg 1.000
// Copyright (c) 1984-1996 Synopsys Inc. ALL RIGHTS RESERVED

‘timescale 1 ns / 1 ns
‘expand_vectornets

module TILS299(
 CLK , CLR , G1 , G2 , S0 , S1 , SL , SR , QA , QH , A , B ,

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

86 Synopsys, Inc. April 2002

v

 C , D , E , F , G , H);

 // Pin declarations
 input CLK ;
 input CLR ;
 input G1 ;
 input G2 ;
 input S0 ;
 input S1 ;
 input SL ;
 input SR ;
 output QA ;
 reg QA__PULL ;
 reg QA__STRONG ;
 assign (pull0, pull1) QA = QA__PULL ;
 assign QA = QA__STRONG ;
 output QH ;
 reg QH__PULL ;
 reg QH__STRONG ;
 assign (pull0, pull1) QH = QH__PULL ;
 assign QH = QH__STRONG ;
 inout A ;
 reg A__PULL ;
 reg A__STRONG ;
 assign (pull0, pull1) A = A__PULL ;
 assign A = A__STRONG ;
 inout B ;
 reg B__PULL ;
 reg B__STRONG ;
 assign (pull0, pull1) B = B__PULL ;
 assign B = B__STRONG ;
 inout C ;
 reg C__PULL ;
 reg C__STRONG ;
 assign (pull0, pull1) C = C__PULL ;
 assign C = C__STRONG ;
 inout D ;
 reg D__PULL ;
 reg D__STRONG ;
 assign (pull0, pull1) D = D__PULL ;
 assign D = D__STRONG ;
 inout E ;
 reg E__PULL ;
 reg E__STRONG ;
 assign (pull0, pull1) E = E__PULL ;
 assign E = E__STRONG ;
 inout F ;
 reg F__PULL ;
 reg F__STRONG ;

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 87

v

 assign (pull0, pull1) F = F__PULL ;
 assign F = F__STRONG ;
 inout G ;
 reg G__PULL ;
 reg G__STRONG ;
 assign (pull0, pull1) G = G__PULL ;
 assign G = G__STRONG ;
 inout H ;
 reg H__PULL ;
 reg H__STRONG ;
 assign (pull0, pull1) H = H__PULL ;
 assign H = H__STRONG ;

// Parameter declarations
 parameter ModelType = “HARDWARE”;
 parameter TimingVersion = “TILS299.MDL”;
 parameter DelayRange = “Max”;

// Invoke the model
 initial
 begin
 $lmhw_model(
 “TILS299.MDL”,
 ModelType,
 “attr”, “timingversion”, TimingVersion,
 “attr”, “delayrange”, DelayRange ,
 “in”, CLK ,
 “in”, CLR ,
 “in”, G1 ,
 “in”, G2 ,
 “in”, S0 ,
 “in”, S1 ,
 “in”, SL ,
 “in”, SR ,
 “out”, QA , QA__STRONG , QA__PULL ,
 “out”, QH , QH__STRONG , QH__PULL ,
 “io”, A , A__STRONG , A__PULL ,
 “io”, B , B__STRONG , B__PULL ,
 “io”, C , C__STRONG , C__PULL ,
 “io”, D , D__STRONG , D__PULL ,
 “io”, E , E__STRONG , E__PULL ,
 “io”, F , F__STRONG , F__PULL ,
 “io”, G , G__STRONG , G__PULL ,
 “io”, H , H__STRONG , H__PULL);
 end
endmodule

‘autoexpand_vectornets
.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

88 Synopsys, Inc. April 2002

v

Instantiating the Hardware Model
Before instantiating a hardware model, you first examine the model.v file you created, to
get the port names to use in the instantiation, and also to see whether you want to change
any of the model’s default parameters. The model.v files contain default values for the
model parameters, which you can override using the “defparam” statement in the model
instantiation.

The following example shows how to instantiation a hardware model (TILS299 in this
case) in a testbench. Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parameters in the
instantiation override the default definitions in the model.v file (TILS299.MDL and
MAX, respectively). In this example, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

/ Instantiate UUT : ModelSource TILS299 hardware model : U1
 defparam U1.TimingVersion=”TILS299A.MDL”;
 defparam U1.DelayRange = “MIN”;
 TILS299 U1(.CLK (clkw),
 .CLR (clrw),
 .A (io1w[0]),
 .B (io1w[1]),
 .C (io1w[2]),
 .D (io1w[3]),
 .E (io1w[4]),
 .F (io1w[5]),
 .G (io1w[6]),
 .H (io1w[7]),
 .G1 (g1w),
 .G2 (g2w),
 .QA (qa1w),
 .QH (qh1w),
 .S0 (s0w),
 .S1 (s1w),
 .SL (slw),
 .SR (srw));

Performance Monitoring
You can monitor the performance of a hardware model and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 89

v

Compiling and Simulating
UNIX users accomplish this task by executing the Verilog-XL executable previously
built, referencing the testbench and the model.v file, as in the following example:

% verilog TILS299.v tbench.v +loadpli1=mav:mav_boot

As Verilog executes, it outputs progress, status, and error messages to the screen and
saves the transcript to a file named verilog.log, which you can examine if necessary for
troubleshooting.

Examining the Output verilog.log File
After echoing the command that invoked Verilog, and the copyright and source
information, Verilog announces its progress as it compiles the input files. When the
prompt C1> is issued, the simulator is waiting at time 0 for you to enter a command.
Typing a period (.), which means “continue”, starts the simulation run. Typing “$finish;”
at the prompt terminates the simulation session.

Notice in particular these lines, which state the release numbers of ModelAccess for
Verilog and SFI:

Runtime, ModelAccess for Verilog-XL R3.5a
SFI Copyright 1988-2000 Synopsys, Incorporated.; 08/30/00; R3.5a

If you are troubleshooting and call Synopsys Technical Support for help, you will be
asked for the SFI release number (in this case, R3.5a). (For instructions on contacting
Synopsys Technical Support, refer to “Getting Help” on page 16.) The following
illustration shows an example verilog.log file without errors.

Host command: verilog.lmv
Command arguments:
 -s
 TILS299.v
 tbench.v

VERILOG-XL 2.2.1 log file created Jan 8, 1997 14:14:00
VERILOG-XL 2.2.1 Jan 8, 1997 14:14:00

...

...
Compiling source file “TILS299.v”
Compiling source file “tbench.v”

 Runtime, ModelAccess for Verilog R2.0
 SFI Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996;
R3.3a
Type ? for help
C1 > .
...

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

90 Synopsys, Inc. April 2002

v

...
L47 “tbench.v”: $stop at simulation time 4200
C1 > $finish;
C1: $finish at simulation time 4200
54 simulation events + 10 accelerated events
CPU time: 0.4 secs to compile + 0.2 secs to link + 0.5 secs in
simulation
End of VERILOG-XL 2.2.1 Jan 8, 1997 14:15:09

Optional Capabilities During Simulation
During simulation, you can optionally enable timing measurement and test vector
logging.

Timing Measurement
LM-family modeling systems can measure input-to-output propagation delays on a
hardware model. You enable timing measurement using the command
$lm_timing_measurements(), described in “$lm_timing_measurements Command
Reference” on page 96.

Note8
Timing measurement is not supported for ModelSource 3200 and 3400.

The following illustration shows an example of timing measurement for the TILS299
model. The six lines of code following “SIMULATION run time duration” turn on
timing measurement, measure for 4200 timing units, then turn off timing measurement.
The timing information is saved in the file TILS299.TIM.

Test Vector Logging
ModelSource and LM-family modeling systems can capture and write to a file the input
stimuli presented to a hardware model, as well as the resulting sampled output values.

Test vectors are useful for debugging a simulation and for verifying the functionality of
a hardware model. You enable test vector logging by using the command
$lm_log_test_vectors(), described in “$lm_log_test_vectors Command Reference” on
page 93.

The following illustration also shows an example of test vector logging for the model
TILS299. The six lines of code following the timing measurement enable test vector
logging, implement the logging for 4200 time units (the duration of the simulation), and
then disable the logging. The test vectors are saved in a file named hwm299.vec.

 // Instantiate UUT : ModelSource TILS299 hardware model : U1
 TILS299 U1(.CLK (clkw),
 .CLR (clrw),

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 91

v

 .A (io1w[0]),
 .B (io1w[1]),
 .C (io1w[2]),
 .D (io1w[3]),
 .E (io1w[4]),
 .F (io1w[5]),
 .G (io1w[6]),
 .H (io1w[7]),
 .G1 (g1w),
 .G2 (g2w),
 .QA (qa1w),
 .QH (qh1w),
 .S0 (s0w),
 .S1 (s1w),
 .SL (slw),
 .SR (srw));
 // SIMULATION run time duration
 initial
 begin
 $lm_timing_measurements (“tbench.U1, 1, “TILS299.TIM”);
 #4200
 $lm_timing_measurements (“tbench.U1, 0, “TILS299.TIM”);
 end
 initial
 begin
 $lm_log_test_vectors(“tbench.U1”,1,”hwm299.vec”);
 #4200 $stop;
 $lm_log_test_vectors(“tbench.U1”,0,”hwm299.vec”);
 end

.

The Test Vector Log File
This next illustration shows part of a test vector log file, hwm299.vec.

test_vector_format 2
test TILS299
time stamp = 1 nanosecond
runtime_modeler_software R3.3a
simulator_function_interface R3.3a
SR 1 I
SL 2 I
...
#patterns { IIIIIIIIBBBBBBBBOO }
{ --- }
{ SSSSCGGCHGFEDCBAQQ }
{ RL10L21L////////HA }
{ K RQQQQQQQQ }
{ HGFEDCBA }
 INIT DDDDDUUDTTTTTTTT
 ZZZZZZZZLL

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

92 Synopsys, Inc. April 2002

v

 0 DDDDUDDDTTTTTTTT
 LLLLLLLLLL
 30 DDDDUDDDDDDDDDDD
 50 DDDDDDDDDDDDDDDD
 100 DDDDUDDDDDDDDDDD
 LLLLLLLLLL
 150 DDDDDDDUDDDDDDDD
 LLLLLLLLLL
 200 DDDDUDDUDDDDDDDD
 LLLLLLLLLL
 250 DDDDDDDUDDDDDDDD
 300 DDDDUDDUDDDDDDDD
 LLLLLLLLLL
 350 DDUUDDDUDDDDDDDD
 zzzzzzzzLL
 355 DDUUDUUUDDDDDDDD
 zzzzzzzzLL
 ...
 ...

Understanding the Test Vector File
The test vector file is written in Logic Modeling test vector format. Symbols for input
and output values are defined in Table 15.

Table 15: Test Vector Symbols

Symbol Input/Output Definition

U Input Drive hard 1

D Input Drive hard 0

u Input Drive soft (resistive) 1

d Input Drive soft (resistive) 0

T Input Drive floating level

N Input Drive unknown level

H Output Sense hard 1

L Output Sense hard 0

h Output Sense soft (resistive) 1

l Output Sense soft (resistive) 0

Z Output Sense floating level. Used for an I/O pin in
the input state whose last driven value was
1 (either U or u)

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 93

v

Saving and Restarting the Simulation State
The Verilog-XL $save() task saves the complete simulation data structure into a
specified file. The saved data structure includes the pattern memory for each hardware
model simulation instance.

The $restart() task restores the complete Verilog-XL simulation from the specified file.
The pattern memory for each hardware model simulation instance is restored into the
hardware modeler’s pattern memory.

Linking the SFI Debug Library
By default, ModelAccess for Verilog dynamically links the non-debug version of the
SFI library. If you want to use the SFI library’s debug version for troubleshooting, define
the environment variable HOSTDEBUG. For information about setting and using
HOSTDEBUG, refer to the Simulator Integration Manual. For troubleshooting
assistance, contact Synopsys Technical Support (for instructions, refer to “Getting Help”
on page 16).

$lm_log_test_vectors Command Reference
The $lm_log_test_vectors command enables test vector logging for a specified instance,
and specifies a file name for the test vector log.

Syntax
$lm_log_test_vectors (“instance_path”, on_off, “filename”)

Arguments
instance_path Specifies the pathname of the model instance for which test

vector logging is to be enabled or disabled.

z Output Sense floating level. Used in two cases: for
an I/O pin in the input state whose last
driven value was 0 (either D or d), or for an
output pin that is not driving.

X Output Sense unknown value. Unknowns on
outputs are generated by unknown
propagation, value forcing, voltage
unknowns, or inconsistent unknowns.

? Output Sense any level (“don’t care”).

Table 15: Test Vector Symbols (Continued)

Symbol Input/Output Definition

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

94 Synopsys, Inc. April 2002

v

on_off Indicates whether test vector logging is to be enabled or
disabled. Allowed values are 1 to enable logging, or 0 (the
default) to disable logging.

filename Specifies the file name to be used for the test vector log.

Description
Enables test vector logging for a specified instance and specifies a filename for the test
vector log. By default, test vector logging is not performed. When test vector logging is
on, the pin value information created during the simulation for the specified device
instance is written in test vector file format to filename.

For detailed information about test vector logging, refer to the ModelSource User’s
Manual or the LM-family Modeler Manual.

Example
The following example enables test vector logging for the instance “U1”, and saves the
test vector log in the file “U1.log”.

$lm_log_test_vectors (“Tbench.U1”, 1, “U1.log”);

$lm_loop_instance Command Reference
The $lm_loop_instance command enables the loop mode for a specified model instance.

Syntax
$lm_loop_instance (“instance_path”)

Arguments
instance_path Specifies the pathname of the model instance for which the

loop mode is to be enabled.

Description
Enables the loop mode for a specified instance. In loop mode, the hardware modeler
repeatedly plays to the physical device the pattern history of the specified device
instance. This command is most often used to analyze the behavior of a device and its
pattern history with an oscilloscope or logic analyzer connected to the device.

Once in loop mode, the interface prompts you to press the Return key to exit the loop
mode.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 95

v

Examples
The following example turns on loop mode for the “U1” model instance.

$lm_loop_instance (“U1”);

The following message is displayed while the instance is in loop mode.

Entering loop mode for hardware model instance U1
Press Return to terminate loop mode.

$lm_timing_information Command Reference
The $lm_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance.

Syntax
$lm_timing_information (“instance_path”, “timing_option”);

Arguments
instance_path Specifies the Verilog pathname of the instance whose timing

information is to be modified.

timing_option Allowed values are “nodelay” to ignore all delay information,
“delay” to process all delay information, “notimingchecks” to
ignore all timing checks, and “timingchecks” to apply all
timing checks. The defaults are “delay” and “timingchecks”.

Description
The $lm_timing_information command allows you to override the hardware modeler’s
default handling of timing information for a specified model instance. By default, the
hardware modeler processes all delay information and applies all timing checks. You
can decrease model evaluation time by disabling these activities. The hardware modeler
does not process information that is not needed by the simulator.

Example
The following example disables timing checks for the “U1” model instance.

$lm_timing_information (“U1”, “notimingchecks”);

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

96 Synopsys, Inc. April 2002

v

$lm_timing_measurements Command Reference
The $lm_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for ModelSource 3200 and 3400.

Syntax
$lm_timing_measurements (“instance_path”, on_off, “filename”)

Arguments
instance_path Specifies the pathname of the model instance for which timing

measurement is to be enabled or disabled.

on_off Indicates whether test vector logging is to be enabled or
disabled. Allowed values are 1 to enable logging, or 0 (the
default) to disable logging.

filename Specifies the file name to be used for the test vector log.

Description
The $lm_timing_measurements command enables timing measurement for a specified
model instance. By default, timing measurement is not performed. Instead, the
hardware modeler uses the delay values provided in the .DLY file in the Shell Software.
When timing measurement is enabled, the hardware modeler returns to the simulator
and logs to the specified file the actual delays measured from the device.

Example
The following example enables timing measurements for the”U1” model instance and
saves the timing measurement log in the “U1.log” file.

$lm_timing_measurements (“Tbench.U1”, 1, “U1.log”);

$lm_unknowns Command Reference
The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation.

Syntax
$lm_unknowns (“option=value” [,”option=value”,...] [, “device_or_pin”])

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 97

v

Arguments
You can use the following values for “option=value”:

propagate=yes | no When “yes” (the default), enables the “on_unknown
propagate” statement, if there is one, in the model’s options
file (for example, TILS299.OPT) for the specified instance or
pin, or for all hardware model instances in the simulation. Set
propagate=no if you want to disable or override the
“on_unknown propagate” statement in the .OPT file for a
specific instance or pin.

Note8
If there is no “on_unknown propagate” statement in the model’s .OPT file,
unknown propagation is disabled even if you use” $lm_unknowns
propagate=yes”. For the “propagate=yes” option to have an effect, there
must be an “on_unknown propagate” statement in the model’s .OPT file. For
more information about the on_unknown statement, refer to the Shell
Software Reference Manual.

value=previous | high | low | float
Specifies the value to be passed to the device when an
unknown value is passed to the modeler. The default is
“previous”, meaning that if the simulator sets an input pin to
“unknown”, the modeler drives the input to its previous value.
For more information, refer to the description of set_previous
in the on_unknown reference pages in the Shell Software
Reference Manual.

sequence_count=num_sequences
Specifies the number of random sequences to propagate
unknowns through the hardware model. The num_sequences
setting is an integer of value 0 (the default) through 20. The
default value, 0, is usually sufficient; setting a higher value
ensures that unknowns will be propagated, but uses more
pattern memory.

random_seed=seed_value
Specifies the initial seed for the random sequence generator.
seed_value is an integer of value 0 (the default) through
65535.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

98 Synopsys, Inc. April 2002

v

device_or_pin Specifies the Verilog pathname of a device or pin whose
unknown values are to be translated into the value specified by
value. The default is to apply the statement to all hardware
model instances in the simulation.

Description
The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified model instances or pins, or for all hardware
model instances in the simulation. By default, the hardware modeler translates all
unknown values to “previous” before passing them to the device. Using this command,
you can specify values of high (1), low (0) or float (?), or disable unknown propagation,
for a specified instance or pin, or for all hardware model instances in the simulation if no
instance or pin is given. For detailed information about unknown handling, refer to the
Shell Software Reference Manual.

Examples
The following example disables unknown propagation and causes a low value to be
passed to the device when an unknown value is passed to the hardware modeler for the
instance “Tbench.U1.”

$lm_unknowns (“propagate=no”, “value=low”, “Tbench.U1”)

The following example disables unknown propagation, causes a high value to be passed
to the device when an unknown value is passed to the modeler, specifies 20 random
sequences to propagate unknowns through the hardware model, and specifies 200 as the
seed for the random sequence generator, for all hardware model instances in the
simulation.

$lm_unknowns (“propagate=yes”, “value=high”, “sequence_count=20”,
“random_seed=200”)

lmvsg Command Reference
For a specified hardware model the lmsvg script creates a model.v file and places it in
the specified destination directory.

Syntax
lmvsg [-d destination] [-i] [-w] [-v vector_path] [-h] model.MDL

Arguments
-d destination Specifies the destination directory in which to store the

generated model.v file. The default is the current directory.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

April 2002 Synopsys, Inc. 99

v

-i Generates a warning if a pin name is an illegal Verilog
identifier. By default, no warning is issued.

-w Specifies pullup and pulldown signal strength of weak1 and
weak0 instead of the default pull1 and pull0, respectively.
This will provide compatibility with Cadence's hardware
modeler interface.

-v vector_path Specifies the pathname to the file containing a list of vectors.

-h Displays the online help for this command.

model.MDL Specifies the name of the MDL file of the hardware model
whose model.v file is to be generated.

Description
The lmvsg script creates a model.v, in the destination directory. The model’s pin names
may not be legal Verilog identifiers. If a pin name is found that is not a legal Verilog
identifier, lmvsg escapes the illegal name (for example, the pin name “-CLR” becomes
“\-CLR”.) and, if the -i switch was issued, displays a warning message.

If a pin alias is defined in the model.NAM file, the pin alias is used as the pin name. For
information about editing the model.NAM file, refer to the ModelSource User’s Manual.

By default, lmvsg generates a module that contains a port for each logical pin. If you
want the module to use vectors for buses, you can provide a file containing a list of the
vectors. For example, if a device contains a 32-bit address bus, the default behavior of
lmvsg is to generate a module with a port list containing the ports A0, A1, ..., A31. You
can use the -v switch to name a file containing the statement “A[31:0]”. lmvsg then
generates the module using a 32-bit vector for the address bus.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

100 Synopsys, Inc. April 2002

v

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

April 2002 Synopsys, Inc. 101

v

4
Using NC-Verilog with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with NC-Verilog. The procedures are organized into the following
major sections:

● “Setting Environment Variables” on page 101

● “Using SmartModels with NC-Verilog” on page 103

● “Using FlexModels with NC-Verilog” on page 104

● “Using MemPro Models with NC-Verilog on UNIX” on page 107

● “Using Hardware Models with NC-Verilog” on page 108

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

102 Synopsys, Inc. April 2002

v

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

4. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,
as shown in the following example, and make sure that NC-Verilog is set up
properly in your environment:

% setenv CDS_INST_DIR path_to_Cadence_installation

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib: \
$CDS_INST_DIR/tools/lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib: \
$CDS_INST_DIR/tools/lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib: \
$CDS_INST_DIR/tools/lib:$LIBPATH

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

April 2002 Synopsys, Inc. 103

v

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$CDS_INST_DIR/tools/lib: \
$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Using SmartModels with NC-Verilog
SmartModels work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 104.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and model
instantiation examples, refer to “Using SmartModels with SWIFT Simulators” on
page 20.

2. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

3. To use the swiftpli shared library, invoke the NC-Verilog simulator to compile and
simulate your design as shown in the following examples:

UNIX

% ncverilog testbench model.v +loadpli1=swiftpli:swift_boot \
+incdir+$LMC_HOME/sim/pli/src

NT

> ncverilog testbench model.v +loadpli1=swiftpli:swift_boot
+incdir+%LMC_HOME%\sim\pli\src

Note8
If you are using ncelab and ncsim, use the -loadpli1 switch instead of the
+loadpli1 switch.

For information on LMTV commands that you can use with SmartModels on
NC-Verilog, refer to “LMTV Command Reference” on page 291.

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

104 Synopsys, Inc. April 2002

v

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using FlexModels with NC-Verilog
FlexModels work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 106.

To use the prebuilt swiftpli, follow this procedure:

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 16 lists the files that flexm_setup copies to your working
directory.

Table 16: FlexModel NC-Verilog Files

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also references
the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user customizations. workdir/src/verilog/

model_fx_vxl.v A SWIFT wrapper that you can use to instantiate
the model.

workdir/examples/verilog/

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

April 2002 Synopsys, Inc. 105

v

2. Update the clock frequency supplied in the model_user_pkg.inc file to correspond to
the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

Note8
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam
 U1.FlexModelId = “TMS_INST1”;

Example using bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam
 U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
 U1.TimingVersion = “timingversion“,
 U1.DelayRange = “range“,
 U1.FlexModelId= “TMS_INST1”;

model.v A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and shows
how to use basic model commands.

workdir/examples/verilog/

Table 16: FlexModel NC-Verilog Files (Continued)

File Name Description Location

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

106 Synopsys, Inc. April 2002

v

5. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

6. Invoke the NC-Verilog simulator to compile and simulate your design as shown in
the following examples:

UNIX

% ncverilog testbench +loadpli1=swiftpli:swift_boot \
 ./workdir/examples/verilog/model.v \
 ./workdir/examples/verilog/model_fx_vxl.v \
 +incdir+$LMC_HOME/sim/pli/src \
 +incdir+workdir/src/verilog

NT

> ncverilog testbench +loadpli1=swiftpli:swift_boot
workdir\examples\verilog\model.v
workdir\examples\verilog\model_fx_vxl.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog

Note8
If you are using ncelab and ncsim, use the -loadpli1 switch instead of the
+loadpli1 switch.

For information on LMTV commands that you can use with FlexModels on NC-Verilog,
refer to “LMTV Command Reference” on page 291.

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

April 2002 Synopsys, Inc. 107

v

Using MemPro Models with NC-Verilog on
UNIX

MemPro models work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 107.

To use the prebuilt swiftpli, follow this procedure:

1. To include MemPro testbench interface commands in your design, add the
following line to your testbench:

Verilog testbench:

`include "mempro_pkg.v"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User’s Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 34. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 35.

3. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

4. Invoke the NC-Verilog simulator to compile and simulate your design as shown in
the example below:

% ncverilog testbench Verilog_modules MemPro_model_files \
+incdir+$LMC_HOME/sim/pli/src \
+loadpli1=swiftpli:swift_boot

Note8
If you are using ncelab and ncsim, use the -loadpli1 switch instead of the
+loadpli1 switch.

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

108 Synopsys, Inc. April 2002

v

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using Hardware Models with NC-Verilog
This section explains how to use Release 3.5a of ModelAccess for Verilog to interface
hardware models with NC-Verilog. It is not necessary to edit and use the Makefile.nc to
build a standalone version of the simulator to link to the hardware modeler. Note that
dynamic linking is only supported on version 2.8 and above of NC-Verilog on HP-UX
and Solaris, and version 3.0 on NT.

1. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

2. Set your SHLIB_PATH or LD_LIBRARY_PATH variable to point to the directories
that contain the ModelAccess libraries. Solaris users also need to add the
/usr/dt/lib and /usr/openwin/lib libraries.

HP-UX

% setenv SHLIB_PATH \
hardware_model_iinstall_path/sms/ma_verilog/lib/pa_hp102:
$CDS_INST_DIR/tools/lib

Solaris

% setenv LD_LIBRARY_PATH \
hardware_model_install_path/sms/ma_verilog/lib/sun4.solaris:\
$CDS_INST_DIR/tools/lib:/usr/dt/lib:/usr/openwin/lib

For NT, add this path to the PATH user variable:

hardware_model_install_path\sms\ma_verilog\lib\pcnt

3. Invoke the simulator as shown in the following example:

% ncverilog testbench.v model.v +loadpli1=mav:mav_boot

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

April 2002 Synopsys, Inc. 109

v

NC-Verilog Utilities
The following hardware model utilities are supported in NC-Verilog:

$lm_log_test_vectors (“instance_path”, on_off, “filename”)

The $lm_log_test_vectors command enables test vector logging for a specified instance,
and specifies a file name for the test vector log. For a detailed syntax description, refer to
“$lm_log_test_vectors Command Reference” on page 93.

$lm_loop_instance (“instance_path”)

The $lm_loop_instance command enables the loop mode for a specified model instance.
For a detailed syntax description, refer to “$lm_loop_instance Command Reference” on
page 94.

$lm_timing_information (“instance_path”, “timing_option”)

The $lm_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$lm_timing_information Command Reference” on page 95.

$lm_timing_measurements (“instance_path”, on_off, “filename”)

The $lm_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for ModelSource 3200 and 3400. For a detailed
syntax description, refer to “$lm_timing_measurements Command Reference” on
page 96.

$lm_unknowns (“option=value” [,”option=value”,...] [, “device_or_pin”])

The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$lm_unknowns
Command Reference” on page 96.

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

110 Synopsys, Inc. April 2002

v

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

April 2002 Synopsys, Inc. 111

v

5
Using MTI Verilog with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI Verilog (ModelSim/VLOG.). The procedures are organized
into the following major sections:

● “Setting Environment Variables” on page 111

● “Using SmartModels with MTI Verilog” on page 113

● “Using FlexModels with MTI Verilog” on page 114

● “Using MemPro Models with MTI Verilog” on page 117

● “Using Hardware Models with MTI Verilog” on page 119

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Make sure MTI Verilog is set up properly in your environment.

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

112 Synopsys, Inc. April 2002

v

3. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

April 2002 Synopsys, Inc. 113

v

Using SmartModels with MTI Verilog
SmartModels work with MTI Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli_mti shared library in $LMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_mti, refer to “Static Linking with LMTV” on page 114.

To use SmartModels with the prebuilt swiftpli_mti, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on the required SWIFT parameters and SmartModel
instantiation examples, refer to “Using SmartModels with SWIFT Simulators” on
page 20.

2. Compile your code as shown in the following examples:

UNIX

% vlog testbench model.v +incdir+$LMC_HOME/sim/pli/src

NT

> vlog testbench model.v +incdir+%LMC_HOME%\sim\pli\src

where the model.v files are located at $LMC_HOME/special/cds/verilog/swift.
These .v files are installed during the SmartModel installation if the customer
selects either Cadence or MTI for an EDAV option.

3. Invoke the simulator as shown in the following examples:

HP-UX

% vsim -pli $LMC_HOME/lib/hp700.lib/swiftpli_mti.sl design

Solaris

% vsim -pli $LMC_HOME/lib/sun4Solaris.lib/swiftpli_mti.so design

AIX

% vsim -pli $LMC_HOME/lib/ibmrs.lib/swiftpli_mti.so design

Linux

% vsim -pli $LMC_HOME/lib/x86_linux.lib/swiftpli_mti.so design

NT

> vsim %LMC_HOME%\lib\pcnt.lib\swiftpli_mti.dll design

Note8
For information on LMTV commands that you can use with SmartModels
on MTI Verilog, refer to “LMTV Command Reference” on page 291.

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

114 Synopsys, Inc. April 2002

v

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using FlexModels with MTI Verilog
FlexModels work with Verilog-XL using a PLI application called LMTV that is
delivered in the form of a swiftpli_mti shared library in $LMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_mti, refer to “Static Linking with LMTV” on page 117.

To use the prebuilt swiftpli_mti, follow this procedure:

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 17 lists the files that flexm_setup copies to your working
directory.

Table 17: FlexModel MTI Verilog Files

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also references
the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user customizations. workdir/src/verilog/

model_fx_mti.v A SWIFT wrapper that you can use to instantiate
the model.

workdir/examples/verilog/

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

April 2002 Synopsys, Inc. 115

v

2. Update the clock frequency supplied in the model_user_pkg.inc file to correspond to
the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

Note8
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_mti.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam
 U1.FlexModelId = “TMS_INST1”;

Example using bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam
 U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
 U1.TimingVersion = “timingversion“,
 U1.DelayRange = “range“,
 U1.FlexModelId= “TMS_INST1”;

model.v A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and shows
how to use basic model commands.

workdir/examples/verilog/

File Name Description Location

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

116 Synopsys, Inc. April 2002

v

5. Compile your code as shown in the following examples:

UNIX

% vlog testbench \
workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_mti.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog

NT

> vlog testbench
workdir\examples\verilog\model.v
workdir\examples\verilog\model_fx_mti.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog

6. Invoke the simulator as shown in the following examples:

HP-UX

% vsim -pli $LMC_HOME/lib/hp700.lib/swiftpli_mti.sl design

AIX

% vsim -pli $LMC_HOME/lib/ibmrs.lib/swiftpli_mti.so design

Solaris

% vsim -pli $LMC_HOME/lib/sun4Solaris.lib/swiftpli_mti.so design

Linux

% vsim -pli $LMC_HOME/lib/x86_linux.lib/swiftpli_mti.so design

NT

> vsim -pli %LMC_HOME%\lib\pcnt.lib\swiftpli_mti.dll design

Note8
For information on LMTV commands that you can use with FlexModels on
MTI-Verilog, refer to “LMTV Command Reference” on page 291.

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

April 2002 Synopsys, Inc. 117

v

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using MemPro Models with MTI Verilog
MemPro models work with MTI Verilog (ModelSim) using a PLI application called
LMTV that is delivered in the form of a swiftpli_mti shared library in
$LMC_HOME/lib/platform.lib. If you cannot use the swiftpli_mti, refer to “Static
Linking with LMTV” on page 119.

To use the prebuilt swiftpli_mti, follow this procedure:

1. To include MemPro testbench interface commands in your design, add the
following line to your testbench:

Verilog testbench:

`include "mempro_pkg.v"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User’s Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 34. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 35.

3. Define the working directory that contains your testbench.

UNIX

% vlib work_dir

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

118 Synopsys, Inc. April 2002

v

NT

> vlib work_dir

4. Compile your code as shown in the following examples:

UNIX

% vlog -work work_dir testbench.v Verilog_modules MemPro_model_files\
+incdir+$LMC_HOME/sim/pli/src

NT

> vlog -work work_dir testbench.v Verilog_modules MemPro_model_files
+incdir+%LMC_HOME%\sim\pli\src

5. Invoke the simulator as shown in the following examples:

HP-UX

% vsim -pli $LMC_HOME/lib/hp700.lib/swiftpli_mti.sl \
-c work_dir.testbench

AIX

% vsim -pli $LMC_HOME/lib/ibmrs.lib/swiftpli_mti.so \
-c work_dir.testbench

Solaris

% vsim -pli $LMC_HOME/lib/sun4Solaris.lib/swiftpli_mti.so \
-c work_dir.testbench

Linux

% vsim -pli $LMC_HOME/lib/x86_linux.lib/swiftpli_mti.so \

-c work_dir.testbench

NT

> vsim -pli %LMC_HOME%\lib\pcnt.lib\swiftpli_mti.dll \
-c work_dir.testbench

Note8
If you are also using SmartModels or FlexModels in your design, you do not
need to load the swiftpl_mti again, since the same library is used to enable
all three types of models in MTI-Verilog.

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

April 2002 Synopsys, Inc. 119

v

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using Hardware Models with MTI Verilog
To use hardware models with MTI Verilog, follow this procedure. This procedure covers
users on UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any
UNIX command line examples (percent signs around variables and backslashes in
paths). Note that hardware models are supported on MTI Verilog v5.4c and up.

1. MTI Verilog only supports dynamic linking of PLI libraries. The three ways to
specify the required ModelAccess shared library, and the order in which the
simulator looks for PLI libraries, is listed below. Choose one of the following
methods:

a. Add the platform-specific shared library to the Veriuser entry in the
modelsim.ini file:

Solaris

Veriuser = mav.so

AIX

Veriuser = mav.so

HP-UX

Veriuser = mav.sl

NT

Veriuser = mav_mti.dll

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

120 Synopsys, Inc. April 2002

v

b. Add an item in the PLIOBJS environment variable list:

% setenv PLIOBJS “mav.ext”

c. Use the -pli switch on the simulator invocation line:

% vsim -pli mav.ext

Note8
For steps b and c, fill in the correct extension for your platform.

2. Regardless of the option you choose, you must locate the ModelAccess PLI library
for the simulator using a platform-specific environment variable or by specifying the
full path to the library in Step 1. Here are examples for setting the environment
variables which show the full paths to the libraries:

Solaris

% setenv LD_LIBRARY_PATH \
hardware_model_install_path/sms/ma_verilog/lib/sun4_5.6/mav.so

HP-UX

% setenv SHLIB_PATH \
hardware_model_install_path/sms/ma_verilog/lib/pa_hp102/mav.sl

AIX

% setenv LIBPATH \
hardware_model_install_path/sms/ma_verilog/lib/rs6000_4.1.5/mav.so

For NT, add this path to the PATH user variable:

hardware_model_install_path\sms\ma_verilog\lib\pcnt

3. Generate a Verilog module definition or shell for each hardware model that you
want to use by running the Synopsys-provided lmvsg script, as shown in the
following example:

% lmvsg destination_model.MDL

For this to work, the hardware_model_install_path/sms//ma_verilog/bin/platform
directory must be in your PATH. For details on the complete syntax of the lmvsg
command, refer to “lmvsg Command Reference” on page 98.

4. Use the Verilog module definitions to instantiate the hardware models in your
testbench. The following example shows an example instantiation for the TILS299
hardware model Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parameters in the
instantiation override the default definitions in the model.v file (TILS299.MDL and
MAX, respectively). In this example, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

April 2002 Synopsys, Inc. 121

v

/ Instantiate UUT : ModelSource TILS299 hardware model : U1
 defparam U1.TimingVersion=”TILS299A.MDL”;
 defparam U1.DelayRange = “MIN”;
 TILS299 U1(.CLK (clkw),
 .CLR (clrw),
 .A (io1w[0]),
 .B (io1w[1]),
 .C (io1w[2]),
 .D (io1w[3]),
 .E (io1w[4]),
 .F (io1w[5]),
 .G (io1w[6]),
 .H (io1w[7]),
 .G1 (g1w),
 .G2 (g2w),
 .QA (qa1w),
 .QH (qh1w),
 .S0 (s0w),
 .S1 (s1w),
 .SL (slw),
 .SR (srw));

5. Invoke the MTI Verilog simulator as shown in the following example, which
illustrates the use of the -pli switch to specify the PLI library.

% vsim -pli mav_library

MTI Verilog Utilities
The following hardware model utilities are supported in MTI Verilog:

$lm_log_test_vectors (“instance_path”, on_off, “filename”)

The $lm_log_test_vectors command enables test vector logging for a specified instance,
and specifies a file name for the test vector log. For a detailed syntax description, refer to
“$lm_log_test_vectors Command Reference” on page 93.

$lm_loop_instance (“instance_path”)

The $lm_loop_instance command enables the loop mode for a specified model instance.
For a detailed syntax description, refer to “$lm_loop_instance Command Reference” on
page 94.

$lm_timing_information (“instance_path”, “timing_option”)

The $lm_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$lm_timing_information Command Reference” on page 95.

$lm_timing_measurements (“instance_path”, on_off, “filename”)

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

122 Synopsys, Inc. April 2002

v

The $lm_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for ModelSource 3200 and 3400. For a detailed
syntax description, refer to “$lm_timing_measurements Command Reference” on
page 96.

$lm_unknowns (“option=value” [,”option=value”,...] [, “device_or_pin”])

The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$lm_unknowns
Command Reference” on page 96.

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 123

v

6
Using Scirocco with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Scirocco. The procedures are organized into the following major
sections:

● “Setting Environment Variables” on page 123

● “Using SmartModels with Scirocco” on page 124

● “Using FlexModels with Scirocco” on page 127

● “Using MemPro Models with Scirocco” on page 130

● “Using Hardware Models with Scirocco” on page 132

Setting Environment Variables
First, set the basic environment variables. In some cases the procedures that follow in
this chapter include steps for setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Set the SYNOPSYS_SIM variable to point to the Scirocco installation directory as
follows:

% setenv SYNOPSYS_SIM Scirocco_installation_directory

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

124 Synopsys, Inc. April 2002

v

3. Source the environ.csh Scirocco environment file.

% source $SYNOPSYS_SIM/admin/setup/environ.csh

4. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

Using SmartModels with Scirocco
To use SmartModels with Scirocco, follow this procedure:

1. To create SmartModel VHDL templates, check to see if you have write permission
for $LMC_HOME/synopsys/smartmodel; if so skip to Step 4. Otherwise, open the
.synopsys_vss.setup file in your current working directory and search for the string
SMARTMODEL. By default, the logical library name SMARTMODEL is mapped
to $LMC_HOME/synopsys/smartmodel, as follows:

SMARTMODEL : $LMC_HOME/synopsys/smartmodel

2. Change the directory to one for which you have write permission, as shown in the
following example:

SMARTMODEL : ~/smartmodel

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 125

v

3. Generate a VHDL model wrapper file by invoking create_smartmodel_lib with any
optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 126.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

4. If you changed the SMARTMODEL mapping in Step 2, you must use the -srcdir
option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processes all
installed SmartModels. For example, here is a recommended set of options to use
for one SmartModel (ttl00 in this example).:

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib -model ttl00 \
-srcdir ~/smartmodel

5. After create_smartmodel_lib has finished executing, verify that the VHDL template
files have been created in the appropriate directory.

6. To use SmartModels in the VHDL source file of your design, specify the
SMARTMODEL library and instantiate each SmartModel component. In the VHDL
design file that uses SmartModel components, enter the following library and use
clauses:

library SMARTMODEL;
use SMARTMODEL.components.all

The library logical name SMARTMODEL must be mapped to appropriate
directories in your .synopsys_vss.setup file, as described on page 124.

7. Add the following line to your .synopsys_vss.setup file:

TIMEBASE = PS

8. Instantiate SmartModels in your VHDL design. For information on required
configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators” on page 20.

9. Compile your testbench as shown in the following example:

% vhdlan testbench

10. Invoke the Scirocco simulator as shown in the following examples:

a. If you are using Scirocco 2001.10 or later:

% scs design

% scsim design

b. If you are using Scirocco 2000.12:

% scsim design

For more information, refer to the Scirocco Reference Manual.

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

126 Synopsys, Inc. April 2002

v

create_smartmodel_lib Command Reference
The command reference for create_smarmodel_lib is as follows:

Syntax
create_smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]

[-modelfile file] {-model model_name}

Arguments
-- Displays the usage message and lists the command line

options.

-nc Suppresses the Synopsys copyright message.

-create Creates the VHDL source files (.vhd files) for the
SMARTMODEL library and saves the source files in the
$LMC_HOME/synopsys directory.

-src_dir dirpath Lets you specify the location of the VHDL source files that
you create. The default location is $LMC_HOME/synopsys.

-analyze Analyzes the SMARTMODEL library source files (.vhd files)
by invoking vhdlan. The analyzed files (.sim and .mra files)
are saved in the $LMC_HOME/synopsys/smartmodel
directory. This directory is specified by SMARTMODEL
logical name mapping in the setup file.

-nowarn Suppresses the generation of warning messages that notify
you of any port name mappings.

-modelfile file A list of SMARTMODEL component names is read from file.
Names are separated by spaces. Only the specified component
names are included in the SMARTMODEL component
library.

-model model_name The model_name is included in the resulting SMARTMODEL
component library. Repeat this option to specify multiple
models. Only specified component names are included in the
SMARTMODEL component library.

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 127

v

Description
When issued without options, the create_smartmodel_lib command takes all of the files
in the $LMC_HOME/models directory, creates and analyzes the VHDL template files,
and saves them in the $LMC_HOME/synopsys/smartmodel directory. If you do not have
write permission for $LMC_HOME/synopsys/smartmodel, the command terminates
with an error message. In that case, you must use the -src_dir option to specify a
writable directory in which to place the VHDL templates. You must also specify that
directory through the SMARTMODEL library mapping in the .synopsys_vss.setup file
in your current working directory.

Using FlexModels with Scirocco
To use FlexModels with Scirocco, follow this procedure:

1. If you want the improved performance that comes with bused wrappers, generate a
VHDL model wrapper file by invoking create_smartmodel_lib with any optional
arguments. For more information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 126.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

Note8
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 18), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

128 Synopsys, Inc. April 2002

v

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 18 describes the FlexModel Scirocco interface and
example files that the flexm_setup tool copies.

3. Update the clock frequency supplied in the model_user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup this file is located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

4. Add the following line to your .synopsys_vss.setup file:

SLM_LIB : SLM_LIB_PATH

TIMEBASE = PS

Table 18: FlexModel Scirocco VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_vss.vhd A SWIFT wrapper for the model. workdir/examples/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS”
when compiled.

workdir/examples/vhdl/

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 129

v

5. Compile the FlexModel VHDL files into logical library slm_lib as follows:

Note8
These examples provide details for event-based simulation. Please refer to
the Scirocco Reference Manual for cycle-mode operation.

% vhdlan -w slm_lib $LMC_HOME/sim/vhpi/src/slm_hdlc.vhd
% vhdlan -w slm_lib $LMC_HOME/sim/vhpi/src/flexmodel_pkg.vhd
% vhdlan -w slm_lib workdir/src/vhdl/model_user_pkg.vhd
% vhdlan -w slm_lib workdir/src/vhdl/model_pkg.vhd
% vhdlan -w slm_lib workdir/src/vhdl/model_fx_comp.vhd
% vhdlan -w slm_lib workdir/src/vhdl/model_fx_vss.vhd
% vhdlan -w slm_lib workdir/src/vhdl/model.vhd

6. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)
port map (model ports);

8. Compile your testbench as shown in the following example:

% vhdlan testbench

9. Invoke the Scirocco simulator as shown in the following examples:

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

130 Synopsys, Inc. April 2002

v

a. If you are using Scirocco 2001.10 or later:

% scs design

% scsim -vhpi slm_vhpi:foreignINITelab:cpipe

b. If you are using Scirocco 2000.12:

% scsim -vhpi slm_vhpi:foreignINITelab:cpipe design

Using MemPro Models with Scirocco
You must have MemPro version 2000.04 or higher to use MemPro models with
Scirocco. To use Scirocco with MemPro models, follow this procedure.

1. Add the Scirocco library path to your library path environment variable.

HP-UX:

% setenv SHLIB_PATH \
$SYNOPSYS_SIM/hpux10/sim/lib:$SHLIB_PATH

Solaris:

% setenv LD_LIBRARY_PATH \
$SYNOPSYS_SIM/sparcOS5/sim/lib:$LD_LIBRARY_PATH

2. Add the Scirocco executable to your search path:

% set path = ($SYNOPSYS_SIM/platform/sim/bin $path)

where platform is hpux10 or sparcOS5.

3. Create slm_lib and work directories:

% mkdir ./slm_lib
% mkdir ./work

4. Create the logical to physical mapping for the slm_lib, work, and default libraries by
modifying your local .synopsys_vss.setup file to include the following lines:

WORK > DEFAULT
DEFAULT : ./work
SLM_LIB : ./slm_lib

Note8
It is also recommended you set your simulation timebase for the desired
level of timing accuracy by modifying your .synopsys_vss.setup file to
include a TIMEBASE entry, as shown in the following example:

TIMEBASE = PS

5. Compile the MemPro VHDL files into your slm_lib library:

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 131

v

Note8
These examples provide details for event-based simulation. Please refer to
the Scirocco Reference Manual for cycle-mode operation.

% vhdlan -w slm_lib $LMC_HOME/sim/vhpi/src/slm_hdlc.vhd
% vhdlan -w slm_lib $LMC_HOME/sim/vhpi/src/mempro_pkg.vhd
% vhdlan -w slm_lib $LMC_HOME/sim/vhpi/src/rdramd_pkg.vhd

Compiling the rdramd_pkg.vhd is required only if you are going to use MemPro
RDRAM models.

6. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% vhdlan mymem.vhd

7. Add slm_lib LIBRARY and USE statements to your testbench:

LIBRARY SLM_LIB;
USE SLM_LIB.mempro_pkg.all;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

8. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 34. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 35.

9. Compile your testbench as shown in the following example

% vhdlan testbench.vhd

10. Invoke the Scirocco simulator as shown in the following examples:

a. If you are using Scirocco 2001.10 or later:

% scs testbench_configuration

% scsim -vhpi slm_vhpi:foreignINITelab:cpipe

b. If you are using Scirocco 2000.12:

% scsim -vhpi slm_vhpi:foreignINITelab:cpipe testbench_configuration

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

132 Synopsys, Inc. April 2002

v

Using Hardware Models with Scirocco
To use Scirocco with hardware models, follow this procedure. Note that your design can
include a mix of event-based and cycle-based, but hardware models simulate only as
event-based.

1. Make sure Scirocco is set up properly and all required environment variables are set,
as explained in “Setting Environment Variables” on page 123.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install_path/sms/bin/your_platform/ $path)

3. Create the model.vhd wrapper file for your hardware model. You can use the nawk
script provided in “Scirocco Template Generator Script for Hardware Models” on
page 135 to generate this file. Copy the script and paste it into an executable file
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

❍ an entity-architecture pair declaration so Scirocco can reference it in a later
component instantiation statement.

❍ a package for defining constants, declaring components, and instantiating
components.

5. Place the wrapper you just created in your testbench.

6. Compile the wrapper and testbench you just created.

% vhdlan hardwaremodel.vhd

% vhdlan testbench

7. Invoke the Scirocco simulator as shown in the following examples:

a. If you are using Scirocco 2001.10 or later:

% scs design

% scsim

b. If you are using Scirocco 2000.12:

% scsim design

AttentionV
When using hardware models with Scirocco, your design can include a mix
of event-based and cycle-based, but hardware models simulate only as
event-based.

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 133

v

Scirocco Utilities
The following hardware modeler simulator commands are supported in Scirocco.

#lmsi list devices | ids

You can use the lmsi list devices command to list all hardware model instances by
device name, and the lmsi list ids command to list all hardware model instances by id
name. For example:

lmsi list devices
device name id# instance name logging
TILS299 0 /TB_TILS299/U0 Off
lmsi list ids
id# device name instance name logging
0 TILS299 /TB_TILS299/U0 Off

You can also log test vectors for the hardware model. To log by ID number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If no file
name is specified, VSS writes to a file named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance_name filename

To log vectors for all hardware model device instances, specify all. A log file is created
for each instance. The output files are named device_name.id#.TST. For example:

#lmsi logon all

To turn off vector logging, replace logon with logoff and omit the file name in the above
examples.

VHDL Model Generics with Scirocco
You can also control hardware model behavior using VHDL generics in your hardware
model instantiations. The nawk script on page 135 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL generics in your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Simulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

LMSI_TIMING_MEASUREMENT

You can use the LMSI_TIMING_MEASUREMENT generic to direct where timing
values for your simulation session come from. There are two legal values:

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

134 Synopsys, Inc. April 2002

v

ENABLED The hardware modeler measures and records actual pin-to-pin
timing values and passes them to the simulator.

DISABLED The hardware modelers passes to the simulator the pin-to-pin
timing values from the .TMG file. This is the default value.

LMSI_DELAY_TYPE

You can use the LMSI_DELAY_TYPE generic to specify whether the hardware
modeler returns pin values to the simulator with minimum, typical, or maximum delays,
as you can see in the following legal values:

MINIMUM Return minimum delays for pin values to the simulator.

TYPICAL Return typical delays for pin values to the simulator. This is
the default.

MAXIMUM Return maximum delays for pin values to the simulator.

LMSI_LOG

You can use the LMSI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.

DISABLED The hardware modelers does not log test vectors. This is the
default value.

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 135

v

Scirocco Template Generator Script for Hardware Models
Here is the nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page at a
time from this PDF file to get the whole thing copied to your environment.

**
In your design directory type:
#
nawk -f hwm2vhdl.nawk $HWM/<model>.NAM > <outfile>.vhd
#
(where "$HWM" is the full path to your hardware modeling directory)
Instantiate .vhd into your design.
#
THE SCRIPT:
#
Script to generate a VSS/Scirocco VHDL shell for a hardware model
using the <model>.NAM file

BEGIN {
 pin_type = 0
 is_it_a_vector = "No"
 data_type = ""
 prev_signal = ""
 prev_test = ""
 prev_number = ""
 prev_dir = ""
 ending = ";"

 printf "library SYNOPSYS;\n"
 printf " use SYNOPSYS.ATTRIBUTES.all;\n"
 printf "library IEEE;\n"
 printf " use IEEE.std_logic_1164.all;\n\n"

}

$2 ~ /generic_device_name/ {
 device = $3
 printf "entity " device " is\n"
 printf " generic\n"
 printf " (\n"
 printf " timing : LMSI_TIMING_MEASUREMENT := DISABLED;\n"
 printf " delay_type : LMSI_DELAY_TYPE := TYPICAL;\n"
 printf " delay : LMSI_DELAY := ENABLED;\n"
 printf " log : LMSI_LOG := DISABLED;\n"
 printf " timing_violations : LMSI_TIMING_VIOLATIONS := DISABLED;\n"
 printf " xprop : LMSI_XPROP := DISABLED;\n"
 printf " xprop_method : LMSI_XPROP_METHOD := HIGH\n"
 printf ");\n\n"
 printf " port\n"
 printf " (\n"
}

$4 ~ /\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~ /\(io_pin\)/ \
 || $4 ~ /\(power_pin\)/ {
 pin_type++
}

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

136 Synopsys, Inc. April 2002

v

$2 ~ /\=/ || ($0 ~ /^$/ && pin_type ~ /3/) {
 if (pin_type == 1) {
 direction = "in "
 }
 else if (pin_type == 2) {
 direction = "out "
 }
 else if (pin_type == 3) {
 direction = "inout"
 }
 else {
 next
 }
 current_signal = $1 " "
 gsub(/\{/, "", current_signal)
 gsub(/\'/, "", current_signal)

 current_test = current_signal
 gsub(/[0-9]+ /, " ", current_test)

 n = split(current_signal, array_a, "[a-zA-Z]")
 current_number = array_a[n]
 gsub(/ /, "", current_number)

 if (prev_signal ~ /[0-9]+ /) {
 if (current_test == prev_test) {
 if (is_it_a_vector == "No") {
 data_start = prev_number
 }
 if ((current_number == prev_number - 1) || (current_number == prev_number + 1))
 {
 is_it_a_vector = "Yes"
 }
 prev_signal = current_signal
 prev_test = current_test
 prev_number = current_number
 next
 }
 else {
 if (is_it_a_vector == "Yes") {
 total = prev_number + data_start
 if (prev_number > data_start) {
 data_end = data_start
 data_start = prev_number
 }
 else {
 data_end = prev_number
 }
 data_type = "_vector (" data_start " " "downto " data_end ")"
 prev_signal = prev_test
 }
 }
 }
 if (prev_signal != "") {
 gsub(/ /, "", prev_signal)
 n = split(prev_signal, array_c, "[a-zA-z0-9_]")
 y = 20 - n
 if (y > 0) {
 for (i = 1; i <= 20-n; i++) {
 prev_signal = prev_signal " "
 }
 }
 if (($0 ~ /^$/) && (pin_type == 3)) {
 ending = ""
 }
 printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"
 }
 data_type = ""
 is_it_a_vector = "No"
 updown = ""
 prev_signal = current_signal
 prev_test = current_test
 prev_dir = direction
 prev_number = current_number
}

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

April 2002 Synopsys, Inc. 137

v

END {
 printf ");\n"
 printf "end " device ";\n\n"
 printf "architecture LMSI of " device " is\n"
 printf " attribute FOREIGN of LMSI : architecture is \"Synopsys:LMSI\";\n"
 printf " begin\n"
 printf "end LMSI;\n\n"
}

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

138 Synopsys, Inc. April 2002

v

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

April 2002 Synopsys, Inc. 139

v

7
Using VSS with Synopsys Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VSS. The procedures are organized into the following major
sections:

● “Setting Environment Variables” on page 139

● “Using SmartModels with VSS” on page 141

● “Using FlexModels with VSS” on page 143

● “Using MemPro Models with VSS” on page 146

● “Using Hardware Models with VSS” on page 148

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Set the SYNOPSYS variable to point to the VSS installation directory as follows:

% setenv SYNOPSYS VSS_installation_directory

3. Source the environ.csh VSS environment file.

For VSS version 1998.08-1 and earlier, use this path:

% source $SYNOPSYS/admin/install/sim/environ.csh

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

140 Synopsys, Inc. April 2002

v

For VSS version 1999.05 and later, use this path:

% source $SYNOPSYS/admin/setup/environ.csh

4. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

April 2002 Synopsys, Inc. 141

v

Using SmartModels with VSS
To use SmartModels with VSS, follow this procedure:

1. To create SmartModel VHDL templates, check to see if you have write permission
for $LMC_HOME/synopsys/smartmodel; if so skip to Step 3. Otherwise, open the
.synopsys_vss.setup file in your current working directory and search for the string
SMARTMODEL. By default, the logical library name SMARTMODEL is mapped
to $LMC_HOME/synopsys/smartmodel, as follows:

SMARTMODEL : $LMC_HOME/synopsys/smartmodel

2. Change the directory to one for which you have write permission, as in the
following example:

SMARTMODEL : ~/smartmodel

3. To generate VHDL model wrapper files, invoke create_smartmodel_lib with any
optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 142.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

4. If you changed the SMARTMODEL mapping in Step 3, you must use the -srcdir
option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processes all
installed SmartModels. For example, here is a recommended set of options to use
for one SmartModel (ttl00 in this example).:

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib -model ttl00 \
-srcdir ~/smartmodel

5. After create_smartmodel_lib has finished executing, verify that the VHDL template
files have been created in the appropriate directory.

6. To use SmartModels in the VHDL source file of your design, specify the
SMARTMODEL library and instantiate each SmartModel component. In the VHDL
design file that uses SmartModel components, enter the following library and use
clauses:

library SMARTMODEL;
use SMARTMODEL.components.all

The library logical name SMARTMODEL must be mapped to appropriate
directories in your .synopsys_vss.setup file.

7. Add the following line to your .synopsys_vss.setup file:

TIMEBASE = PS

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

142 Synopsys, Inc. April 2002

v

8. Instantiate SmartModels in your VHDL design. For information on required
configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators” on page 20.

9. Compile your testbench as shown in the following example:

% vhdlan testbench

10. Invoke the VSS simulator as shown in the following example:

% vhdlsim design

For information about vhdlsim and the VHDL debugger, refer to the VSS User’s
Guide.

create_smartmodel_lib Command Reference
The command reference for create_smartmodel_lib is as follows.

Syntax
create_smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]

[-modelfile file] {-model model_name}

Arguments
-- Displays the usage and all the command line options of the

utility.

-nc Suppresses the Synopsys copyright message.

-create Creates the VHDL source files (.vhd files) for the
SMARTMODEL library and saves the source files in the
$LMC_HOME/synopsys directory.

-src_dir dir Lets you specify the location of the VHDL source files that
you create. The default location is $LMC_HOME/synopsys.

-analyze Analyzes the SMARTMODEL library source files (.vhd files)
by invoking vhdlan. The analyzed files (.sim and .mra files)
are saved in the $LMC_HOME/synopsys/smartmodel
directory. This directory is specified by the SMARTMODEL
logical name mapping in the setup file.

-nowarn Suppresses the generation of warning messages that notify
you of any port name mappings. See “VHDL Reserved Port
and Window Names” in the VSS Expert Interface Manual for
more information about port name mappings.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

April 2002 Synopsys, Inc. 143

v

-modelfile file A list of SMARTMODEL component names is read from file.
Names are separated by spaces. Only those component names
specified are included in the SMARTMODEL component
library.

-model modelname Each specified modelname is included in the resulting
SMARTMODEL component library. Repeat this option to
specify multiple models. Only those component names
specified are included in the SMARTMODEL component
library.

Description
The create_smartmodel_lib command, if issued without options, uses as input all of the
files in the $LMC_HOME/models directory, creates and analyzes the template files, and
saves them in the $LMC_HOME/synopsys/smartmodel directory. If you do not have
write permission for $LMC_HOME/synopsys/smartmodel, the command terminates
with an error message. In that case, you must use the -src_dir option to specify a
writable directory in which to place the VHDL templates. You must also specify that
directory through the SMARTMODEL library mapping in the .synopsys_vss.setup file
in your current working directory.

Using FlexModels with VSS
To use FlexModels with VSS in UNIX, follow this procedure. There is no custom
integration for VSS on NT, but you can use C-only Command Mode. For information on
using C-only Command Mode, refer to “Instantiating FlexModels with C-only
Command Mode” on page 28.

1. If you want the improved performance that comes with bused wrappers, you can
generate VHDL model wrapper files by invoking create_smartmodel_lib with any
optional arguments. For more information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 142.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

Note8
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 19), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

144 Synopsys, Inc. April 2002

v

2. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 19 describes the FlexModel VSS interface and example
files that the flexm_setup tool copies.

3. Update the clock frequency supplied in the model_user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After
running flexm_setup this file will be located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

4. Compile a dummy module to force linking of CLI library functions, as shown in the
following example:

% cp $LMC_HOME/sim/vss/src/vss_dummy_calls.c ./vss_dummy_calls.c
% cli -ansi -s -add -cf vss_dummy_calls.c vss_dummy_calls

Table 19: FlexModel VSS VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_vss.vhd A SWIFT wrapper for the model. workdir/examples/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS”
when compiled.

workdir/examples/vhdl/

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

April 2002 Synopsys, Inc. 145

v

5. Link the FlexModel binary into the vhdlsim simulation executable:

% cli -ansi -s -build -libs $LMC_HOME/lib/platform.lib/slm_vss.o

where platform is hp700 or sun4Solaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes FlexModels. This vhdlsim must be defined as the first vhdlsim
in your UNIX search path.

6. Add the following line to your .synopsys_vss.setup file:

SLM_LIB : SLM_LIB_PATH

TIMEBASE = PS

7. Compile the FlexModel VHDL files into logical library slm_lib as follows:

% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/slm_hdlc.vhd
% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/flexmodel_pkg.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_user_pkg.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_pkg.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_fx_comp.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_fx_vss.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model.vhd

8. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

9. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

146 Synopsys, Inc. April 2002

v

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)
port map (model ports);

10. Compile your testbench as shown in the following example:

% vhdlan testbench

11. Invoke the VSS simulator as shown in the following example:

% vhdlsim design

Using MemPro Models with VSS
To use MemPro models with VSS, follow this procedure. Note that on Solaris, VSS
requires the Sunsoft compiler and Solaris 2.5 or later.

1. Compile a dummy module to force linking of CLI library functions:

% cli -ansi -s -add -cf \
$LMC_HOME/sim/vss/src/vss_dummy_calls.c vss_dummy_calls

2. Link the MemPro binary into the vhdlsim simulation executable:

% cli -ansi -s -build -libs $LMC_HOME/lib/platform.lib/slm_vss.o

where platform is hp700 or sun4Solaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes MemPro memory models. In order to use vhdldbx on a design
that includes MemPro models, the vhdlsim you just created must be defined as the
first vhdlsim in your UNIX search path.

3. For Solaris, set the LD_LIBRARY_PATH environment variable as follows:

% setenv LD_LIBRARY_PATH $SYNOPSYS/sparcOS5/sim/lib

4. Create slm_lib and work directories:

% mkdir ./slm_lib
% mkdir ./work

5. Create the logical to physical mapping for the slm_lib, work, and default libraries by
modifying your local .synopsys_vss.setup file to include the following lines:

WORK > DEFAULT
DEFAULT : ./work
SLM_LIB : ./slm_lib

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

April 2002 Synopsys, Inc. 147

v

Note8
It is also recommended you set your simulation timebase for the desired
level of timing accuracy by modifying your .synopsys_vss.setup file to
include a TIMEBASE entry, as shown in the following example:

TIMEBASE = PS

6. Compile the MemPro VHDL files into your slm_lib library:

% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/slm_hdlc.vhd
% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/mempro_pkg.vhd
% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/rdramd_pkg.vhd

Compiling the rdramd_pkg.vhd is only required if you are going to use MemPro
RDRAM models.

Note8
The vhdlan program returns an "Error compiling file" warning message for
rdramd_pkg.vhd and reverts to interpreted code for the file. Your designs
containing MemPro RDRAMs will simulate properly, however.

7. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% vhdlan -c mymem.vhd

8. Add LIBRARY and USE statements for the slm_lib within your testbench code:

LIBRARY SLM_LIB;
USE SLM_LIB.mempro_pkg.all;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

9. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer to
“Instantiating MemPro Models” on page 34. For information on message levels and
message level constants, refer to “Controlling MemPro Model Messages” on
page 35.

10. Compile your testbench into your work library as shown in the following example:

% vhdlan testbench.vhd

11. Invoke the VSS simulator as shown in the following example:

% ./vhdlsim testbench_configuration

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

148 Synopsys, Inc. April 2002

v

Using Hardware Models with VSS
To use hardware models with VSS, follow this procedure:

1. Make sure VSS is set up properly and all required environment variables are set, as
explained in “Setting Environment Variables” on page 139. Also, make sure you
have the VSS-LMSI key in your license file for the interface licensing.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/your_platform/ $path)

3. Create the model.vhd wrapper file for your hardware model. You can use the nawk
script provided in “VSS Template Generator Script for Hardware Models” on
page 151 to generate this file. Copy the script and paste it into an executable file
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

❍ an entity-architecture pair declaration so VSS can reference it in a later
component instantiation statement.

❍ a package for defining constants, declaring components, and instantiating
components.

VSS Example with TILS299 Hardware Model
The following example uses the TILS299 hardware model to show how to set up
hardware models for use with VSS:

1. After creating the wrapper .vhd file, analyze the TILS299.vhd using vhdlan, as
shown in the following example:

% vhldan TILS299.vhd

2. Place the hardware model in the testbench file and invoke the simulator. For this
TILS299 example, we used the Synopsys VHDL Debugger, as follows:

% vhdldbx -t ns TB_TILS299

The ns argument invokes the simulator with nanosecond timesteps.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

April 2002 Synopsys, Inc. 149

v

VSS Utilities
The following hardware modeler simulator commands are supported in VSS.

lmsi list devices | ids

You can use the lmsi list devices command to list all hardware model instances by
device name, and the lmsi list ids command to list all hardware model instances by id
name. For example:

lmsi list devices
device name id# instance name logging
TILS299 0 /TB_TILS299/U0 Off
lmsi list ids
id# device name instance name logging
0 TILS299 /TB_TILS299/U0 Off

You can also log test vectors for the hardware model. To log by ID number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If no file
name is specified, VSS writes to a file named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance_name filename

To log vectors for all hardware model device instances, specify all. A log file is created
for each instance. The output files are named device_name.id#.TST. For example:

#lmsi logon all

To turn off vector logging, replace logon with logoff and omit the filename in the above
examples.

VHDL Model Generics with VSS
You can also control hardware model behavior using VHDL generics in your hardware
model instantiations. The nawk script on page 151 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL generics in your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Simulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

150 Synopsys, Inc. April 2002

v

LMSI_TIMING_MEASUREMENT

You can use the LMSI_TIMING_MEASUREMENT generic to direct where timing
values for your simulation session come from. There are two legal values:

ENABLED The hardware modeler measures and records actual pin-to-pin
timing values and passes them to the simulator.

DISABLED The hardware modeler passes to the simulator the pin-to-pin
timing values from the .TMG file. This is the default value.

LMSI_DELAY_TYPE

You can use the LMSI_DELAY_TYPE generic to specify whether the hardware
modeler returns pin values to the simulator with minimum, typical, or maximum delays,
as you can see in the following legal values:

MINIMUM Return minimum delays for pin values to the simulator.

TYPICAL Return typical delays for pin values to the simulator. This is
the default.

MAXIMUM Return maximum delays for pin values to the simulator.

LMSI_LOG

You can use the LMSI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.

DISABLED The hardware modelers does not log test vectors. This is the
default value.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

April 2002 Synopsys, Inc. 151

v

VSS Template Generator Script for Hardware Models
Here is the nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page at a
time from this PDF file to get the whole thing copied to your environment.

**
In your design directory type:
#
nawk -f hwm2vhdl.nawk $HWM/<model>.NAM > <outfile>.vhd
#
(where "$HWM" is the full path to your hardware modeling directory)
Instantiate .vhd into your design.
#
THE SCRIPT:
#
Script to generate a VSS/Scirocco VHDL shell for a hardware model
using the <model>.NAM file

BEGIN {
 pin_type = 0
 is_it_a_vector = "No"
 data_type = ""
 prev_signal = ""
 prev_test = ""
 prev_number = ""
 prev_dir = ""
 ending = ";"

 printf "library SYNOPSYS;\n"
 printf " use SYNOPSYS.ATTRIBUTES.all;\n"
 printf "library IEEE;\n"
 printf " use IEEE.std_logic_1164.all;\n\n"

}

$2 ~ /generic_device_name/ {
 device = $3
 printf "entity " device " is\n"
 printf " generic\n"
 printf " (\n"
 printf " timing : LMSI_TIMING_MEASUREMENT := DISABLED;\n"
 printf " delay_type : LMSI_DELAY_TYPE := TYPICAL;\n"
 printf " delay : LMSI_DELAY := ENABLED;\n"
 printf " log : LMSI_LOG := DISABLED;\n"
 printf " timing_violations : LMSI_TIMING_VIOLATIONS := DISABLED;\n"
 printf " xprop : LMSI_XPROP := DISABLED;\n"
 printf " xprop_method : LMSI_XPROP_METHOD := HIGH\n"
 printf ");\n\n"
 printf " port\n"
 printf " (\n"
}

$4 ~ /\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~ /\(io_pin\)/ \
 || $4 ~ /\(power_pin\)/ {
 pin_type++
}

$2 ~ /\=/ || ($0 ~ /^$/ && pin_type ~ /3/) {
 if (pin_type == 1) {
 direction = "in "
 }
 else if (pin_type == 2) {
 direction = "out "
 }
 else if (pin_type == 3) {
 direction = "inout"
 }
 else {
 next
 }
 current_signal = $1 " "
 gsub(/\{/, "", current_signal)
 gsub(/\'/, "", current_signal)

 current_test = current_signal

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

152 Synopsys, Inc. April 2002

v

 gsub(/[0-9]+ /, " ", current_test)

 n = split(current_signal, array_a, "[a-zA-Z]")
 current_number = array_a[n]
 gsub(/ /, "", current_number)

 if (prev_signal ~ /[0-9]+ /) {
 if (current_test == prev_test) {
 if (is_it_a_vector == "No") {
 data_start = prev_number
 }
 if ((current_number == prev_number - 1) || (current_number == prev_number + 1))
 {
 is_it_a_vector = "Yes"
 }
 prev_signal = current_signal
 prev_test = current_test
 prev_number = current_number
 next
 }
 else {
 if (is_it_a_vector == "Yes") {
 total = prev_number + data_start
 if (prev_number > data_start) {
 data_end = data_start
 data_start = prev_number
 }
 else {
 data_end = prev_number
 }
 data_type = "_vector (" data_start " " "downto " data_end ")"
 prev_signal = prev_test
 }
 }
 }
 if (prev_signal != "") {
 gsub(/ /, "", prev_signal)
 n = split(prev_signal, array_c, "[a-zA-z0-9_]")
 y = 20 - n
 if (y > 0) {
 for (i = 1; i <= 20-n; i++) {
 prev_signal = prev_signal " "
 }
 }
 if (($0 ~ /^$/) && (pin_type == 3)) {
 ending = ""
 }
 printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"
 }
 data_type = ""
 is_it_a_vector = "No"
 updown = ""
 prev_signal = current_signal
 prev_test = current_test
 prev_dir = direction
 prev_number = current_number
}

END {
 printf ");\n"
 printf "end " device ";\n\n"
 printf "architecture LMSI of " device " is\n"
 printf " attribute FOREIGN of LMSI : architecture is \"Synopsys:LMSI\";\n"
 printf " begin\n"
 printf "end LMSI;\n\n"
}

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

April 2002 Synopsys, Inc. 153

v

8
Using MTI VHDL with Synopsys Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI VHDL. The procedures are organized into the following
major sections:

● “Setting Environment Variables” on page 153

● “Using SmartModels with MTI VHDL” on page 155

● “Using FlexModels with MTI VHDL” on page 158

● “Using MemPro Models with MTI VHDL” on page 161

● “Using Hardware Models with MTI VHDL” on page 162

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Make sure that MTI VHDL is set up properly in your environment.

3. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

154 Synopsys, Inc. April 2002

v

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

April 2002 Synopsys, Inc. 155

v

Using SmartModels with MTI VHDL
To use SmartModels with MTI VHDL, follow this procedure:

1. Open the modelsim.ini file in a text editor and uncomment the lines corresponding
to the platform you are using:

; ModelSim’s interface to Logic Modeling’s SmartModel SWIFT software
;libsm = $MODEL_TECH/libsm.sl
; ModelSim’s interface to Logic Modeling’s SmartModel SWIFT software
(Windows NT)
; libsm = $MODEL_TECH/libsm.dll
; Logic Modeling’s SmartModel SWIFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/lib/hp700.lib/libswift.sl
; Logic Modeling’s SmartModel SWIFT software (IBM RISC System/6000)
; libswift = $LMC_HOME/lib/ibmrs.lib/swift.o
; Logic Modeling’s SmartModel SWIFT software (Sun4 Solaris)
; libswift = $LMC_HOME/lib/sun4Solaris.lib/libswift.so
; Logic Modeling’s SmartModel SWIFT software (Sun4 SunOS)
; do setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4SunOS.lib
; and run "vsim.swift".
; Logic Modeling’s SmartModel SWIFT software (Windows NT)
; libswift = $LMC_HOME/lib/pcnt.lib/libswift.dll

2. To create the SmartModel Library VHDL wrappers or templates, run the MTI
sm_entity script with any optional arguments. The sm_entity script takes
SmartModel names as input and writes the VHDL output to STDOUT. You can
redirect the output to a file. Run sm_entity as follows. For more information, refer to
“sm_entity Command Reference” on page 158.

% sm_entity -c model > model.vhd

For example:

% sm_entity -c ttl373 > ttl373.vhd

generates the following VHDL file, which has both entity and component
declarations for the model. Edit the resulting VHDL file to add the portions of text
that are highlighted in the following example:

library IEEE;
use IEEE.std_logic_1164.all;
entity ttl373 is
generic (TimingVersion : STRING := "SN74LS373";
DelayRange : STRING := "MAX";
ModelMapVersion : STRING := "01008");
port (C : in std_logic;
D1 : in std_logic;
D2 : in std_logic;
D3 : in std_logic;
D4 : in std_logic;

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

156 Synopsys, Inc. April 2002

v

D5 : in std_logic;
D6 : in std_logic;
D7 : in std_logic;
D8 : in std_logic;
OC : in std_logic;
Q1 : out std_logic;
Q2 : out std_logic;
Q3 : out std_logic;
Q4 : out std_logic;
Q5 : out std_logic;
Q6 : out std_logic;
Q7 : out std_logic;
Q8 : out std_logic);
end;

architecture SmartModel of ttl373 is
attribute FOREIGN : STRING;
attribute FOREIGN of SmartModel : architecture is "sm_init
$MODEL_TECH/libsm.sl ; ttl373";
begin
end SmartModel;
library ieee; use ieee.std_logic_1164.all; package comp is
component ttl373
generic (TimingVersion : STRING := "SN74LS373";
DelayRange : STRING := "MAX";
ModelMapVersion : STRING := "01008");
port (C : in std_logic;
D1 : in std_logic;
D2 : in std_logic;
D3 : in std_logic;
D4 : in std_logic;
D5 : in std_logic;
D6 : in std_logic;
D7 : in std_logic;
D8 : in std_logic;
OC : in std_logic;
Q1 : out std_logic;
Q2 : out std_logic;
Q3 : out std_logic;
Q4 : out std_logic;
Q5 : out std_logic;
Q6 : out std_logic;
Q7 : out std_logic;
Q8 : out std_logic);
end component;
end comp;

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

April 2002 Synopsys, Inc. 157

v

3. Compile the model.vhd into a library called slm_lib, as follows:

% vlib slm_lib
% vmap slm_lib slm_lib
% vcom -work slm_lib model.vhd

4. Instantiate the SmartModel component in your testbench by specifying the required
SWIFT parameters in the generic map. Here is an example instantiation for the
TTL373 model, with the library and use statements, the instance (U1), and the
TimingVersion and DelayRange options specified in the generic map for the
TTL373 SmartModel Library component.

Use the SmartModel Library (slm_lib) just as you would use any other VHDL
resource library. Here is an example:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library SLM_LIB;
use SLM_LIB.COMPONENTS.ALL;

entity TestBench is
end TestBench;

architecture ArchTestBench of TestBench is

signal A, B, C: STD_LOGIC;

U1 : TTL373 generic map (TimingVersion => "SN74LS373",
DelayRange => "Typ")
port map (A => D1, B => D2, C => Q1);

P1 : process
begin

For more information on SmartModel configuration parameters, refer to “Using
SmartModels with SWIFT Simulators” on page 20.

5. Compile the top-level testbench to a work library (MYWORK) as shown in the
following example:

% vlib MYWORK
% vcom -work MYWORK top.vhd

6. Invoke the simulator by running vsim, as shown in the following example:

% vsim -lib MYWORK CFGTEST

For information on how to use MTI VHDL, refer to the “ModelSim User’s Manual.”

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

158 Synopsys, Inc. April 2002

v

sm_entity Command Reference
The command reference for sm_entity is as follows.

Syntax
sm_entity [options] [SmartModels]

Arguments
-read Read SmartModel names from standard input.

-xe Do not generate entity declarations.

-xa Do not generate architecture bodies.

-c Generate component declarations.

-all Select all models in the SmartModel Library.

-v Display progress messages.

By default, sm_entity generates an entity and architecture. Optionally, you can include
the component declaration (-c), exclude the entity (-xe), or exclude the architecture
(-xa).

Using FlexModels with MTI VHDL
To use FlexModels with MTI VHDL, follow this procedure. This procedure covers users
on UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any UNIX
command line examples (percent signs around variables and backslashes in paths).

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

April 2002 Synopsys, Inc. 159

v

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 20 describes the FlexModel interface and example files
that the flexm_setup tool copies.

2. On NT, add the following to your modelsim.ini file:

libsm = $MODEL_TECH/libsm.dll

and add the following to your PATH:

%LMC_HOME%\lib\pcnt.lib

This is so MTI can find the slm_mti.dll file.

3. Update the clock frequency supplied in the model_user_pkg.vhd file to correspond
to the desired clock period for the model. After running flexm_setup, this file is
located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

Table 20: FlexModel MTI VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_mti.vhd A SWIFT wrapper for the UNIX model. workdir/examples/vhdl/

model_fx_mti_nt.vhd A SWIFT wrapper for the NT model. workdir/examples/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the above SWIFT wrapper
file. This is put in a package named
“COMPONENTS” when compiled.

workdir/examples/vhdl/

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

160 Synopsys, Inc. April 2002

v

4. Add the following to your vsystem.ini or modelsim.ini file.

slm_lib=$LMC_HOME/sim/mti/lib
VHDL93 = 1

5. Compile the FlexModel VHDL files into logical library slm_lib as follows:

% mti_path/bin/vlib $LMC_HOME/sim/mti/lib
% mti_path/bin/vcom -work slm_lib $LMC_HOME/sim/mti/src/slm_hdlc.vhd (UNIX)
% mti_path\bin\vcom -work slm_lib %LMC_HOME%\sim\mti\src\slm_hdlc_nt.vhd (NT)
% mti_path/bin/vcom -work slm_lib $LMC_HOME/sim/mti/src/flexmodel_pkg.vhd
% mti_path/bin/vcom -work slm_lib workdir/src/vhdl/model_user_pkg.vhd
% mti_path/bin/vcom -work slm_lib workdir/src/vhdl/model_pkg.vhd
% mti_path/bin/vcom -work slm_lib workdir/examples/vhdl/model_fx_comp.vhd
% mti_path/bin/vcom -work slm_lib workdir/examples/vhdl/model_fx_mti.vhd (UNIX)
% mti_path\bin\vcom -work slm_lib workdir\examples\vhdl\model_fx_mti_nt.vhd (NT)
% mti_path/bin/vcom -work slm_lib workdir/examples/vhdl/model.vhd

6. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_mti.vhd for UNIX or model_fx_mti_nt.vhd
for NT).

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)
port map (model ports);

8. Compile the testbench as shown in the following example:

% vcom testbench

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

April 2002 Synopsys, Inc. 161

v

9. Invoke the MTI VHDL simulator as shown in the following example:

% vsim design

Using MemPro Models with MTI VHDL
To use MemPro models with MTI VHDL, follow this procedure:

1. Perform one of these platform-dependent steps.

a. On NT platforms, verify that the shared library is visible from the current
working directory. The path to the shared library
(%LMC_HOME%\lib\pcnt.lib) was set at MemPro installation.

b. On UNIX and Linux platforms, append the MemPro shared library location to
the library search path environment variable setting.

On Solaris or Linux workstations:

% setenv LD_LIBRARY_PATH \
$LMC_HOME/lib/plat.lib:$LD_LIBRARY_PATH

where plat is sun4Solaris or x86_linux, respectively.

On HP-UX workstations:

% setenv SHLIB_PATH \
$LMC_HOME/lib/hp700.lib:$SHLIB_PATH

2. Create slm_lib and work directories:

% vlib ./slm_lib
% vlib ./work

3. Create the logical to physical mapping for the slm_lib and work libraries:

% vmap slm_lib ./slm_lib
% vmap work ./work

4. Compile the MemPro VHDL files into your slm_lib library:

% vcom -93 -work slm_lib $LMC_HOME/sim/mti/src/slm_hdlc.vhd
% vcom -93 -work slm_lib $LMC_HOME/sim/mti/src/mempro_pkg.vhd
% vcom -93 -work slm_lib $LMC_HOME/sim/mti/src/rdramd_pkg.vhd

Note8
Compiling the rdramd_pkg.vhd is only required if you are going to use
MemPro RDRAM models.

5. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% vcom -93 -work work mymem.vhd

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

162 Synopsys, Inc. April 2002

v

6. Add LIBRARY and USE statements for the slm_lib within your testbench code:

LIBRARY SLM_LIB;
USE SLM_LIB.mempro_pkg.all;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User's
Manual.

7. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer
to“Instantiating MemPro Models” on page 34. For information on message levels
and message level constants, refer to “Controlling MemPro Model Messages” on
page 35.

8. Compile your testbench into your work library as shown in the following example:

% vcom -work work testbench.vhd

9. Invoke the simulator on your testbench as shown in the following example:

% vsim testbench

Using Hardware Models with MTI VHDL
To use hardware models with MTI VHDL, follow this procedure:

1. Make sure MTI VHDL is set up properly and all required environment variables are
set, as explained in “Setting Environment Variables” on page 153.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/your_platform/ $path)

3. Modify the modelsim.ini or project_name.mpf file to include the hardware
modeling information. Locate the line:

 [lmc]

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

April 2002 Synopsys, Inc. 163

v

Remove the semicolons from the libhm line and the libsfi line you will be changing
for your platform. Provide the correct path for the SFI. For example:

; ModelSim's interface to Logic Modeling's hardware modeler SFI software
libhm = $MODEL_TECH/libhm.sl
; Logic Modeling's hardware modeler SFI software (HP 9000 Series 700)
libsfi = hardware_model_install_path/lib/platform/libsfi.ext
; Logic Modeling's hardware modeler SFI software (IBM RISC System/6000)
; libsfi = <sfi_dir>/lib/rs6000/libsfi.a
; Logic Modeling's hardware modeler SFI software (Sun4 Solaris)
; libsfi = <sfi_dir>/lib/sun4.solaris/libsfi.so
; Logic Modeling's hardware modeler SFI software (Sun4 SunOS)
; libsfi = <sfi_dir>/lib/sun4.sunos/libsfi.so
; Logic Modeling's hardware modeler SFI software (Window NT)
; libsfi = <sfi_dir>/lib/pcnt/lm_sfi.dll

where ext is so for Solaris. a for AIX, or sl for HP-UX.

4. Run the hm_entity script to generate a .vhd file for the hardware model as shown in
the following example. For details on hm_entity, refer to “hm_entity Command
Reference” on page 164.

5. You are now ready to use the model in your simulation.

MTI VHDL Example Using TILS299 Hardware Model
Here is an example that uses the TILS299 hardware model. Follow these steps:

1. Put the TILS299 hardware model in the testbench.

2. Create a working library directory by invoking vsim -gui and selecting
Library/Create. This creates a working directory called work.

3. Compile the .vhd files, as shown in the following example:

% vcom -work work TILS299.vhd TB_TILS299.vhd

This step compiles the two VHDL files and puts them in the specified work library.
Note that the TILS299.vhd file must be specified first or you get an error because
the TB_TILS299.vhd utilizes the TILS299 entity.

4. Invoke the simulator as shown in the following example:

% vsim

5. When the window comes up, select the testbench to load.

6. Use the View/Wave pull-down menu to get the wave window. In the wave window,
use File/Load Format wave.do to get the waveforms. After the waveform viewer
comes up and the vsim prompt appears, enter “run 10000".

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

164 Synopsys, Inc. April 2002

v

7. You can also use some of the hardware model utilities listed below, but the
commands must be entered at the simulator command prompt because they are not
VHDL statements. For the TILS299 example, you can also put these commands into
the .do file. Here is an example wave.do file:

lm_vectors on /tb_tils299/U0 TEST.VEC
add wave -logic {/clk}
add wave -logic {/clr}
add wave -logic {/s1}
add wave -logic {/s0}
add wave -logic {/g1}
add wave -logic {/g2}
add wave -logic {/sr}
add wave -logic {/sl}
add wave -logic {/qa}
add wave -logic {/qh}
add wave -literal {/t}

hm_entity Command Reference
The hm_entity script creates .vhd files for hardware models.

Syntax
hm_entity [options] shell_software_filename

Arguments
-xe Do not generate entity declaration.

-xa Do not generate architecture body.

-c Generate component declaration

-93 Use extended identifiers where needed

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

April 2002 Synopsys, Inc. 165

v

Example
For example, the following hm_entity invocation:

% hm_entity TILS299.MDL > TILS299.vhd

generates a .vhd file that looks like the following:

 library ieee;
use ieee.std_logic_1164.all;
entity TILS299 is
 generic(DelayRange : STRING := "Max");
 port (G2 : in std_logic;
 CLR : in std_logic;
 SR : in std_logic;
 CLK : in std_logic;
 S0 : in std_logic;
 G1 : in std_logic;
 SL : in std_logic;
 S1 : in std_logic;
 QA : out std_logic;
 QH : out std_logic;
 H : inout std_logic;
 E : inout std_logic;
 G : inout std_logic;
 A : inout std_logic;
 C : inout std_logic;
 B : inout std_logic;
 F : inout std_logic;
 D : inout std_logic);
end;

architecture Hardware of TILS299 is
 attribute FOREIGN : STRING;
 attribute FOREIGN of Hardware : architecture is "hm_init
$MODEL_TECH/libhm.sl; TILS299.MDL";
begin
end Hardware;

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

166 Synopsys, Inc. April 2002

v

MTI VHDL Utilities
The following hardware modeler simulator commands are supported in MTI VHDL:

lm_vectors on | off instance_name filename

The lm_vectors utility turns on vector logging for the hardware model instance. The
vectors record stimulus to the input and I/O pins and responses from the output and I/O
pins during simulation.

lm_measure_timing on | off instance_name filename

The lm_measure_timing utility causes the modeler to measure timing between an input
transition and resulting output transition on the hardware model. Note that this is only
supported on LM-family systems.

lm_timing_checks on | off instance_name

The lm_timing_checks utility allows you to enable or disable timing checks such as
setups and holds.

lm_loop_patterns on | off instance_name

The lm_loop_patterns utility causes the hardware modeler to continually replay the
pattern history of a specified device instance.

lm_unknowns on | off instance_name

The lm_unknowns utility turns off unknown propagation. This “on_unknown” feature
is also in the .OPT file for hardware models. It modifies the system's default handling of
device input and I/O pins that are set to unknown by the simulator. This utility does not
turn on unknown propagation unless it is also turned on in the .OPT file, but it can
override the setting in the .OPT file to turn this feature off when it is set to on in the
.OPT file.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 167

v

9
Using Cyclone with Synopsys

Models

Overview
This chapter explains how to use MemPro models and hardware models with Cyclone.
The procedures are organized into the following major sections:

● “Setting Environment Variables” on page 167

● “Using SmartModels with Cyclone” on page 169

● “Using FlexModels with Cyclone” on page 169

● “Using MemPro Models with Cyclone” on page 169

● “Using Hardware Models with Cyclone” on page 170

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your MemPro installation tree, as
shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

168 Synopsys, Inc. April 2002

v

You can put license keys for multiple products (for example, MemPro models and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. Set the SYNOPSYS_CY environment variable to point to the Cyclone installation
tree, as shown in the following example:

% setenv SYNOPSYS_CY Cyclone_install_path

4. Set the MA_CY environment variable to point to the ma_cyclone directory, as
shown in the following example:

% setenv MA_CY ModelAccess_install_path

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 169

v

Using SmartModels with Cyclone
For information on using SmartModels with Cyclone, refer to “Using SmartModels with
SWIFT Simulators” on page 20.

Using FlexModels with Cyclone
To use FlexModels with Cyclone, you use C-only Command Mode. For information on
the required SWIFT parameters for FlexModels (which differ from regular
SmartModels) and how to use C-only Command Mode, refer to “Using FlexModels
with SWIFT Simulators” on page 26.

Using MemPro Models with Cyclone
To use MemPro models with Cyclone, follow this procedure. Note that RDRAM models
are not supported on Cyclone.

1. For HP-UX, Cyclone incorrectly uses “hpux10.lib” in paths to platform-specific
directories. The correct path leaf should be “hp700.lib.” Correct the paths by
creating symbolic links as follows:

% ln -s $LMC_HOME/lib/hp700.lib $LMC_HOME/lib/hpux10.lib
% ln -s $LMC_HOME/mempro/lib/hp700.lib $LMC_HOME/mempro/lib/hpux10.lib

2. Create slm_lib and work directories:

% mkdir ./slm_lib
% mkdir ./work

3. Create the logical to physical mapping for the slm_lib, work, and default libraries by
modifying your local .synopsys_vss.setup file to include the following lines:

WORK > DEFAULT
DEFAULT : ./work
SLM_LIB : ./slm_lib

Note8
It is also recommended you set your simulation timebase for the desired
level of timing accuracy by modifying your .synopsys_vss.setup file to
include a TIMEBASE entry, as shown in the following example:

TIMEBASE = PS

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

170 Synopsys, Inc. April 2002

v

4. Compile the MemPro VHDL files into your slm_lib library:

% cyan -nc -synthoff -lang vhdl -w slm_lib \
$LMC_HOME/sim/cyclone/src/slm_hdlc.vhd

% cyan -nc -synthoff -lang vhdl -w slm_lib \
$LMC_HOME/sim/cyclone/src/mempro_pkg.vhd

5. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% cyan -nc -synthoff -lang vhdl mymem.vhd

6. Add LIBRARY and USE statements for the slm_lib within your testbench code:

LIBRARY SLM_LIB;
USE SLM_LIB.mempro_pkg.all;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” in the MemPro User’s Manual.

7. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer
to“Instantiating MemPro Models” on page 34. For information on message levels
and message level constants, refer to “Controlling MemPro Model Messages” on
page 35.

8. Compile your testbench into your work library as shown in the following example:

% cyan testbench.vhd

9. Elaborate your design as shown in the following example:

% cylab (-4state | -2state) testbench_configuration

10. Invoke the Cyclone simulator as shown in the following example:

% cysim (-4state | -2state) testbench_configuration

Using Hardware Models with Cyclone
This section describes how to set up and configure Release 3.5a of ModelAccess for
Cyclone. After completing the setup tasks, for usage information refer to “Using
Hardware Models with Cycle-Based Simulators” on page 178.

The hardware modeling configuration you choose affects the performance you get when
running hardware models in Cyclone simulations. This section reviews the
fundamentals of the ModelSource and LM-family hardware modeling systems, and then
provides guidelines for a number of possible configurations.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 171

v

ModelSource System Hardware and Software
If you are using a ModelSource system, your hardware modeling system configuration
consists of one or more MS-3400 or MS-3200 units, plus a ModelSource Processor. (For
a description of a ModelSource Processor, refer to the ModelSource Hardware
Installation Guide. For information about the software, refer to the ModelSource User’s
Manual.) The ModelSource Processor is connected to the rest of your network via
Ethernet, and to the MS-3400/MS-3200 units via fiber-optic cable.

The ModelSource Processor provides the CPU for the ModelSource units, and at a
minimum, it executes the runtime modeler software (RMS) for the modeling system.
However, you might decide to run your simulation from the ModelSource Processor
workstation as well, unless you are using an LM-1400 as the ModelSource Processor.

The R3.3a and later ModelSource RMS has been enhanced to deliver higher
performance in all configurations, and has been optimized to generate the maximum
performance gain over previous releases of the RMS when used by a single user running
the simulation from the ModelSource Processor workstation. This enhanced release of
the RMS is available for Sun Solaris and HP 700 ModelSource Processor workstations.

LM-1400/LM-family System Hardware and Software
If you are using one of the LM-family hardware model servers (LM-1200 or LM-1400),
your hardware modeling system configuration consists of the LM-family unit. This
family of modelers includes a dedicated CPU within the modeling system chassis. The
LM-family system connects to the rest of your network via Ethernet. The LM-family
CPU runs the standard RMS. You run your simulations from other workstations on the
Ethernet network.

Configuration Options
Figure 6 on page 173 illustrates some of the supported Cyclone configurations, labeled
from A (the highest performance choice) to D (lower performance options).

Option A
The recommended configuration for highest performance in cycle-based simulation is
an MS-3400 or MS-3200 hardware modeling system with the simulation executing on
the ModelSource Processor workstation (which has the SBus or EISA card connection
to the modeling systems). This configuration eliminates network overhead in the
communication between the modeling system processor and the simulation.

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

172 Synopsys, Inc. April 2002

v

Option B
In this configuration, the Cyclone simulation is executing on a different workstation
from the ModelSource Processor workstation. In this case, the simulation workstation
and the ModelSource Processor workstation must be on the same Ethernet subnet.

Option C
Because the LM-1400 has its own dedicated CPU within the LM-1400 chassis, the
simulation must be run on a separate workstation. For best performance with an
LM-1400 (or any of the LM-family hardware model servers), keep the simulation
workstation and the LM-1400 on the same Ethernet subnet.

Option D
In this configuration, the hardware modeling system (which can be either a
ModelSource system or an LM-family hardware model server) exists on a different
Ethernet subnet from the workstation on which the Cyclone simulation is running.
Because of the extra overhead of the router, this is a lower performance configuration.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 173

v

Figure 6: Cyclone Configuration Guidelines

ModelSource Processor
(Sun SPARC or HP700
with SBus or EISA card)
running Cyclone and
ModelSource RMS

Fiber link

ModelSource Processor
(Sun SPARC or HP700)

running ModelSource RMS

MS-3400/MS-3200

High-performance
workstation running

Cyclone

Ethernet
(Same subnet)

Fiber link

High-performance
workstation running

Cyclone

Ethernet
(Same subnet)

ModelSource Processor
(Sun SPARC or HP700)

running ModelSource RMS

High-performance
workstation running

Cyclone

Ethernet
(different subnets)

Fiber linkRouter

MS-3400/MS-3200

MS-3400/MS-3200

BEST
PERFORMANCE

OPTION

LM-1400
running LM-1400 RMS

LM-1400
running LM-1400 RMS

A

B

C

D

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

174 Synopsys, Inc. April 2002

v

Cyclone User Setup
Before proceeding with the setup instructions that follow, perform these tasks:

● Install the Cyclone simulator package as described in the Cyclone Installation
Guide.

● Install and configure the hardware modeling system, including hardware and
software (R3.5a or later), as outlined in the Quick Reference in Chapter 1 of either
the ModelSource Hardware Installation Guide or the LM-family Hardware
Installation Guide.

● If necessary, boot the modeler.

● Make sure all required environment variables are set, as explained in “Setting
Environment Variables” on page 167

The ma_cyclone Software Tree
The ModelAccess for Cyclone (ma_cyclone) directory structure is illustrated in
Figure 7.

Figure 7: ModelAccess for Cyclone Installation Tree

The setup process consists of the following tasks:

● “Setting Up Your Environment” on page 175

● “Running verifySetup” on page 175

● “Running geninterface” on page 175.

● “Confirming License File Settings (ModelSource Only)” on page 177.

ma_cyclone/

synopsys_lm_hw.setup

bin/
sun5.5.1/

pa_hp102/

C/
lm_hw_slang.c
lm_hw_slang.h

setup/
setup.csh
setup.sh

genInterface
verifySetup

geninterface
verifySetup

synopsys_lm_hw.setup.hp700
synopsys_lm_hw.setup.solaris

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 175

v

Setting Up Your Environment
Make sure all required environment variables are set properly, as explained in “Setting
Environment Variables” on page 167. If any of the required environment variables are
not defined, the source command will fail, with an error message indicating the cause of
the error.

Running verifySetup
Run the provided verifySetup program. This verifies that your environment is set up
correctly so that genInterface can run.

1. To run verifySetup, change directory to /tmp, then execute verifySetup, as follows:

% cd /tmp
% verifySetup

The verifySetup program returns messages confirming the setup information that
will be used (both the environment setup information, and the genInterface setup
options taken from the synopsys_lm_hw.setup file). For example, if the hardware
modeling system is not booted and available on the network, verifySetup reports the
error.

% verifySetup
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; R1.0

**** Environment Setup ****
User home: /home/klt
MA_CY: /tools/lmc/sms/ma_cyclone
LM include directory: /tools/lmc/sms/include
LM library directory: /tools/lmc/sms/lib/sun4.solaris
CY include directory: /tools/cyclone/sparcOS5/cyclone/include

**** Setup Files ****
Modeler: engineering1
SFI ERROR: modeler not responding (Message Number: 972)

Running geninterface
The genInterface program takes hardware model Shell Software files as input, and
creates the following files:

● A VHDL shell for each hardware model you specified

● A dynamically-linkable C library, which is used in communicating simulator
requirements to/from the hardware modeling system (via the hardware modeling
Simulator Function Interface software)

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

176 Synopsys, Inc. April 2002

v

With the output of genInterface, you proceed as with any other VHDL input by
compiling the hardware model VHDL files (elaborate and analyze) along with your
other VHDL design files and then simulating the design. Figure 8 gives an overview of
the entire process, and the following sections describe each step in detail.

Invoke genInterface from the directory in which you want the interface files to be
created. On the command line, specify the hardware models you want to use with
Cyclone. For details on genInterface syntax, refer to “genInterface Command
Reference” on page 182

Note8
The genInterface program relies on the software described in “Cyclone
genInterface Setup Files” on page 186. The verifySetup program helps you
verify that these prerequisites have been set up correctly.

Figure 8: Process Flow Chart

Confirm
environment

setup

Edit setup file,
if needed

Confirm setup
(verifySetup)

Create interface
(genInterface)

Analyze
(cyan)

Elaborate
(cylab)

Simulate
(cyclone or cysim)

ModelAccess
for Cyclone

Cyclone

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 177

v

Confirming License File Settings (ModelSource Only)
The genInterface program is not license-protected. However, in order to use the output
of genInterface to run Cyclone simulations with ModelSource hardware models, several
licenses are required:

● MSCBS licenses the use of hardware models with cycle-based simulators.

● MS3400 or MS3200 specifies the number of MS-3400 or MS-3200 units licensed.

In addition, you need the appropriate licenses to run Cyclone.

Note8
The LM-family hardware model servers (LM-1400 and LM-1200) are not
license-protected and do not have a license file. This step is required only for
ModelSource systems (MS-3400, MS-3200).

For information about installing hardware model licenses or updating an existing license
file, refer to the Hardware Modeling Release Notes. To confirm that your licenses are
working correctly, follow these steps:

1. Invoke the lm utilities:

% lm

Copyright 1988-1996 Synopsys, Incorporated.; 17 Aug 1998; R3.4a
Default Modeler is "venkat"
 LM Utilities Menu
 1) Create Logic Models
 2) Verify Logic Models
 3) Perform Maintenance
 4) Run Diagnostics
 5) Show Modeler Configuration
 h) Help
 q) Quit
selection:

2. Select item 5, “Show Modeler Configuration”.

selection: 5
 Modeler Configuration
 1) Show Modelers
 2) Show Logic Models
 3) Show Users
 4) Show Versions
 5) Show Model Users
 6) Show Licenses
 h) Help
 q) Quit
selection:

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

178 Synopsys, Inc. April 2002

v

3. Select item 6, “Show Licenses”.

selection: 6
Modeler Name (* = ALL) [venkat]:
 License Server set to: 5300@hal
"venkat" Licenses Used
 No licenses being used on the modeler
"venkat" Total Licenses Present in the License File
 Feature # licenses Version Exp. Date
MSFAULTYes3.400 31-Dec-1999
MSCBSYes 3.400 31-Dec-1999
MS3400100 3.400 31-Dec-1999
MS3200100 3.400 31-Dec-1999
+++

Using Hardware Models with Cycle-Based Simulators
ModelAccess for Cyclone allows you to prepare your hardware models for use in a
Cyclone cycle-based simulation. This section describes how to use hardware models in a
Cyclone simulation. We begin with an overview of hardware modeling in the Cyclone
environment and then provide instructions for using genInterface.

Timing Delays
Synopsys hardware models typically include pin-to-pin delay information and can
optionally include timing checks. However, in cycle-based simulation, the simulator
ignores delay information and timing checks in the hardware models.

Cycle-Based Simulation Constraints
Before using a hardware model in cycle-based simulation, review the design, coding,
and testbench guidelines provided in the Cyclone documentation set. Although there are
no inherent limitations because of hardware modeling technology (when compared to a
VHDL model or C-language model of the same device), you must follow the same
usage guidelines for a circuit using hardware models as you would follow for a circuit
using any other types of models, when creating a cycle-based simulation testbench.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 179

v

How Hardware Models Interface with Cyclone
Cyclone provides the Slang C-language interface to enable you to integrate external C
and C++ models into the Cyclone runtime environment. Hardware models are also
integrated into the Cyclone environment using a special-purpose implementation of the
Slang interface.

A Slang C (or C++) software model consists of a collection of C language entry points,
compiled into a shared object library, plus a VHDL shell that determines which entry
points are called at runtime. A Slang hardware model requires a shared object library,
one VHDL shell per model, the hardware model’s Shell Software, and the model itself,
installed in the hardware modeler. A conceptual diagram of a Slang hardware model is
shown in Figure 9.

Figure 9: Slang Hardware Model Conceptual Diagram

Note8
The genInterface program creates the C library and VHDL shell files needed
by Cyclone to evaluate hardware models.

VHDL Shell

C Functions

Silicon in
Hardware
Modeler

SFI
S

F
IHardware Model

Shell Software
(.MDL File)

Files created by genInterface

Hardware Model

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

180 Synopsys, Inc. April 2002

v

Editing the Setup File
The genInterface program has its own setup file (synopsys_lm_hw.setup) that you use to
specify various options to be applied to the entire genInterface session, or to particular
models within the session, including:

● Deleting intermediate files

● Overwriting existing files

● Overwriting pin names (per model)

Default values are provided for all required items, so you only need to edit this file if
you want to alter the default values. If you decide to edit the file, copy it from
$MA_CY/setup/synopsys_lm_hw.setup to your own local working directory. The copy
must be renamed to .synopsys_lm_hw.setup. Now you can edit and customize the local
.synopsys_lm_hw.setup file appropriately for your session.

If you want to change the global settings on a Solaris system, you must edit the
following file:

$MA_CY/setup/synopsys_lm_hw.setup.solaris

(The other file extension is .hp700.)

To change the file, copy lines from the default synopsys_lm_hw_setup file shown in
Figure 10 and uncomment the lines.

Figure 10: Default synopsys_lm_hw.setup File

Deleting Intermediate Files
delete_files {yes|no} # default yes

By default, genInterface deletes the intermediate files it creates. If you want to retain the
intermediate files, specify “delete_files no” in the setup file and delete the leading ‘#’
character. (Typically, you need to save these files only for debugging purposes; the files
are not used by Cyclone.)

delete_files yes # default yes

overwrite_files no # default no

for PPC403GA use
delete_files yes
overwrite_files no
pin_name_ovr "-DSR/-CTS" "NSRSCTS"
pin_name_ovr "-HALT" "NHALT"

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 181

v

Overwriting Existing Files
overwrite_files {yes|no} # default no

By default, genInterface does not overwrites files in the target directory. This is to
protect you from accidentally overwriting earlier versions of .vhd files that you might
have customized. If genInterface detects a file with the same name in the target
directory, it generates the following warning:

genInterface warning: retaining older version of ./model_name.vhd file

If you receive this warning, you must choose one of the following:

● If you want to save the old .vhd files, rename them, and then run genInterface again.
You can add your custom code to the newly-updated .vhd files.

● If you don’t want to save the old .vhd files, delete them from the target directory or
change the overwrite_files setting to yes before you run genInterface/

AttentionV
Whenever you receive this warning, you must correct the situation and re-
run genInterface so that a complete, integrated set of .vhd files and the
corresponding C library are created. The genInterface program keys the
results of each session, so if you attempt to mix files from different
genInterface sessions in your Cyclone simulation, you receive a fatal
simulation error (LM_HW integration error: Keys do not match).

Selecting Options Per Model
The synopsys_lm_hw.setup file allows you to set specific options per model, including
the following:

● delete_files

● overwrite_files

● cflags -DLM_HW_DEBUG

● pin_name_ovr

The cflags debugging options are intended for system administrators, and are explained
in “cflags” on page 187.

The pin_name_ovr statement, which enables the overwriting of automatically-generated
pin names, is only available on a per-model basis, as explained below.

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

182 Synopsys, Inc. April 2002

v

Overwriting Pin Names Per Model
The Shell Software syntax for hardware model pin names uses special characters and
VHDL keywords that are not allowed in legal VHDL signal names. Therefore, when
genInterface creates VHDL shells for each model, it converts illegal VHDL signal
names to legal equivalents. This process is explained in “Rules for Signal Renaming” on
page 188. If you prefer to use your own VHDL signal names, you can use the
pin_name_ovr statement to specify the mapping from the original name to the new
name.

The syntax for this statement is:

for model_name use
 pin_name_ovr "shell_sw_name1" "VHDLname1"
 pin_name_ovr "shell_sw_name2" "VHDLname2"
end

For example, the pin name -ALE is allowed in the Shell Software, but not in VHDL. By
default, genInterface removes the leading hyphen (-) and replaces it with the string NE_,
creating the new pin name NE_ALE. If you prefer the alternate legal name NALE, add
the following lines to your setup file:

for I80960M use
 pin_name_ovr "-ALE" "NALE"
end

genInterface Command Reference
After successfully running verifySetup, you can run genInterface, specifying the
hardware models you want to include in Cyclone simulation.

Syntax
genInterface {-m modeler_name} [mdlfile1 mdlfile2 ... | -f model_list | -a]

Arguments
-m modeler_name This optional switch specifies the hardware modeling system

for genInterface to use. The modeler must be installed on the
network and be booted and running. If a modeler_ name is not
specified, genInterface searches the modelers.lis file for the
name of an available modeler.

The modeler does not need to have the hardware model
installed; it must only be booted and running Runtime
Modeler Software v3.3 or later.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 183

v

mdlfile1 You can list individual models by their Model (.MDL) file
name, such as IPENTIUM.MDL. \Separate multiple file
names with a blank (space) character.

-f model_list You can create a file listing the Model (.MDL) files to be
included. Create the file with one .MDL file name per line.

-a The -a option allows you to generate an interface that includes
all available model files found in directories specified by the
LM_LIB environment variable.

Hint/
The -a option is convenient when you want to create one interface
incorporating all hardware models in your environment. However,
depending on how your LM_LIB environment variable is set, this could be a
large file.

Examples
The following example creates interface files for the hardware models listed in the
“my.models” file:

% genInterface -f my.models

The following example creates interface files for all hardware models in the LM_LIB
search path, using the hardware modeling system named “engineering1”:

% genInterface -m engineering1 -a

The following example creates interface files for the hardware models IPENTIUMPRO,
I82451GX, I82452GX, I82453GX, and I82454GX:

% genInterface IPENTIUMPRO.MDL I82451GX.MDL I82452GX.MDL \
I82453GX.MDL I82454GX.MDL

Assuming that all setup files have been left at their default values, the genInterface
command creates the following files in the current directory:

● liblm_hw.so (Solaris only)

● IPENTIUMPRO.vhd

● I82451GX.vhd

● I82452GX.vhd

● I82453GX.vhd

● I82454GX.vhd

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

184 Synopsys, Inc. April 2002

v

The following example shows genInterface executed on the ID3052EA hardware model
(Model file ID3052EA.MDL):

% genInterface -m engineering1 ID3052EA.MDL
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; R1.0

Processing Common files.....Done
Processing ID3052EA.MDL file......Done
Running make....Done
Running clean....Done

This command creates one dynamic library and a “.vhd” file for each model specified in
the command line. For the Solaris example shown above, the liblm_hw.so library and
ID3052E.vhd file are created.

The genInterface program requires an ANSI C compiler. If you receive compiler errors
while attempting to run genInterface, for information about updating setup files, refer to
“Cyclone genInterface Setup Files” on page 186.

Cyclone Simulation
After successfully running verifySetup and genInterface, you can simulate using
Cyclone. For detailed information on using Cyclone, refer to the Cyclone Reference
Manual. Following are some Cyclone usage notes for hardware models.

Analyzing the Design
You analyze the generated VHDL files (created by genInterface), just as you would any
other files in your design.

Elaborating and Simulating the Design

Performance Monitoring
You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 185

v

2-state and 4-state Simulation
If you are using Release 1.1 or later of ModelAccess for Cyclone with Cyclone Release
1998.02 or later, you can specify either 2-state (0, 1) or 4-state (0, 1, X, Z) simulation.
However, for earlier releases, 2-state simulation is not supported; when running cylab,
you must specify -4state to create 4-state (0, 1, X, Z) code. Similarly, for earlier releases
you must specify -4state for 4-state simulation with cysim.

Defining LD_LIBRARY_PATH
When using the output of genInterface with Cyclone, the LD_LIBRARY_PATH
environment variable must include “.” (the current directory). This is also required by
Cyclone, so if you have set LD_LIBRARY_PATH as documented in the Cyclone user
documentation, LD_LIBRARY_PATH will be correct for genInterface.

Cyclone Elaboration Warnings
Cyclone issues two elaborations warnings for each hardware model in your design. This
is because Cyclone divides the circuit into two types of blocks, sequential and
combinatorial. At every clock edge the sequential blocks get executed first, and then the
combinatorial blocks get executed. The hardware model is neither fully sequential nor
fully combinatorial, so Cyclone declares it as a special block. Cyclone discourages you
from using special blocks by issuing warnings; however, special blocks are fine for
hardware models, so you can ignore the warnings for hardware models.

“Keys Do Not Match” Error Message
If you receive the following error message during Cyclone simulation:

LM_HW integration error: Keys do not match

this indicates that you do not have a consistent set of genInterface output; for example,
the liblm_hw.so file was not generated in the same genInterface session as one or more
of the .vhd files, so the information is not valid for simulation. This can occur if you run
genInterface more than once on the same hardware model files with the overwrite_files
option left at its default setting of “no.”

To correct this error, refer to “Overwriting Existing Files” on page 181; then rerun
genInterface on the complete set of hardware models you want to use in the Cyclone
simulation. Analyze and elaborate the new genInterface output before proceeding with
your simulation.

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

186 Synopsys, Inc. April 2002

v

Cyclone genInterface Setup Files
This section describes the ModelAccess for Cyclone setup file syntax and usage.

Setup File Definition
Two sets of setup files are provided for genInterface:

1. Model-dependent setup information is stored in the following file:

$MA_CY/setup/synopsys_lm_hw.setup

This file is typically copied by each user from this central location into the their own
directory, where it can be edited for a particular session. Use of this setup file is
described in “Editing the Setup File” on page 180.

2. System-dependent setup information is stored in these three platform-specific files:

❍ $MA_CY/setup/synopsys_lm_hw.setup.hp700

❍ $MA_CY/setup/.synopsys_lm_hw.setup.solaris

These files are provided to allow a system administrator to update compiler and
linker information, if necessary. If the ANSI C compiler (acc) is used, then no
editing of these files should be required.

Search Path
Upon invocation, the genInterface program searches for the synopsys_lm_hw.setup file
and the.synopsys_lm_hw.setup.platform files in the following locations, in the order
listed:

1. Current working directory (files preceded by “.”)

2. User’s home directory (files preceded by “.”)

3. $MA_CY/setup (files without a “.” prefix).

System-Dependent Setup Options
The system-dependent setup files allow you to change default settings for genInterface.
A sample of the HP-UX version of the file is shown in Figure 11.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 187

v

Figure 11: Sample System-Dependent Setup File
(.synopsys_lm_hw.setup.hp700)

compiler
The genInterface program requires access to a C compiler. The ANSI C compiler (acc),
which is required for use with Cyclone, is also recommended for genInterface.

By default, genInterface searches for the acc compiler. If this is not correct for your
environment, update the information following the compiler keyword, as follows:

compiler gcc

cflags
The -DLM_HW_DEBUG and -DLM_HW_PIN_DEBUG flags create a special, debug
version of the Cyclone interface. By default, these options are always commented out
(preceded by a #). There is no need to enable these options unless you are requested to
do so by the Synopsys Technical Support Center.

linker and lflags
By default, genInterface uses the ld linker with the flags specified in each platform-
dependent setup file. If you choose to use another linker, contact the Synopsys Technical
Support Center. For instructions, refer to “Getting Help” on page 16.

Cyclone genInterface Processing
This section describes how genInterface processes input Shell Software to create the
VHDL shell needed by Cyclone. Note that genInterface ignores .NAM files when
processing pin names.

compiler acc # default acc

cflags values are cumulative
cflags +z +DA1.1 +DS2.0
cflags -fPIC # default -fPIC
cflags -DLM_HW_DEBUG
cflags -DLM_HW_PIN_DEBUG

linker ld # default ld

lflag values are cumulative
lflags -b # default -b

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

188 Synopsys, Inc. April 2002

v

Rules for Signal Renaming
Because certain characters and keywords are permitted in Shell Software pin names but
are illegal as VHDL signal names, genInterface must convert these signal names in order
to generate correct VHDL. The rules that genInterface uses to map the signal names to
legal values are explained in the following sections.

The following rules are applied by default. You can explicitly specify the mapping for
any signal name by using the pin_name_ovr statement in the genInterface setup file, as
described in “Overwriting Pin Names Per Model” on page 182.

Renaming Buses
The genInterface program sorts all pins in ascending order. Groups of pins having the
same basename are combined into buses. If part of the bus is in a different mode (for
example, inout and out), then the bus is split by mode, and the basenames are made
unique.

For example, consider the following bus, described in the Shell Software:

out_pin
 A[21:12] = 110,109,108,107 106,105,104,103,99,98
....
io_pin
 A[11:6] = 97, 96, 95, 94, 93, 92
 A[29:22] = 119,118,117,116,115,114,113,112

This is converted as follows in the generated VHDL file:

A : INOUT std_logic_vector(11 downto 6);
AA : OUT std_logic_vector(21 downto 12);
AB : INOUT std_logic_vector(29 downto 22);

Replacing Special Characters
Cyclone allows only alphanumeric characters and underscores (_) in the generation of
valid signal names. Hardware model Shell Software allows special characters such as
slash (/), asterisk (*), minus (-), and underscore (_).

The genInterface program follows the conversion rules specified in Table 21.

Table 21: Rules for Special Character Mapping

Character in Shell
Software

Conversion when at
beginning of name

Conversion when
appearing within

name
Conversion when at

end of name

Slash (/) SL_ _SL_ _SL

Star (*) ST_ _ST_ _ST

Minus (-) NE_ _NE_ _NE

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

April 2002 Synopsys, Inc. 189

v

For every generated name, genInterface then compares the name with the present list of
names. If there is a match, a random string is added at the end of the name until it is
unique.

The following examples illustrate how genInterface converts existing Shell Software
names in the generated VHDL file.

'-CS' is converted to: NE_CS

'-BM0/BYTE' is converted to: NE_BM0_SL_BYTE

'DT/-R' is converted to: DT_SL_NE_R

'-TOUT2/-IRQ3'is converted to: NE_TOUT2_SL_NE_IRQ3

'IO94_-RCLK_-BUSY/RDY'is converted to:IO94_NE_RCLK_NE_BUSY_SL_RDY

Keyword Replacement
Certain VHDL keywords cannot be used as signal names (for example, IN, OUT,
PROCESS). The genInterface program scans the list of signal names replaces
disallowed keyword is found, that name is replaced by S_keyword. If another signal
already exists by this name, a random string is appended to the end of the present signal
name.

For example, the Shell Software notation:

IN[6:1]

would be converted as follows:

S_IN : IN std_logic_vector(6 downto 1);

Underscore (_) UN_ _ (no conversion) _UN

Any other special
character

Random
alphanumeric

Random
alphanumeric

Random
alphanumeric

Table 21: Rules for Special Character Mapping (Continued)

Character in Shell
Software

Conversion when at
beginning of name

Conversion when
appearing within

name
Conversion when at

end of name

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

190 Synopsys, Inc. April 2002

v

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

April 2002 Synopsys, Inc. 191

v

10
Using Leapfrog with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Leapfrog. The procedures are organized into the following major
sections:

● “Setting Environment Variables” on page 191

● “Using SmartModels with Leapfrog” on page 193

● “Using FlexModels with Leapfrog” on page 194

● “Using MemPro Models with Leapfrog” on page 194

● “Using Hardware Models with Leapfrog” on page 197

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

192 Synopsys, Inc. April 2002

v

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

4. Set the CDS_VHDL variable to the location of your Leapfrog installation and make
sure that Leapfrog is set up properly in your environment.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

April 2002 Synopsys, Inc. 193

v

Using SmartModels with Leapfrog
To use SmartModels with Leapfrog, follow this procedure:

1. To build the SmartModel interface, first cd to the lib directory in the Cadence tree
and execute the lfsmGen command:

% cd $CDS_VHDL/lib
% lfsmGen

This step produces a liblfsm.so.1.1 file on SunOS, liblfsm.so on Solaris, liblfsm.sl
on HP-UX, and liblfsm.a on AIX.

2. To build the VHDL libraries needed to simulate with SmartModels, cd to the
$CDS_VHDL/bin directory and execute the lfsmLibPckGen command:

% cd $CDS_VHDL/bin
% lfsmLibPckGen

This step produces a lfsmLibPck file.

3. Determine where you want the SmartModel VHDL libraries to go and cd to that
location. Then execute the lfsmLibPck you built in the previous step.

% lfsmLibPck

This step can take 30 minutes or more. When the process completes you get the
following two VHDL files that you need to analyze in LeapFrog:

• SMILibrary.vhd

• SMpackage.vhd

The SMILibrary.vhd file contains entity-architecture pairs for all SmartModels in
your $LMC_HOME tree. These include the generics used to configure SmartModel
SWIFT parameters.

Note that SmartModels are identified as follows:

attribute FOREIGN of SmartModel : architecture is
“LFSM:LFSmartModels”;

The SMpackage.vhd file contains component declarations for the SmartModels.
You must specify required SWIFT parameters for every generic in a component that
you want to simulate within Leapfrog. For more information on required SWIFT
parameters, refer to “Using SmartModels with SWIFT Simulators” on page 20.

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

194 Synopsys, Inc. April 2002

v

Cautionh
On the HP platform all users must use the same $LMC_HOME in order to
prevent erroneous simulation results or fatal simulation errors. This
precaution is necessary because the lfsmGen command modifies the
liblfsm.sl file to require $LMC_HOME, and on the HP platform the
liblfsm.sl file references an absolute path name to libswift.sl, the SWIFT
library. When the absolute path name is not the same as the user’s
$LMC_HOME, the result is the loading of two different versions of
libswift.sl during the simulation.

Using FlexModels with Leapfrog
To use Leapfrog with FlexModels, follow the same steps laid out for SmartModels in
“Using SmartModels with Leapfrog” on page 193. On Leapfrog, you use FlexModels
with C-only Command Mode. For information on the required SWIFT parameters for
FlexModels (which differ from regular SmartModels) and how to use C-only Command
Mode, refer to “Using FlexModels with SWIFT Simulators” on page 26.

Using MemPro Models with Leapfrog
To use MemPro models with Leapfrog, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, you need
to perform this step in order to combine your shared library with the MemPro FMI
shared library.

AttentionV
If you do not build your own FMI library, skip to Step 3.

Leapfrog binds in only one shared FMI library at runtime. If your design uses FMI,
you need to build a new FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

$LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

April 2002 Synopsys, Inc. 195

v

You must create a new archive that includes the MemPro archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in “Foreign Model Integration” in the Cadence Leapfrog C Interface User
Guide.

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmilib.h>

extern fmiModelTableT CpipeModelTable;
extern fmiModelTableT myFMITable;

fmiLibraryTableT fmiLibraryTable = {
{"Cpipe", CpipeModelTable},
{"myFMIlib", myFMITable},
{0, 0}

};

Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructions in the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.a with the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a:

HP-UX

% /bin/cc -D_NO_PROTO -c +Z -I$CDS_VHDL/include new_FMI_table.c
% /bin/ld -b -o libfmi.sl new_FMI_table.o your_archive.a \

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

% /opt/SUNWspro/bin/cc -c -KPIC -I$CDS_VHDL/include new_FMI_table.c
% /opt/SUNWspro/bin/cc -G -o libfmi.so new_FMI_table.o \

your_archive.a $LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

2. Set up the library search path to locate the MemPro shared library.

AttentionV
You must add the MemPro shared library to the beginning of your
SHLIB_PATH or LD_LIBRARY_PATH contents. If the MemPro shared
library is added to the tail of the path list, the library search order will be
incorrect and Leapfrog will not simulate properly.

HP-UX

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

196 Synopsys, Inc. April 2002

v

Solaris

% setenv LD_LIBRARY_PATH \
$LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

3. Create slm_lib and work directories:

% mkdir ./slm_lib
% mkdir ./work

4. Create the logical to physical mapping for the slm_lib and work libraries by
modifying your cds.lib file, adding the following lines:

define slm_lib ./slm_lib
define work ./work

5. Compile the MemPro VHDL files into your slm_lib library:

% cv -w slm_lib $LMC_HOME/sim/leapfrog/src/slm_hdlc.vhd
% cv -w slm_lib $LMC_HOME/sim/leapfrog/src/mempro_pkg.vhd
% cv -w slm_lib $LMC_HOME/sim/leapfrog/src/rdramd_pkg.vhd

Compiling the rdramd_pkg.vhd is only required if you are going to use MemPro
RDRAM models.

6. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% cv -w work mymem.vhd

7. Add LIBRARY and USE statements for the slm_lib within your testbench code:

LIBRARY SLM_LIB;
USE SLM_LIB.mempro_pkg.all;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

8. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer
to“Instantiating MemPro Models” on page 34. For information on message levels
and message level constants, refer to “Controlling MemPro Model Messages” on
page 35.

9. Compile your testbench into your work library as shown in the following example:

% cv -w work testbench.vhd

10. Elaborate your design as shown in the following example:

% ev testbench_configuration

11. Invoke the Leapfrog simulator as shown in the following example:

% sv testbench_configuration

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

April 2002 Synopsys, Inc. 197

v

Using Hardware Models with Leapfrog
To use hardware models with Leapfrog, follow this procedure. For the latest information
on supported features, refer to the Cadence documentation.

1. Make sure Leapfrog is set up properly and all required environment variables are
set, as explained in “Setting Environment Variables” on page 191.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/platform/ $path)

3. Run the install.sh script so that the hardware models option is turned on and the
LMlibrary.vhd, LMpackage.vhd, and LMproc.vhd are created. Also make sure the
cds.lib file points to the correct libraries, including LMSFI, which is located in the
install area.

4. Create your own library directory for files that will be generated for the hardware
model. In the Leapfrog Notebook, you can set up the directory so that the library
files get placed in there by using the Library menu.

5. Generate a custom Leapfrog simulator executable (sv) to work with the hardware
model and imported Verilog model. This is done in the install.sh. The install
generates a new svvlog.exe. When this completes, you are ready to run using the
custom sv executable.

Leapfrog Example with TILS299 Hardware Model
The following example uses the TILS299 hardware model to show how to set up
hardware models for use with Leapfrog:

1. Create a testbench to instantiate the hardware model (for example,
TB_TILS299.vhd).

2. Invoke Leapfrog. This brings up the Notebook window, where you can compile,
elaborate, and simulate your VHDL testbench. Type “leapfrog&”.

3. In the Notebook window, select your .vhd testbench file and click on the compile
button.

4. Once compiled, use the Unit menu and select elaborate. Fill in the Design Unit with
your compiled information and fill the snapshot with SIM. For example, mywork is
the directory specified to place compiled work, so we use mywork.TB.TILS299.

5. To simulate, select simulate from the Unit menu and fill in the information for
simulating in the snapshot line. For example: mywork.tb_tils299:test/sim. This
syntax can also be found at the end of the elaborate.

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

198 Synopsys, Inc. April 2002

v

6. To see waveforms, use the simulator window to select Tools > Navigator. When you
select the hardware model instance in the subscopes, the signal pins come up in the
Object window. Select all the signals to be traced in the waveforms and right-click
to select Set trace simple.

7. Go back to the simulator window and select Tools > Waveview. When the cwaves
window comes up with all your signal pins, click on run on the simulator window to
simulate.

Leapfrog Utilities
The following hardware modeler simulator commands are supported in Leapfrog:

lm_log_test_vectors (“instance_name”, 1/0, “filename”);

enables (1) or disables (0) vector logging for hardware models.

lm_timing_measurements (“instance_name”, 1/0, “filename”);

Enables (1) or disables (0) timing measurements for hardware models.

lm_enable_timing_checks ([device_name(s)....])

Enables timing checks for hardware models.

lm_disable_timing_checks ([device_name(s)....])

Disables timing checks for hardware models.

lm_unknowns (“option=value”,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

● propagate=yes/no

● value=previous/high/low

● sequence_count=0-20

● random_seed=0-65535

● device_or_pin

lm_loop_instance ([instance_name]);

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

lm_pam_shortage(“actions=save/sleep/finish/free/suspend/drop_faults”,
”sleep_minutes=n, “sleep_count=n”, “save_file=filename”);

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

April 2002 Synopsys, Inc. 199

v

Lets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

lm_pattern_history ([device_name(s)....])

Saves the pattern memory for a private device instance.

Examples
You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an lm_procedure call.

Example call from VHDL code:

Variable ret : Natural;
...
ret := lm_log_test_vectors(":U1",1,"U1.VEC");
wait for 800 ns;
ret := lm_log_test_vectors(":U1",0,"U1.VEC");

Example invocation from the debugger prompt with lm_procedure call:

> call lm_log_test_vectors(U1,1,U1.VEC)

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

200 Synopsys, Inc. April 2002

v

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

April 2002 Synopsys, Inc. 201

v

11
Using NC-VHDL with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, and MemPro models with
NC-VHDL. The procedures are organized into the following major sections:

● “Setting Environment Variables” on page 201

● “Using SmartModels with NC-VHDL” on page 202

● “Using FlexModels with NC-VHDL” on page 204

● “Using MemPro Models with NC-VHDL” on page 207

● “Using Hardware Models with NC-VHDL” on page 209

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel, FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

202 Synopsys, Inc. April 2002

v

You can put license keys for multiple products (for example, FlexModels and
MemPro models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. Make sure that NC-VHDL is set up properly in your environment. See the NC-
VHDL Simulator Configuration Guide for details.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Using SmartModels with NC-VHDL
To use SmartModels with NC-VHDL, follow this procedure:

1. Add the following line to your cds.lib file to specify the logical library sm_library
for SmartModels, as shown in the following example:

DEFINE sm_library ./sm_library

2. Run the ncshell utility to generate a wrapper for the model that you want to use, as
shown in the following example:

% ncshell -import swift into vhdl model -work sm_library

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

April 2002 Synopsys, Inc. 203

v

This step produces a wrapper file (model.vhd) and a component declaration
(model_comp.vhd) for the specified model in the sm_library work directory.

If you want to generate wrappers for all SmartModels in your $LMC_HOME tree,
add the -all switch to the ncshell invocation. In this case, ncshell creates one file
(shell.vhd) that contains all the model wrappers and another file (component.vhd)
that contains the component declarations.

Hint/
NC-VHDL also works with wrappers created for Leapfrog. If you want to
reuse SmartModel wrappers created for Leapfrog, use ncvhdl to recompile
the SMLibrary.vhd and SMpackage.vhd files. For more information on
using SmartModels with Leapfrog, refer to “Using SmartModels with
Leapfrog” on page 193.

3. Add LIBRARY and USE statements to your testbench:

library sm_library;
use sm_library.component.all;

4. Instantiate SmartModels in your design using the wrapper files that you generated in
Step 2. For information on required configuration parameters and instantiation
examples, refer to “Using SmartModels with SWIFT Simulators” on page 20.

5. Compile the other VHDL files into the work library, as shown in the following
example:

% ncvhdl -w work testbench.vhd

6. Elaborate your design as shown in the following example:

% ncelab cfgtest

7. If you are using any SmartCircuit models in your design, set the LMC_TIMEUNIT
environment variable to -12 for 1 ps resolution, as shown in the following example:

% setenv LMC_TIMEUNIT -12

This sets a global timing resolution for all SmartModels in your simulation. If this
variable is not set, the default timing resolution is 100 ps, which is the resolution
used by most SmartModels. To see if a model is a SmartCircuit model, refer to the
model datasheet. For more information on the LMC_TIMEUNIT environment
variable, refer to the Cadence documentation for NC-VHDL.

8. Invoke the NC-VHDL simulator on your design as shown in the following example:

% ncsim design

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

204 Synopsys, Inc. April 2002

v

Using FlexModels with NC-VHDL
To use FlexModels with NC-VHDL, follow this procedures:

1. If you have built your own Foreign Model Interface (FMI) shared library or you
have another third party FMI, perform this step.

AttentionV
If you do not build your own FMI library, skip to Step 2.

NC-VHDL binds in only one shared FMI library at runtime. If your design uses
FMI, you need to build a new FMI shared library that contains your library and the
FlexModel library. A FlexModel archive library can be found at:

HP-UX

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

$LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

You must create a new archive that includes the FlexModel archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in the “Foreign Model Integration” chapter of the Affirma NC VHDL
Simulator C Interface User Guide.

As shown in the following example, you must combine the contents of the
FlexModel library table file with your own FMI application library table. If you do
not have a table, create a new C file that contains the information shown below.

#include <fmilib.h>

extern fmiModelTableT CpipeModelTable;

fmiLibraryTableT fmiLibraryTable = {
{"Cpipe", CpipeModelTable},
{0, 0}

};

For our example we will call this C file, new_FMI_table.c.

If you already have a file defining fmiLibraryTable, include these two lines at the
appropriate locations in the C file:

extern fmiModelTableT CpipeModelTable;
{"Cpipe", CpipeModelTable},

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

April 2002 Synopsys, Inc. 205

v

Link the FlexModel archive library with the new library table object file and any
other FMI application object files you wish to include, following the instructions in
the Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
FlexModel libfm_ar.a with the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a:

HP-UX

% /bin/cc -D_NO_PROTO -c +Z -I$CDS_VHDL/include new_FMI_table.c
% /bin/ld -b -o libfmi.sl new_FMI_table.o your_archive.a \

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

% /opt/SUNWspro/bin/cc -c -KPIC -I$CDS_VHDL/include new_FMI_table.c
% /opt/SUNWspro/bin/cc -G -o libfmi.so new_FMI_table.o \

your_archive.a $LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

2. Add the following lines to your cds.lib file:

define slm_lib slm_lib_path
define work work_lib_path

3. Generate a VHDL wrapper file for the model by invoking ncshell, as shown in the
following example:

% ncshell -import swift -into vhdl model_fx -nocompile -work slm_lib

4. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 22 describes the FlexModel NC-VHDL interface and
example files that the flexm_setup tool copies.

Table 22: FlexModel NC-VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS”
when compiled.

workdir/examples/vhdl/

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

206 Synopsys, Inc. April 2002

v

5. Update the clock frequency supplied in the model_user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup this file is located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

6. Create a logical library named slm_lib. The default physical library mapping for this
is $LMC_HOME/sim/simulator/lib; however, you can put the physical library
anywhere you want.

7. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

8. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
bit-blasted wrapper generated in Step 2 (model_fx.vhd) using ncshell.

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Table 22: FlexModel NC-VHDL Files (Continued)

File Name Description Location

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

April 2002 Synopsys, Inc. 207

v

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)

port map (model ports);

9. Compile the FlexModel VHDL files into logical library slm_lib as follows:

% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/slm_hdlc.vhd
% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/flexmodel_pkg.vhd
% ncvhdl -w slm_lib workdir/src/vhdl/model_user_pkg.vhd
% ncvhdl -w slm_lib workdir/src/vhdl/model_pkg.vhd
% ncvhdl -w slm_lib workdir/examples/vhdl/model_fx_comp.vhd
% ncvhdl -w slm_lib model_fx.vhd
% ncvhdl -w slm_lib workdir/examples/vhdl/model.vhd
% ncvhdl-w work testbench

10. Elaborate your design as shown in the following example:

% ncelab cfgtest

11. Invoke the NC-VHDL simulator as shown in the following example:

% ncsim design

Using MemPro Models with NC-VHDL
To use MemPro models with NC-VHDL, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, perform
this step.

AttentionV
If you do not build your own FMI library, skip to Step 2.

NC-VHDL binds in only one shared FMI library at runtime. If your design uses
FMI, you need to build a new FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

$LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

208 Synopsys, Inc. April 2002

v

You must create a new archive that includes the MemPro archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in the “Foreign Model Integration” chapter of the Affirma NC VHDL
Simulator C Interface User Guide.

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmilib.h>

extern fmiModelTableT CpipeModelTable;
extern fmiModelTableT myFMITable;

fmiLibraryTableT fmiLibraryTable = {
{"Cpipe", CpipeModelTable},
{"myFMIlib", myFMITable},
{0, 0}

};

Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructions in the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.a with the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a:

HP-UX

% /bin/cc -D_NO_PROTO -c +Z -I$CDS_VHDL/include new_FMI_table.c
% /bin/ld -b -o libfmi.sl new_FMI_table.o your_archive.a \

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

% /opt/SUNWspro/bin/cc -c -KPIC -I$CDS_VHDL/include new_FMI_table.c
% /opt/SUNWspro/bin/cc -G -o libfmi.so new_FMI_table.o \

your_archive.a $LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

2. Create slm_lib and work directories:

% mkdir ./slm_lib
% mkdir ./work

3. Create the logical to physical mapping for the slm_lib and work libraries by
modifying your cds.lib file, adding the following lines:

define slm_lib ./slm_lib
define work ./work

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

April 2002 Synopsys, Inc. 209

v

4. Compile the MemPro VHDL files into your slm_lib library:

% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/slm_hdlc.vhd
% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/mempro_pkg.vhd
% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/rdramd_pkg.vhd

Compiling the rdramd_pkg.vhd is only required if you are going to use MemPro
RDRAM models.

5. After generating a model using MemPro, compile the VHDL code for the model
into your work library, as shown in the following example:

% ncvhdl -w work mymem.vhd

6. Add LIBRARY and USE statements for the slm_lib within your testbench code:

LIBRARY SLM_LIB;
USE SLM_LIB.mempro_pkg.all;

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” chapter in the MemPro User's Manual.

7. Instantiate MemPro models in your testbench. Define ports and generics as
required. For information on generics used with MemPro models, refer
to“Instantiating MemPro Models” on page 34. For information on message levels
and message level constants, refer to “Controlling MemPro Model Messages” on
page 35.

8. Compile your testbench into your work library as shown in the following example:

% ncvhdl -w work testbench.vhd

9. Elaborate your design as shown in the following example:

% ncelab testbench_configuration
10. Invoke the NC-VHDL simulator as shown in the following example:

% ncsim testbench_configuration

Using Hardware Models with NC-VHDL
To use hardware models with NC-VHDL, follow this procedure. For the latest
information on supported features, refer to the Cadence documentation.

1. Make sure NC-VHDL is set up properly and all required environment variables are
set, as explained in “Setting Environment Variables” on page 201.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/platform/ $path)

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

210 Synopsys, Inc. April 2002

v

3. Create your own library directory for files that will be generated for the hardware
model.

4. Run the ncshell command to generate .vhd wrapper files, as shown in the following
example:

% ncshell -import lmsfi -into vhdl models/TILS299/TILS299.MDL

You can also use the -all switch to create .vhd files for multiple hardware models.

NC-VHDL Example with TILS299 Hardware Model
The following example uses the TILS299 hardware model to show how to set up
hardware models for use with NC-VHDL:

1. Create a testbench to instantiate the hardware model (for example
TB_TILS299.vhd).

2. Run ncvhdl to compile your .vhd files, as shown in the following example:

% ncvhdl TILS299.vhd TILS299_comp.vhd TB_TILS299.vhd

3. Elaborate the design, as shown in the following example:

% ncelab -messages work.tb_tils299:test

4. Invoke the NC-VHDL simulator, as shown in the following example:

% ncsim -gui work.tb_tils299:test

NC-VHDL Utilities
The following hardware modeler simulator commands are supported in NC-VHDL:

lm_log_test_vectors (“instance_name”, 1/0, “filename”);

Enables (1) or disables (0) vector logging for hardware models.

lm_timing_measurements (“instance_name”, 1/0, “filename”);

Enables (1) or disables (0) timing measurements for hardware models.

lm_enable_timing_checks ([device_name(s)....])

Enables timing checks for hardware models.

lm_disable_timing_checks ([device_name(s)....])

Disables timing checks for hardware models.

lm_unknowns (“option=value”,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

April 2002 Synopsys, Inc. 211

v

● propagate=yes/no

● value=previous/high/low

● sequence_count=0-20

● random_seed=0-65535

● device_or_pin

lm_loop_instance ([instance_name]);

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

lm_pam_shortage(“actions=save/sleep/finish/free/suspend/drop_faults”,
”sleep_minutes=n, “sleep_count=n”, “save_file=filename”);

Lets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

lm_pattern_history ([device_name(s)....])

Saves the pattern memory for a private device instance.

Examples
You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an lm_procedure call.

Example call from VHDL code:

Variable ret : Natural;
...
ret := lm_log_test_vectors(":U1",1,"U1.VEC");
wait for 800 ns;
ret := lm_log_test_vectors(":U1",0,"U1.VEC");

Example invocation from the debugger prompt with lm_procedure call:

% ncsim> call lm_log_test_vectors :U0 1 299.VEC

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

212 Synopsys, Inc. April 2002

v

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 213

v

12
Using QuickSim II with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, and hardware models with
QuickSim II. The procedures are organized into the following major sections:

● “Setting Environment Variables” on page 213

● “Using SmartModels and FlexModels with QuickSim II” on page 215

● “Using Hardware Models with QuickSim II” on page 240

Note8
MemPro models are not supported on QuickSim II.

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

214 Synopsys, Inc. April 2002

v

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Cautionh
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. Set MGC_HOME to the location of your Mentor installation and make sure
QuickSim II is set up properly in your environment.

% setenv MGC_HOME path_to_Mentor_installation

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 215

v

Using SmartModels and FlexModels with
QuickSim II

This section explains how to use SmartModels and FlexModels with QuickSim II. To
use FlexModels with QuickSim II, you use C-only Command Mode. For information on
C-only Command Mode, refer to “Using FlexModels with SWIFT Simulators” on
page 26. The rest of this section explains required installation steps and how to use
model symbols in the schematic capture front-end to the simulator. This information is
organized in the following major subsections:

Installing the QuickSim II SWIFT Interface
Synopsys ships the part of QuickSim II that communicates with the SWIFT interface for
versions of QuickSim II prior to the D.1 release. If you are using a version of QuickSim
II prior to D.1, you must install the Mentor Graphics application software for each
Mentor Graphics user tree.

AttentionV
Beginning with version D.1 of QuickSim II, Mentor Graphics assumed
responsibility for their integration of the SWIFT interface. If you are using
version D.1 or higher, refer to the Mentor Graphics documentation for
information about using SWIFT.

Every time you install or update Mentor Graphics application software, you must create
a user tree for the SWIFT SmartModel Library. Use the MGC install tool to create
duplicate Mentor Graphics user trees. User trees typically require between 10–20 MB of
disk space. For questions about creating Mentor Graphics user trees, refer to the Mentor
Graphics documentation. Follow these steps:

1. If you are using a version of QuickSim II prior to D1, for each Mentor Graphics
home directory (user or master tree) that requires access to the SWIFT interface,
execute the following command:

UNIX

% $LMC_HOME/bin/mgc_ins -m $MGC_HOME -l $LMC_HOME

NT

You will be running a mkns shell in the MGC environment; for more information on
the mkns shell, refer to Mentor Graphics QuickSim II documentation.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

216 Synopsys, Inc. April 2002

v

In the Control Panel, set the following drives to the appropriate system environment
variables:

DRIVE:/port LMC_HOME
DRIVE:/port MGC_HOME

2. Add “$LMC_HOME” followed by a blank line to your location map file.

3. Add SmartModel Library Menus to Design Architect. Normally, as part of
installation, the Admin tool automatically adds SmartModel menus to Design
Architect for the models you installed. Use the instructions in this section to add the
SmartModel menus only if, after installation, you do not find SmartModel menu
entries under the Design Architect “Libraries” pull-down menu. To include
SmartModel menu selections in the Design Architect (DA) menus, follow these
steps:

a. Set the AMPLE_PATH environment variable. If this variable already exists, use
one of these commands as appropriate:

UNIX

% setenv AMPLE_PATH ${AMPLE_PATH}:$LMC_HOME/special/qsim/menus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/special/qsim/menus/des_arch.”

NT

DRIVE:/path_to_menus/

b. If the AMPLE_PATH environment variable does not exist, use one of these
commands as appropriate:

UNIX

% setenv AMPLE_PATH $LMC_HOME/special/qsim/menus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/special/qsim/menus/des_arch.”

NT

DRIVE:/path_to_menus/

4. Generate the menus as shown in the appropriate example:

UNIX

% $LMC_HOME/bin/mgc_menu.pl

NT

> LMC_HOME%\bin\mgc_menu.cmd

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 217

v

Menu entries are created for the models that you have installed. If menu entries are
missing for models you believe you have in your library, use the Admin tool to verify
your installed models. If you change your model installation, rerun mgc_menu to update
the menu to reflect the new model list.

After successful menu activation, the “Libraries” pull-down menu of the Schematic
Editor contains an entry for “Logic Modeling SmartModel Library.” If you have
SimuBus models installed, the pull-down menu also contains an entry for “Logic
Modeling SimuBus Products.”

Using SmartModels/FlexModels with QuickSim II
This chapter provides information about using SmartModels (including FlexModels)
with Mentor Graphics (MGC) tools. This information is organized in the following
major sections:

● Schematic Capture

● Logic Simulation

● Custom Symbols

Schematic Capture
Adding a SmartModel Library model to a design schematic involves identifying the
desired symbol, instantiating it, and then editing its properties as necessary. Synopsys
supplies a complete Schematic Editor menu system in the QuickSim II environment that
you can use to identify and instantiate a component. You can also instantiate symbols
from the command line and edit property values interactively using Design Architect.
This chapter provides information about both approaches to building a design, following
an introductory discussion of the symbols and their properties.

For more information about Design Architect and the Schematic Editor, refer to the
Mentor Graphics documentation.

Symbols
Synopsys provides symbols representing default package pinouts for each SmartModel.
Some models have more than one symbol associated with them. This is true for:

● Models of simple logic gates, which are supplied with DeMorgan equivalent
negative logic symbols in addition to standard symbols

● Models that offer both pin and bus symbols

For information about symbol compatibility with different versions of the Design
Architect software, refer to the SmartModel Library Release Notes.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

218 Synopsys, Inc. April 2002

v

Pin and Bus Symbols
For many high pin-count parts, you get pin and bus symbols. Bus symbols may be more
convenient to use than their pin equivalents, because they take up less real estate on the
schematic and are easier to connect and to read. Figure 12 illustrates the differences
between pin and bus symbols.

Figure 12: Sample Pin and Bus Symbols

Symbol Properties
Assigning specific values to symbol properties completes the definition of a
SmartModel. The properties used on the symbols provided for the Mentor Graphics
Design Architect environment include:

● Symbol properties used by SWIFT interface models

● Symbol properties required for simulation

● Optional symbol properties

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 219

v

You can edit symbol property values either with the Schematic Editor pop-up menu or
by using the QuickSim II CHANGE TEXT VALUE command. These properties are
hidden or visible depending on the visibility attributes selected by your library manager.
Figure 13 illustrates the positions of the visible properties on a symbol supplied by
Synopsys.

Figure 13: Visible Symbol Properties

Symbol Properties used by SWIFT Models
Table 23 lists symbol properties that are used by SWIFT interface models.

Table 23: Symbol Properties used by SWIFT Models

Property Description

TimingVersion Timing version to use with a model. Any value
assigned to the TimingVersion property must be a
valid timing version for that model.

MemoryFile Name and path of a memory image file.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

220 Synopsys, Inc. April 2002

v

Note8
FlexModels use a slightly different set of symbol properties. For information
on the required configuration properties for FlexModels, refer to “Using
FlexModels with SWIFT Simulators” on page 26.

You can use either an absolute or relative path name to point to a file. If you use a
relative path name it is resolved relative to the value of $MGC_WD.

Symbol Properties Required for Simulation
Table 24 lists symbol properties that are required for simulation.

PCLFile Name and path of a compiled PCL file.

JEDECFile Name and path of a JEDEC fuse map file.

SCFFile Name and path of an MCF file for SmartCircuit
models.

Table 24: Symbol Properties Required for Simulation

Property Description

MODEL The MODEL property contains a label registered as
type “SWIFT”.

PIN Logic simulation requires that each pin on a symbol
have a property. A PIN property has two values
associated with it:

● User pin name

● Compiled pin name

You can change the user pin name to adhere to
drafting standards, but you must not change the
compiled pin name.

PINTYPE Each model pin has an associated PINTYPE
property, which describes the pin entry point type
(i.e., IN, OUT, IXO, or IO). QuickSim II requires
this property.

SWIFT_TEMPLATE The SWIFT_TEMPLATE property always has a
value that specifies the model name. This property
cannot be changed.

Table 23: Symbol Properties used by SWIFT Models (Continued)

Property Description

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 221

v

Optional Symbol Properties
Table 25 lists optional symbol properties.

Building a Design Using the Menus
The Synopsys entries in the Design Architect menu system can be useful when building
a design for the first time because all of the alternatives at each menu level are apparent.

To add SmartModels to a design using the menus, follow these steps:

1. Identify the desired model using the Schematic Editor menu system to traverse the
menus.

PKG Each model has a PKG property equal to the
physical package type (for example, DIP, LCC) that
the symbol's pin numbers match. When using the
bus symbol for a component, the PKG property is
set to the value “BUS”.

Table 25: Optional Symbol Properties

Property Description

COMP The COMP property provides an interface to layout
or other applications. Synopsys does not use this
property.
The COMP property is assigned the default value
“TimingVersion” with the property attribute
“expression”. This causes the COMP property to
track the value of the TimingVersion property for
Synopsys symbols.

PIN_NAME The PIN_NAME property is the visible text on a
symbol representing a pin's name. Changing this
text has no effect on the model's operation.

PIN_NO The PIN_NO property value matches the physical
pin number of the component for the default
package. Changing the value of this property has
no effect on the model's operation.

REF The REF (reference) property provides an identifier
for use in Advanced Verification messages.
Changing the value of this property has no effect on
the model's operation.

Table 24: Symbol Properties Required for Simulation (Continued)

Property Description

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

222 Synopsys, Inc. April 2002

v

2. Instantiate the model's symbol on the schematic sheet.

3. Edit property values as necessary using Design Architect or the Schematic Editor.

The Menu System
The menu system consists of several levels, starting with the pull-down menu that is
accessed with the Libraries choice from the Design Architect menu bar. At that point,
the following menu choices are available:

● Logic Modeling SmartModel Library

● Logic Modeling SimuBus Products (this entry is present only if you have installed
SimuBus models)

Note8
Normally, the Admin tool installs the Logic Modeling entries in the Design
Architect Libraries menu automatically, as part of model installation. If,
after installing your models, you do not find at least the Logic Modeling
SmartModel Library entry, you can perform the menu installation yourself.
For more information, refer to “Installing the QuickSim II SWIFT Interface”
on page 215.

Following are descriptions of the relevant menu levels:

Top-level
The top-level menu offers a number of choices, including component libraries and
the first SmartModel product menu.

Function
The first SmartModel product menu offers a choice of functions, as follows:

❍ General purpose logic menu

❍ Logic block menu

❍ Memories menu

❍ Processor menu

❍ Programmable logic menu

❍ Support peripheral menu

 Subfunction
Each item on the function menu has its own subfunction menu, which is used to
further specify the symbol for the model being instantiated.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 223

v

Vendor
Each subfunction menu selection has an associated vendor menu, which displays a
list of part manufacturers for that subfunctional group of models.

Part
Each vendor menu selection has an associated part menu, which displays a list of
all SmartModels for the selected subfunction class and vendor.

Component
Each part menu selection has an associated component menu, which displays a list
of all the timing and/or symbol versions available for a particular model.

Example
The following sequence of menu selections activates a Motorola MC88100:

SmartModel Library > Processor > Microprocessor > Motorola >

88100 > MC88100-20 (BUS)

Choosing the function, subfunction, and vendor brings up the part menu, which shows
all the Motorola microprocessor models. Choosing the MC88100 brings up the
component menu, which shows both the component and the symbol.

Building a Design Without the Menus
Users who are familiar with the SmartModel Library may prefer to use Schematic Editor
commands to build designs. This approach can be faster than using the menu system.
The basic steps are the same:

1. Identify the model you need.

2. Instantiate the model's symbol on the schematic sheet.

3. Use Design Architect or the Schematic Editor to edit property values, as necessary.

Creating An Instance
Use the $add_instance command to instantiate a part in the Schematic Editor, as shown
in the following minimal command:

% $add_instance (“$LMC_HOME/special/qsim/symbols/”)

The symbol name and TimingVersion property value can also be included on the same
line, as follows. (All punctuation marks are required.)

% $add_instance \
(“$LMC_HOME/special/qsim/symbols/”,“”,,,[“TimingVersion”,””])

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

224 Synopsys, Inc. April 2002

v

If the TimingVersion property value is not specified, the default timing version is
activated. If a symbol is not specified when applicable, the default is used. The defaults
are “positive” for logic version, and “pin” for symbol type.

Selecting Alternate Symbols
When there are DeMorgan equivalent symbols, the positive version is the default.
Specify “NEG” as the symbol name to get the negative logic symbol (if desired), as
follows:

% $add_instance (“$LMC_HOME/special/qsim/symbols/ttl00”,”NEG”,,, \
[“TimingVersion”,”SN74AS00”])

When activating parts manually, remember that the pin symbol is the default when both
pin and bus symbols are available. Specify the bus symbol (if desired), as follows:

% $add_instance (“$LMC_HOME/special/qsim/symbols/mc68030_hv”,”BUS”,,, \
[“TimingVersion”,”MC68030-33”])

Use the Mentor Graphics Design Viewpoint Editor (DVE) to set the primitive type for
SWIFT in DVE. To ensure that SWIFT instances are evaluated as primitives, you can
add to the primitive rule using the add primitive command within DVE. In the following
example, the add primitive command causes all instances of the MODEL property value
“SWIFT” to be evaluated as primitives by QuickSim II.

% add primitive “model” -noexcept -string “SWIFT”

The string “SWIFT” can be substituted with any other labels that you have registered
with the model type of “swift”.

Logic Simulation
The following sections in this chapter provide information about using SmartModels for
logic simulation in the Mentor Graphics’s QuickSim II environment. For related
information, refer to the following Mentor Graphics manuals:

● Common Simulation User's and Reference Manual

● Getting Started with QuickSim II Training Workbook

● QuickSim II User's Manual

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 225

v

Current Support Levels
Please note the following important items before starting a simulation. SmartModel
Library models currently:

● Do support the implementation of location maps. You can use location maps to
install a library anywhere on the system. Set an environment variable and a location
map variable before using location maps.

● Do support extended-time (64-bit) simulations.

● Do not support the unit delay timing mode.

Default Timing Mode
The default timing mode for SWIFT SmartModels is “typ”. You can use the
timing-mode switch at QuickSim invocation time to force the timing mode to be “min”,
“typ”, or “max”.

Signal Levels and Drive Strengths
SmartModels recognize the nine signal levels and drive strengths listed in Table 26.
QuickSim II maps indeterminate strengths to unknowns for “12-state” simulations.

The models generate strong and resistive states. The high-impedance unknown state
(XZ) is used when a model places an output in the high-impedance state.

The state values shown in bold type are generated by the models. All values are
recognized.

Table 26: Signal State Values

Signal Level

Drive Strength Low (0) High (1) Unknown (x)

Strong (S) 0S 1S XS

Resistive (R) 0R 1R XR

High Impedance (Z) 0Z 1Z XZ

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

226 Synopsys, Inc. April 2002

v

QuickSim II Command Line Switches
When QuickSim II is invoked from the command line, the following switches are the
only ones recognized by SmartModels.

Timing Mode Switch
Use the -timing_mode switch to set the global timing mode to minimum, maximum, or
typical. Unit delay timing mode is not currently supported. Use the following syntax
when setting this switch:

-timing_mode { min | max | typ }

Note8
SmartCircuit models override settings made with the timing mode switch by
means of the model command file (MCF) when the MCF is configured with
a particular timing mode. For more information about configuring
SmartCircuit models of FPGA and CPLD devices, refer to the SmartModel
Library User’s Manual.

Time Scale Switch
Use the -time_scale switch to adjust time values (delays and checks) to the desired
resolution by specifying the time scale in nanoseconds (ns). The default is 0.1 ns. Use
the following syntax when setting this switch:

-time_scale timescale

Constraint Mode Switch
Use the -constraint_mode switch to enable or disable timing constraint checking. The
default is “off”. Any value other than “off” causes a model to perform constraint
checking. Use the following syntax when setting this switch:

-constraint_mode { off | state_only | messages }

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 227

v

QuickSim II Command Interaction
There are many QuickSim II simulator commands that interact with SmartModels in a
design. Table 27 lists some of the QuickSim II commands that affect SmartModels.

SWIFT Command Channel
You can use the SWIFT command channel to pass commands directly through to
SmartModels. Use the QuickSim II SIGNAL INSTANCE command to access the
command channel.

To issue a command for selected instances, use the following:

signal instance swift_model -p “command_name [arguments]”

Table 27: QuickSim II Command Interaction

QuickSim II Command Effect on SmartModels

INITIALIZE Causes a model to reevaluate until the simulation
reaches DC stability. It will not reset the model or
set internal values to the “state_value” specified.

SIGNAL INSTANCE Reports the status of selected instances with the
“swift_dump” parameter.

REPORT OBJECT Not supported by SmartModels. Use the SIGNAL
INSTANCE command to query a model and report
its status.

REREAD MODELFILE Reloads any of the configuration files used by a
model, including memory image, JEDEC, MCF,
SCF, and PCL command files. Configuration files
are only re-read if the simulation has changed the
configuration.

RESET STATE Causes all models to reinitialize their states to the
original time zero (power-up) conditions.

RESTORE STATE Restores all of the model's internal states as part of
the operation.

SAVE STATE Records all of the model's internal states as part of
the operation.

WRITE MODELFILE Causes a model to “dump” its memory image to a
file.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

228 Synopsys, Inc. April 2002

v

To issue a command for a session, use the following:

signal instance swift_session -p “command_name [arguments]”

For more information on using the SWIFT command channel, refer to “The SWIFT
Command Channel” on page 23.

Checking the Model's Status
Use the QuickSim II SIGNAL INSTANCE command to query a model directly. Select
one or more instances in the design and then issue the command to display the internal
element status of all selected instances, as shown in the example below.

signal instance swift_dump
'/I$1': ' '
'/I$1': 'Note: <<Status Report>>'
'/I$1': ' Model template: pal20r4i'
'/I$1': ' Version: not available'
'/I$1': ' InstanceName: /I$2742'
'/I$1': ' TimingVersion: MMI_20R4A-COM'
'/I$1': ' DelayRange: TYP'
'/I$1': ' JEDECFile: /user/bobb/design/schematic/selack.jedec'
'/I$1': ' Timing Constraints: Off'
'/I$1': ' SmartModel Instance /I$2742(U103:MMI_20R4A-COM), sheet1

 of schematic at time 0.00 nsec'
'/I$1': ' '
'/I$1': 'Note: SmartModel Windows Description:'
'/I$1': ' Q20 “PAL Internal Register connected to pin 20”'
'/I$1': ' Q19 “PAL Internal Register connected to pin 19”'
'/I$1': ' Q18 “PAL Internal Register connected to pin 18”'
'/I$1': ' Q17 “PAL Internal Register connected to pin 17”'
'/I$1': ' SmartModel Windows not enabled for this model.'
'/I$1': ' SmartModel Instance /I$2742(U103:MMI_20R4A-COM), sheet1
 of testbed/schematic at time 0.00 nsec'
'/I$1': ' ''

Reconfiguring Models for Simulation
You can use QuickSim II to reconfigure models for additional simulations by:

● Editing properties

● Changing timing modes of model instances

● Enabling or disabling constraint checking

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 229

v

Editing Properties
Adding or changing the value of a JEDECFile, SCFFile, PCLFile, or MemoryFile
property causes the simulator to read the file and initialize the model to the power-up
state. Select the following menu choices to change a property:

Edit > Properties > Add, Edit > Properties > Change, and Edit > Properties

Changing Timing Modes
SmartModels support minimum, typical, and maximum timing modes. Unit-delay
mode is not supported. Select the following menu choices to display the form for
changing the timing mode of specific model instances:

Setup > Kernel > Change > Timing Mode

You can also use instance names to specify which instance to change.

Constraint Checking
Select the following menu choices to enable/disable the various timing constraint checks
(for example, setup, hold):

Setup > Kernel > Constraint Mode > Change

To enable constraint checking, select either “State Only” or “Messages” on the Change
Constraint Mode form. To disable constraint checking, select “Off” on the Change
Constraint Mode form.

SmartModel Library Message Formats
SmartModels issue four different kinds of messages to provide relevant information to
users during simulations. These include:

● Error messages

● Warning messages

● Trace messages

● Notes

Error messages can be generated by timing or usage checks. Warning messages, error
messages, and notes can all be generated by usage checks, depending on the situation.
Hardware verification models also issue trace messages, if enabled.

Error messages itemize selected information. For example, a setup time violation
causes an error message that documents:

● Pin name

● Part (by instance), reference designator, and component name

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

230 Synopsys, Inc. April 2002

v

● Sheet name

● Design name

● Simulation time

● Signals and edges, as appropriate

● Setup times (as they occurred and as required by vendor data sheet)

Here are some sample messages:

‘/I$2751':‘ '
‘/I$2751':‘? Error: Unknown signal level on CLK pin.'
‘/I$2751':‘? This will probably cause problems later in the

 simulation.'
‘/I$2751': ‘? SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of

 schematic at time 0.0'
‘/I$2790': ‘ '
‘/I$2790': ‘Note: Loading the memory image file “/user/bobb/design/

 schematic/rom_image.0_7”'
‘/I$2790': ‘SmartModel Instance /I$2790(U201:I27512), sheet2 of
 schematic at time 0.0'
‘/I$2790': ‘ --- 14 values have been initialized.'
‘/I$2751': ‘ '
‘/I$2751': ‘! Warning: Unknown signal level on DSACK0_PIN.

 Assuming DSACK0_PIN is 1.'
‘/I$2751': ‘! SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of
 schematic at time 200.0'
‘/I$2751': ‘Trace: Returning read data to PCL program:'
‘/I$2751': ‘ [0]=00000BFE, [1]=00000000, [2]=00000000, [3]=00000000'
‘/I$2751': ‘ [4]=00000000, [5]=00000000, [6]=00000000, [7]=00000000,

[8]=00000000'
‘/I$2751': ‘ SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of

 schematic at time 1750.0'
‘/I$2751': ‘ '
‘/I$2751': ‘Trace: PCL Bus Cmd: Read. Control=06, Addr=00000004,
 Bytes=4.'
‘/I$2751': ‘ SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of

 schematic at time 1750.0'

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 231

v

Using SmartModel Windows with QuickSim II
SmartModel Windows is a SmartModel Library feature that can be used for more
efficient system-level verification and debugging by allowing you to view window
elements during simulation runs for microprocessor, PLD, memory, and peripheral
models.

Window elements that can be viewed include registers, pointers, states, or latches (for
example), depending on the part being modeled. This section provides information
about how to interact with SmartModel Windows using QuickSim II. SmartModel
Windows can be used to:

● Review window element values and set breakpoints

● Single-step through simulations

● Change window element values before proceeding with a simulation

● Trace instruction execution

● Rename instances

● Combine register elements

Most SmartModels contain predefined window elements that correspond to the
manufacturer's specifications. In addition, SmartCircuit models allow users to define
their own window elements so that the actual structure of the device can be examined.
To determine if a specific model is equipped with SmartModel Windows, check the
model's online datasheet.

How SmartModel Windows Works
SmartModel Windows couples the models and the simulator so that model elements can
be used almost as if they were nets in the design. Normal QuickSim II commands are
used with SmartModel Windows, except that an instance designator must be added to a
QuickSim II command to address a model's window elements (even at the top level).
The general format for using QuickSim II commands with SmartModel Windows is:

command model_instance/element_name

Use any of the following commands to enable window elements with the simulator:

ADD LISTS model_instance/element_name

ADD MONITORS model_instance/element_name

ADD TRACES model_instance/element_name

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

232 Synopsys, Inc. April 2002

v

Window elements must be activated with one of the preceding commands in order for
SmartModel Windows to begin displaying data. Each model's online datasheet lists its
predefined window elements, which are available during simulation. Using windows
you can read or display elements, force new values onto them, and stop the simulation
based on their values.

Tracing Instruction Execution
SmartModel Windows provides the ability to trace peripheral component activity in a
design. Most larger peripherals and microprocessors equipped for SmartModel
Windows have a 1-bit element named TRACE_ENABLE. Setting TRACE_ENABLE
to one (1) causes trace messages to display in the transcript window.

Use the following command to enable instruction tracing for a model:

FORCE model_instance/TRACE_ENABLE 1

Some trace message examples follow:

‘I$2752': ‘Trace: Logical Master writing to PMMU Operand Address CIR.
‘I$2752': ‘SmartModel Instance /I$2752(U103:MC68851-12), sheet1 of

 my_design at time 819500.0
‘I$2752': ‘Trace: MC68851 is starting a table search using CRP.
‘I$2752': ‘SmartModel Instance /I$2752(U103:MC68851-12), sheet1 of

 my_design at time 822150.0

Setting Breakpoints and Word Triggering
Use the ADD REAKPOINT command to stop the simulation at critical points and
examine internal window elements. You can set breakpoints based on the contents of
specific elements inside components within the design. For example, the following
command causes the simulation to stop at the breakpoint when the specified condition is
met.

ADD BREAKPOINT (model_instance/TC==0B)

You can use Boolean expressions with the Add Breakpoint command to set up complex
word triggers that provide a logic analyzer during simulation. For example, the
following command causes the simulation to stop at the breakpoint when both of the two
specified conditions are met.

ADD BREAKPOINT ((model_instance/SCC!=0)&&(model_instance/TC==B))

Trigger terms do not have to refer to the same instance or model. In addition, net values
and window element contents can be combined to make trigger terms.

Single-Step Simulation
The ADD BREAKPOINT command defaults to stopping the simulator when a signal or
expression in a window element changes state. As a result, you can use the ADD
BREAKPOINT command to single-step through a simulation.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 233

v

Renaming Instances
Use the ADD SYNONYM command to rename instances with easier-to-remember
substitute names. For example, to rename a model for an MC68851 with an instance
name of “I$289” to an easier-to-remember name such as “PMMU,” use the following
command:

ADD SYNONYM 'PMMU' I$289

Once you add a synonym you can use it in place of the original instance name in
commands. For example, the following command lists the MC68851 translation control
register.

ADD LISTS HEX PMMU/TC

Combining Register Elements
You can use the ADD BUS command to combine meaningful 1-bit elements of a PLD
into a single bus that can be viewed or changed after the PLD has been programmed.
This saves effort compared to dealing with each 1-bit element one at a time. Table 28
shows the elements of a sample device, the Texas Instruments TIBPAL22V10. All
window elements for this example are 1-bit wide with read and write access.

Table 28: Elements in a TIBPAL22V10 Device

Element Description

Q23 PAL Internal Register connected to pin 23

Q22 PAL Internal Register connected to pin 22

Q21 PAL Internal Register connected to pin 21

Q20 PAL Internal Register connected to pin 20

Q19 PAL Internal Register connected to pin 19

Q18 PAL Internal Register connected to pin 18

Q17 PAL Internal Register connected to pin 17

Q16 PAL Internal Register connected to pin 16

Q15 PAL Internal Register connected to pin 15

Q14 PAL Internal Register connected to pin 14

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

234 Synopsys, Inc. April 2002

v

Note8
Because the block diagram of this part does not denote specific names for
the elements, their names reflect the output pin numbers on the DIP symbol
(for example, pin 23 maps to Q23).

For example, to program the first six elements listed in Table 28 as counters and register
the last four elements as data pins from an I/O port, you would use the following
commands:

ADD BUS CNTR I$230/Q23, I$230/Q22, I$230/Q21, I$230/Q20, I$230/Q19,
I$230/Q18

ADD BUS DATA I$230/Q17, I$230/Q16, I$230/Q15, I$230/Q14
ADD LISTS CNTR DATA -C -HEX

Changing Program Flow by Setting Values
You can use the SmartModel Windows feature to shorten large repetitive loops. For
example, if a DMA controller has initiated a DMA transfer of 1,024 words to main
memory, you can view the transfer of the first couple of words before stopping the
simulation. By artificially setting the value of the DMA's transfer control register, you
can control which part of the transfer to view. You can then view the last few words as
they are transferred without having to wait for the entire process.

Be careful when inserting values into window elements, especially when forcing data
into program counters and instruction registers. This SmartModel Windows feature is
recommended only for users who completely understand the implications of what is
being inserted into an element.

When forcing a value onto an element, the FORCE command is always interpreted as if
the -CHARGED switch were present. This means that the forced value vanishes when
another event attempts to update the window element. It is not possible to FIX or WIRE
a forced value on a window element.

SmartModel Window Elements
SmartModel Window elements for SmartCircuit models can be defined only at
simulator startup. This affects the way several QuickSim II commands interact with
SmartCircuit models:

● The SAVE STATE and RESTORE STATE commands produce unpredictable effects
if any SmartCircuit window elements are defined after saving the state.

● For SmartModel Windows to work with the SAVE STATE and RESTORE STATE
commands, the window elements defined at SAVE STATE must exactly match those
defined at the start of the current simulation session.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 235

v

● The REREAD MODELFILE command does not redefine window elements for
SmartCircuit models. Using this command to redefine window elements after
simulation startup disables the window elements.

Custom Symbols
Synopsys provides symbols representing default package pinouts for SmartModels.
However, you may need to create custom symbols for some of the following reasons:

● To conform to internal drafting requirements

● To make a symbol match a component's pinout

● To match external drafting specifications (for example, military specifications)

Users who choose to create custom symbols as an alternative to using the symbols
provided can:

● Modify a SmartModel Symbol. Start with the SmartModel symbol and modify it
to match your drafting requirements. The value of the user PIN property can now be
changed without corrupting the value of the compiled PIN property.

● Create a New Symbol. Create the symbol with your pin values, figure out the
corresponding pin names used by the model, and change the user pin values to those
names.

To create custom symbols, follow these steps:

1. Provide required SWIFT properties on the symbol.

2. Register the component.

3. Map pin names to standard SWIFT pin names.

SWIFT Properties
The following symbol properties are required to interface with a SWIFT model:

● model

● TimingVersion

● pin

● pintype

● swift_template

Refer to Table 23 and Table 24 for information about other required symbol properties.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

236 Synopsys, Inc. April 2002

v

Component Registration
When creating new symbols, you must add the SWIFT model to the component
interface by “registering” the model with a type of “SWIFT”.

For example, suppose you have created a new component called “my_ttl00” and you
want to use the SmartModel Library “ttl00” binary as the simulation model. You would
register the ttl00 model as follows:

reg_model $MY_DIR/my_comp_lib/my_ttl00 -type SWIFT -label 'my_label'

PIN_NAME Mapping
The two methods for creating custom symbols described in “Custom Symbols” on page
235 cannot be used to map bus symbol pins to model pins. You must use a pin_map file
to accomplish this sort of custom symbol creation, as explained in the following
sections.

PIN Property
A PIN property can have two distinct values in Design Architect, as follows:

● Compiled pin value

● User pin value

The compiled pin value must be the same value that is used in the model. When initially
adding a pin to a symbol, both these values are set to the specified value. For example,
naming a pin “A” causes both its user pin value and the compiled pin value to be “A”.

Changing a PIN property value causes the compiled pin value to track the user pin value.
Specifically changing the compiled PIN property value disables this tracking
mechanism. To re-enable tracking, set the value of the compiled PIN property to null
(“”).

PIN_NAME Property
SmartModel Library symbols include a property called PIN_NAME that is used purely
for graphical purposes. The PIN_NAME property is provided because SmartModel
Library symbols do not completely match the Mentor Graphics requirements for pin
names. Deleting a PIN_NAME property does not affect model functionality in any way.

AttentionV
Do not confuse the PIN property with the PIN_NAME property on
SmartModel symbols.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 237

v

Purpose of the pin_map File
Use the pin_map file to map custom symbol pins to model pins. If your symbol does not
have buses, then you can use the “user pin value” and “compiled pin value”
combinations previously described to do this mapping without using the pin_map file.
If you have bus pins on your symbol, then you need to use a pin_map file and ensure that
the PKG symbol property is set to the value “BUS”. Following is a general description
of the pin_map file which describes both cases.

Note8
Error messages cite the pin names used by the model, not those on the
symbol or in the pin_map file.

How the pin_map File Works
At startup, a PKG symbol value of “BUS” triggers the simulator to look for a pin_map
file for that model. The pin_map cross-reference file is a free-format ASCII file. It
contains statements that use the following syntax:

pin_type symbol_pin [=] model_pin_names ; [# comment_text]

Following are descriptions of the fields and options.

pin_type Must be the same value as the PINTYPE property of the
model. Valid values are IN, OUT, IXO, and IO. Do not
change this value.

symbol_pin The new pin name you want to use on your symbol. This is
the symbol's user PIN property, not its PIN_NAME property.

 = Optional.

model_pin_names A statement can have from 0 to 767 model_pin_names,
separated by spaces, tabs, or new lines. The
model_pin_names are ordered from most significant to least
significant and refer to the PIN property, not the PIN_NAME
property.

; Ends a statement.

Starts a comment, which runs to the end of the line.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

238 Synopsys, Inc. April 2002

v

Example of a pin_map File
The following example pin_map file customizes the standard symbol supplied with the
model of the National Semiconductor DP8429 DRAM controller shown in Figure 14.

Figure 14: National Semiconductor DP8429 DRAM Controller

In the example pin_map file shown below, the names that are changed on the first
symbol are labeled CS, RASIN, R/C, CASIN, WIN, RA, RB, RC, RD, and M2. They
will have an “L” added to the name to denote that they are asserted low. Notice that a
bus has been defined for each of these sets of pins: Q0 through Q9, R0 through R9, C0
through C9, and B0 through B1.

DP8429 PIN NAME CHANGES

IN CSL = CS ;
IN RASINL = RASIN ;
IN CASINL = CASIN ;
IN RCL = R/C ;
IN WINL = WIN ;
IN RFSH = M2 ;
IN R = R9 R8 R7 R6 R5 R4 R3 R2 R1 R0;

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 239

v

IN C = C9 C8 C7 C6 C5 C4 C3 C2 C1 C0;
IN B = B1 B0;
OUT WEL = WE ;
OUT RAL = RAS3 ;
OUT RBL = RAS2 ;
OUT RCL = RAS1 ;
OUT RDL = RAS0 ;
OUT Q = Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0;

Conditional Pin Mapping
Use a conditional clause in the pin_map file to cause the model to use different parts of a
pin_map file based on the value of a certain property. The syntax is:

% property_name property_value

This method is used by the models to map the pins from the BUS symbols to the model.

The pin map parser searches for the property_name in the design database and then
compares the property_value. If the property is not present, or if the actual value of the
property does not match the property_value exactly, everything in the file until the next
percent sign (%) is ignored.

The following example shows the pin_map file that provides mapping from the pin to
the bus symbols for the Logic Devices LSH32 32-bit barrel shifter.

Bus Package for the LSH32

% PKG BUS
IN I = I31 I30 I29 I28 I27 I26 I25 I24 I23 I22 I21 I20 I19 I18

I17 I16 I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 ;
OUT Y = Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 ;
IN SI = SI4 SI3 SI2 SI1 SI0 ;
OUT SO = SO4 SO3 SO2 SO1 SO0

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

240 Synopsys, Inc. April 2002

v

Figure 15 illustrates both symbol types.

Figure 15: Bus and Pin Symbols

Note8
The properties on custom symbols must be the same as those on standard
SmartModel symbols.

Using Hardware Models with QuickSim II
This section describes how to configure Release 3.5a of ModelAccess for QuickSim II.
ModelAccess is the software you use to interface hardware models with the simulator.
Before you begin, review the release notes for ModelAccess for QuickSim in the
Hardware Modeling Release Notes. If you are using the C-series releases of QuickSim
II, you must use R3.0 or better of the ModelAccess for QuickSim II interface software.

These instructions assume that you have already installed the following software:

● Mentor Graphics software, including QuickSim II V8.6 or later; and the Design
Data Port package, as described by Mentor Graphics Corporation.

● R3.1a or later of ModelSource or LM-family hardware modeling software.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 241

v

Setting up Hardware Models in QuickSim II
To set up the LM-family ModelAccess interface software for QuickSim II, complete the
following steps:

1. “Running lmc_hm_install” on page 241

2. “Rebuilding the Mentor Graphics Tree” on page 242

Running lmc_hm_install
To run the ModelAccess installation script, enter the following commands. If you are on
NT, execute these commands in a MGC “mkns” shell.

% cd install_dir/sms/maqs_30/lmc_hm.$vco/bin
% lmc_hm_install -m mgc_home -l lm_home -p ma_home

where:

● $vco is the vendor CPU operating system suffix that corresponds to your platform,
as shown in Table 29.

● mgc_home is the directory path that contains the Mentor Graphics software tree.
You can use $MGC_HOME if you have set it, or a pathname such as
/home/mentor.

● lm_home is the directory path that contains the LM-family and ModelSource system
software; for example, /home/lm.

● ma_home is the directory path that contains the ModelAccess interface software; for
example, /home/lmc_hm.sss.

When the script completes, the following message appears on the screen:

1. Invoke the Mentor Installation tool
 > cd /an_idea_tree/install8
 > install

Table 29: Mentor Graphics Vendor CPU Operating System Suffixes

Host
Vendor CPU

Operating System Suffix ($vco)

Sun SPARC (Solaris) ss5

HP 9000 Series 700 hpu

Intel Pentium (Windows NT) ixn

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

242 Synopsys, Inc. April 2002

v

2. From the "Mentor Graphics Install" tool window
 > Admin
 > Rebuild MGC Tree

3. In the "Prompt" window enter the proper path to the
 MGC_HOME to be rebuilt. Click on
 > OK

4. "Rebuild MGC Tree Results" window appears. AFTER Rebuild
 completes. Click on
 > OK

5. From the "Mentor Graphics Install" tool window
 > File
 > Exit

6. "Install Warning" window appears. Click on
 > OK

Note8
This process rebuilds the Mentor tree with the newly installed hardware
modeler package.

Rebuilding the Mentor Graphics Tree
The final step is to rebuild the Mentor Graphics tree using the Mentor Graphics
installation script.

Using install, version C.1
1. To invoke this program, enter the following:

% cd mgc_home/install8 ./install
2. When the install tool appears, use the mouse to select the Admin > Rebuild MGC

Tree pull-down menu item. The program prompts you to enter the MGC tree
pathname.

3. If you have defined $MGC_HOME, that path will appear; otherwise, enter the full
pathname of the Mentor Graphics tree that you want to rebuild, such as the
mgc_home pathname described in “Rebuilding the Mentor Graphics Tree” on
page 242.

4. Click on OK or press the Return key to accept this pathname. The install program
takes several minutes to rebuild the Mentor Graphics tree. The program prints a
number of messages to the Results screen. You should ensure that no errors or
warnings are printed, especially warnings generated by the lmc_hm package
indicating that you are missing certain Mentor Graphics software packages.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 243

v

5. When the rebuild is complete, click on OK to delete the Results screen.

6. Use the mouse to select the File > Exit pull-down menu item.

This completes the ModelAccess installation procedure. You are now ready to begin
model registration and simulation.

Using Hardware Models in QuickSim II
This section describes how to prepare and use hardware models in QuickSim II. We
begin with an overview of the Mentor Graphics design environment that describes why
models must be registered in order to function in this environment. The section also
describes how to use the lm_model utility to register hardware models.

The operation of the hardware modeling system during simulation is transparent to the
user in most respects. However, a number of signal instance commands are available to
enable or disable QuickSim II or hardware modeling features for selected instances
during simulation. This section provides descriptions and examples of those commands.

The Mentor Graphics Design Environment
In the post-V8.0 QuickSim-family environment, an instance of a component placed on a
schematic references a component interface. A component interface contains a set of
descriptors that define aspects of a component, such as its functionality, graphical
representation (symbol), and timing constraints.

There can be several variations of each descriptor for a component, such as:

● Several functional descriptions of the component using different modeling methods
such as BLM, VHDL, or hardware models.

● Several graphical descriptions (symbols) of the component such as ANSI,
MG_STD, or your company standard.

● Several technology descriptions (timing constraints) of the component with
different timing grades.

The Mentor Graphics analysis tools use the value of the MODEL property as a label to
identify the descriptors that define the model. For example, Figure 16 shows an instance
with a MODEL property of $lm. The $lm label is the default label for the functional
description of a hardware model. By examining the model table of the component
interface, a match can be found between the MODEL property and the files that
comprise the functional description of the hardware model.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

244 Synopsys, Inc. April 2002

v

Figure 16: Sample Component Interface for a Hardware Model

Mentor Graphics analysis tools use the following rules to determine the appropriate
descriptors:

1. If a label match is found, the analysis tool uses the descriptor identified by the label.

2. If a label match is not found, the analysis tool uses the default label for the
descriptor.

3. If a label match is not found and there is no default label, the descriptor is optional
and is not used.

ASIC1.rss_1
ASIC1.mgc_lm.attr

Functional Description

ASIC1.smbl_1
ASIC1.mgc_symbol.attr

Graphical Description

technology.ts
technology.tecf_1

Technology Description

technology.Tf_tfile_do.attr

Component
Interface

$lm
default_sym

def_tech

Mentor Graphics Schematic

ASIC1
Instance

MODEL
= $lm

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 245

v

Model Registration
Because multiple descriptions can exist for the same component, you must register each
model to specify the model’s component interface and descriptors. The lm_model utility
is a tool for registering hardware models. If a QuickSim II component does not already
exist, lm_model creates one, along with a component interface that specifies the
functional, graphical, and technology descriptions for the model.

The lm_model utility registers a hardware model in three steps, using the model’s Shell
Software as source files:

1. Creates a symbol for the model and registers it with the component interface.

2. Creates, compiles, and registers a technology File, which contains the timing
description of the model in a Mentor Graphics proprietary format. The user can
choose to use either this technology file or the Shell Software timing files during
simulation. For more information, refer to “Timing Shell Selection” on page 254.

3. Registers the functional description with the component interface.

The lm_model command, as illustrated in Figure 17, calls a number of other utilities.
The reg_model utility and Technology Compiler (tc) are Mentor Graphics utilities; for
more information about these utilities, refer to your Mentor Graphics documentation.
For more information on the tmg_to_ts converter, refer to “lm_model Command
Reference” on page 260. For more information on the lm_model utility, refer to
“tmg_to_ts Command Reference” on page 263.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

246 Synopsys, Inc. April 2002

v

Figure 17: Hardware Model Registration

Registering a Model with lm_model
All hardware models, whether user-created or purchased from Synopsys, must be
registered with the lm_model utility before you can use them in the QuickSim II
simulation environment. The following list shows the basic steps involved in preparing a
hardware model for simulation:

1. Running the lm_model Utility, discussed next.

2. Checking the Transcript for any errors or warnings.

technology.
tecf_1

ASIC1.DCL

ASIC1.TCK

ASIC1.TRK

ASIC1.DLY

ASIC1.FRC

ASIC1.MDL

ASIC1.DEV

PGA.PKG

PGA160.ADP

ASIC1.OPT

ASIC1.NAM

Shell Software

technology.ts

ASIC1.
mgc_lm.attr

ASIC1.rss_1

ASIC1.mgc_
symbol.attr

ASIC1.
smbl_1

technology.
Tf_tfile_
do.attr

Functional
Description

Graphical
Description

Technology
Description

tmg_to_tslm_modelreg_model
Technology

Compiler
(tc)

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 247

v

3. Editing the Symbol to meet any additional symbol conventions (optional).

4. Verifying the Technology File(not required if Shell Software timing files are used in
place of this file; for more information, refer to “Timing Shell Selection” on
page 254).

Running the lm_model Utility
You can use the lm_model shell command to register a hardware model. To run
lm_model, use the following syntax.

Syntax
lm_model input_dir [output_path] [-Dir name] [-LAbel label]

[-Mdl mdl_filename] [-Step Register|Symbol|Timing|Update] [-Replace]

For a complete description of lm_model syntax and options, refer to “lm_model
Command Reference” on page 260.

Example
The following example shows how you might register a 74LS74 model which has a
model file named 74LS74A.MDL. This example assumes that $MGC_WD is set to
/user/models, which contains a Shell Software directory called 74ls74.

lm_model 74ls74 -m 74LS74A

This command creates a /user/models/74LS74 component directory—if one did not
already exist—containing the files shown in Table 30.

Table 30: Sample Component Directory

File Description

74LS74A.rss_1 Registered Shell Software

74LS74A.mgc_lm.attr Compiled and registered Shell Software

part.part_1 EDDM part

part.Eddm_part.attr EDDM part

74LS74.smbl_1 Symbol graphics

74LS74.mgc_symbol.attr Symbol graphics

74LS74A_tech.ts Source technology file

74LS74A_tech.tecf_1 Compiled technology file

74LS74A_tech.Tf_tfile_do.attr Versioned technology file

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

248 Synopsys, Inc. April 2002

v

Note8
Previous versions of lm_model copied Shell Software source files into the
component directory and registered these files. However, the current version
registers only a reference pathname to the Shell Software files and does not
copy the files.

Checking the Transcript
The transcript displays information about the progress of the registration, in addition to
notes, warnings, and errors.

The lm_model utility checks that the Shell Software is syntactically and semantically
correct; this is equivalent to running the lm Check Shell Software utility. If lm_model
encounters an error condition, it stops execution and prints a message describing the
source of the error. Warning and information messages print to the screen, but do not
halt the execution of lm_model.

If you get an error, you should fix the problem in the Shell Software and then run
lm_model again to complete the registration.

The following is an lm_model transcript for the 74LS74 model:

// ModelAccess for QuickSim II v2.0, (a.k.a. lmc_hm v2.0)
// lm_model v8.5_2.1 Fri Oct 18 18:32:32 PDT 1996
// Note: Input directory "74ls74"
// resolves to "/user/johnd/lmc/qa/lmc_hm/work.sss/74ls74".
// Note: Output directory "74LS74"
// resolves to "/user/johnd/lmc/qa/lmc_hm/work.sss/74LS74".
//
// Note: Using "74LS74A.MDL" file for conversion.
// Note: Compiling symbol generator program.
// Note: Linking symbol generator program.
// Note: Creating symbol.
// tmg_to_ts v8.5_2.1 Sat Oct 19 20:18:24 PDT 1996
// Falcon Framework v8.5_2.5 Thu May 30 17:31:43 PDT 1996
//
// Copyright (c) Mentor Graphics Corporation, 1982-1995, All Rights Reserved.
// UNPUBLISHED, LICENSED SOFTWARE.
// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.
//
// Mentor Graphics software executing under Sun SPARC SunOS.
//

// TC - The Technology Compiler v8.5_2.2 Sat Jun 22 10:56:50 PDT 1996
// Falcon Framework v8.5_2.5 Thu May 30 17:31:43 PDT 1996
//
// Copyright (c) Mentor Graphics Corporation, 1982-1995, All Rights Reserved.
// UNPUBLISHED, LICENSED SOFTWARE.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 249

v

// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.
//
// Mentor Graphics software executing under Sun SPARC SunOS.
//

//
// Note: lm_model completed successfully

Editing the Symbol
During registration, the lm_model utility reads the Shell Software to determine the
device’s input, output, and I/O pin names. The utility then flattens all buses to individual
bits and generates a Mentor Graphics Design Architect script that creates the symbol.

The process uses the following rules to create the symbol:

● All input pins are placed starting in the lower left corner and proceeding upwards.

● All output pins are placed starting in the lower right corner and proceeding upwards.

● I/O pins are placed for minimizing the symbol’s height.

● All buses are grouped with the least significant bit placed lower on the symbol than
the most significant bit.

● A single grid spacing is left between buses, grouped scalar pins, input and I/O pins,
and output and I/O pins.

Since symbol standards vary, you may need to use the Symbol Editor in Design
Architect to modify the appearance of the automatically-generated symbol. For more
information, refer to your Design Architect documentation.

Verifying the Technology File
During registration, lm_model calls the tmg_to_ts converter. This converter extracts
timing information from the following Shell Software files to create a Technology File:

● Variable declarations (.DCL) file

● Timing checks (.TCK) file

● State tracking (.TRK) file

● Delays (.DLY) file

● Force values (.FRC) file

The technology file specifies propagation delays and some timing checks, as well as
technology-dependent data for the simulation model. Table 31 shows how Shell
Software timing statements are converted into technology file statements.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

250 Synopsys, Inc. April 2002

v

Note8
Many Shell Software statements have no technology file equivalents. The
tmg_to_ts converter includes each “untranslatable” statement in the
technology file as a comment and/or generates a warning message. For this
reason, we recommend that you use the Shell Software timing files instead
of the technology file during simulation. For instructions, refer to “Timing
Shell Selection” on page 254.

.

Table 31: Shell Software to Technology File Conversion

Shell Software Statements Technology File Statements

cycle_time input_state (storage_pin) =
timing_spec

fMIN = min_freq on storage_pin (input_trans)

fMAX = max_freq on storage_pin (input_trans)

decrement name —

default_delay timing_spec tP = timing_spec on eval_storage_pin
(input_trans) to output_pin (output_trans)

delay from input_state (eval_storage_pin) to
output_state (output_pin) = timing_spec

tP = timing_spec on eval_storage_pin
(input_trans) to output_pin (output_trans)

force_value output_pin = pin_value —

hold after input_state1 (storage_pin) of

input_state2 (input_pin) = timing_spec

tH = timing_spec on input_pin (input_state2) to
storage_pin (input_trans1)

if (condition) {statements}
else_if (condition) {statements}
else {statements}
end_if

—

increment name —

print (severity, arguments) —

pulse_width input_state (storage_pin) = timing_spec tW = timing_spec on storage_pin (input_state)

No equivalent to maximum pulse width time.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 251

v

Modifying a Hardware Model
Whenever you change a hardware model’s Shell Software, you need to rerun lm_model.
However, you may be able to use the -Step option to perform just the steps you need.
The following list provides some guidelines about how to take advantage of the -Step
option:

● If you change, add, or delete a pin name in the Shell Software, then you must rerun
all three steps of lm_model (the default). Because you are recreating the symbol,
you must also use the -Replace option. For example:

lm_model 74ls74 -r

● If you change, add, or delete a timing specification in the Shell Software timing files
and you are using the Technology File in QuickSim II, you should use lm_model
with the -Step Timing switch. For example:

lm_model 74ls74 -s t

recovery after (condition)
 during (condition)
 before input_state(storage_pin) =
 timing_spec
 else_during (condition)
 before input_state(storage_pin) =
 timing_spec
 else
 before input_state(storage_pin) =
 timing_spec
 end_during

—

set name = value —

setup before input_state1 (storage_pin) of
input_state2 (input_pin) = timing_spec

tS = timing_spec on input_pin (input_state2) to
storage_pin (input_trans1)

stable valid (input_pin) while (store_pin =
input_state)

tSTAB = 0 : 0 on input_pin (V) to store_pin (trans1,
trans2)

var enumerated_list name = identifier —

var counter name = number —

when (condition) {statements}
else_when (condition) {statements}
else {statements}
end_when

with condition
No equivalents to else_when and else clauses

Table 31: Shell Software to Technology File Conversion (Continued)

Shell Software Statements Technology File Statements

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

252 Synopsys, Inc. April 2002

v

This step is equivalent to running tmg_to_ts to create the technology file and then
running tc to compile and register it with the component interface.

● If you make any changes to the Shell Software other than changing pin names and
timing information, you should use lm_model with the -Step Register switch; for
example:

lm_model 74ls74 -s r

This step is equivalent to running reg_model.

● If you have not changed any pin names and want to run both the registration and
timing steps, you can use lm_model with the -Step Update switch to update the
component interface without recreating the symbol. For example:

lm_model 74ls74 -s u

This switch is particularly useful, because symbol generation is the most time-
consuming step of registration and you lose all manual edits you have made to a
symbol when you regenerate it.

● If you already have a working symbol, you can use -Step Update to register the
hardware model functionality with the existing component. For example, you would
use -Step Update if you have a different type of model for the same component. You
can then change the MODEL property in the schematic in order to specify whether
you want to use the hardware model or another type of model for an instance.

Simulating with Hardware Models in QuickSim II
Once you have registered each hardware model in your design and set the MODEL
property to the appropriate label for instances that reference those models, you are ready
to simulate. You can use the SIGnal INSTance command to turn on and off a number of
QuickSim II or hardware modeling features for selected instances during simulation.

Signal Instance Command Summary
Table 32 provides a summary of these features and the specific commands used to
implement them; the subsections that follow describe the features in more depth. Some
features can also be implemented through Shell Software statements or the lm utilities;
for details, refer to the Shell Software Reference Manual. For instructions on how to
select one or more instances, refer to your QuickSim II documentation.

Note8
If the simulator is reset with the $reset_state function, any prior Signal
Instance commands are lost because the simulator is reset to the same state it
was at invocation.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 253

v

Table 32: Signal Instance Command Summary

Feature Command Description

Model evaluation enable Enables evaluation of the instance by
QuickSim II (default)

disable Disables evaluation of the instance by
QuickSim II

Timing shell
selection

lst [-p all] Selects hardware model Shell Software files to
describe the instance’s timing

nolst [-p all] Selects the Technology File to describe the
instance’s timing (Default)

Unknown
handling and
propagation

xp [-p pin_name] Maps an unknown input state to the previous
state (Default)

x0 [-p pin_name] Maps an unknown input state to a logic zero
state

x1 [-p pin_name] Maps an unknown input state to a logic one
state

xz [-p pin_name] Maps an unknown input state to a float state

propagate Propagates unknowns through the hardware
model

nopropagate Turns off unknown propagation (default)

default_ propagation
-p number

Sets the number of additional sequences to be
played to the instance when unknown
propagation is enabled (default = 0)

random_seed
-p seed

Sets the value of the seed for the random
sequence generator when unknown propagation
is enabled (default = 0)

Indeterminate
strength mapping

is Maps an indeterminate strength (i) to a strong
strength (s) (default)

iz Maps an indeterminate strength (i) to a high-
impedance strength (z)

Test vector
logging

logvectors
-p filename

Turns on test vector logging

nologvectors Turns off test vector logging (default)

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

254 Synopsys, Inc. April 2002

v

Model Evaluation
By default, all component instances are evaluated in QuickSim II. If you want to disable
evaluation of models for selected instances, you can use the SIGnal INSTance disable
command. This command isolates sections of the design and shortens the simulation
time for debugging purposes. To turn model evaluation on again for selected instances,
you can use SIGnal INSTance enable.

Timing Shell Selection
The SIGnal INSTance lst command lets you use the hardware model’s Shell Software
timing files instead of the default technology file during evaluation of the selected
instances. You can use the SIGnal INSTance nolst command to switch back to the
technology file for selected instances.

The optional -p all argument enables you to choose the type of timing shell for all
hardware models in the design, if you have at least one instance selected. For example,
you could use the following command before simulating:

sig inst lst -p all

Timing
measurement

tm [-p filename] Turns on timing measurement: returns the
actual measured delays to QuickSim II

notm Turns off timing measurement: uses the delay
values specified in the Shell Software or in the
technology file (default)

Loop mode loop Turns on loop mode: the modeling system
repeatedly plays a pattern history to the
physical device

noloop Turns off loop mode (default)

Information dump Reports all available information about the
selected instance of a hardware modeled device

lmc
[-p shell|allshell]

Reports the type of timing shell (Shell Software
or technology file) for the selected instance

vector Reports the runtime vector count of the selected
instance

Table 32: Signal Instance Command Summary (Continued)

Feature Command Description

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 255

v

QuickSim II ignores the technology files for all hardware models in the design and take
the timing (delays and timing checks) directly from the Shell Software. If you decided
you wanted to use the technology files instead for all hardware models, you could use
the following command to switch back to the default timing shell without having to
select every instance:

sig inst nolst -p all

To select Shell Software timing every time you invoke QuickSim II with a particular
design, you can create or edit a quicksim.startup file under the design viewpoint. Add
the following line to the file to directly call the function that implements this Signal
Instance command:

$signal_instances("lst", "all", "/I$1");

Substitute the instance name of any hardware modeled device for /I$1.

You can also use the actual measured delays from the device as an alternative timing
option with hardware models. For more information about this feature, refer to “Timing
Measurement” on page 257.

Performance Monitoring
You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Unknown Handling and Propagation
The unknown handling and propagation commands enable you to modify the hardware
modeling system’s default handling of device input and I/O pins that the simulator sets
to unknown.

Unknown Mapping
Since the hardware modeling system cannot present an unknown logic level to a
physical device, unknown values presented to inputs of hardware models must be
mapped to known values. The SIGnal INSTance xp, x0, x1, and xz commands map
unknowns for all instances of the selected components to the previous state, logic zero,
logic one, or high-impedance (float), respectively. By default, unknowns are mapped to
the previous state. Unknowns mapped to high-impedance are also mapped to the
previous state.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

256 Synopsys, Inc. April 2002

v

You can customize unknown handling per pin by using the -p pin_name argument. For
example, you can issue the following:

sig inst x0
sig inst x1 -p clk1

These commands map all unknowns for the selected components—except for unknowns
received on the clk1 pin—to logic zero (0). Any unknowns received on clk1 are mapped
to logic one (1).

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement, and the set_previous, set_low, set_high, and set_float attributes
of the in_pin and io_pin statements. For more information, refer to the Shell Software
Reference Manual. Note that explicit Shell Software settings override any Signal
Instance commands.

Unknown Propagation
The SIGnal INSTance propagate command turns on unknown propagation for all
instances of the selected components. The modeling system propagates the unknowns
through the model using multi-sequence pattern play. The SIGnal INSTance
nopropagate command turns off unknown propagation for all instances of the currently
selected component, which is the default behavior.

When unknown propagation is on, two pattern sequences are used by default. However,
you can specify up to twenty additional sequences with the default_propagation -p
number command, for a total of 22 sequences. You can also specify the value of the seed
for the random sequence generator with the random_seed -p seed command. The value
of the seed is 0 by default, but any number from 0 to 65,535 can be used.

For example, you can issue the following:

sig inst propagate
sig inst default_propagation -p 8
sig inst random_seed -p 7896

These commands turn unknown propagation on for all instances of the selected
components. The modeling system plays a total of ten sequences (the primary,
secondary, and eight additional sequences) per instance to the device, and uses the
random sequence seed 7,896.

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement. Note that explicit Shell Software settings override any Signal
Instance commands, except for when the SIGnal INSTance nopropagate command is
used. This exception allows the simulator to turn off unknown propagation if the
modeling system is running out of pattern memory. For more information about
unknown propagation, refer to the Shell Software Reference Manual and the LM-family
Modeler Manual or the ModelSource User’s Manual.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 257

v

Indeterminate Strength Mapping
The SIGnal INSTance is and SIGnal INSTance iz commands enable you to map
indeterminate strength pin values received on inputs of hardware models to either strong
(hard) or high-impedance (float) strengths. The modeling system treats high-impedance
strength pin values as unknowns and maps or propagates them accordingly. By default,
the system maps indeterminate strengths to strong strengths.

Test Vector Logging
The SIGnal INSTance logvectors -p filename command turns on modeling system test
vector logging for the selected instance. With test vector logging enabled, the inputs to
the device and sensed outputs from the device are stored to filename. By convention, the
filename used for the test vector output is device_name.VEC. The SIGnal INSTance
nologvectors command turns off test vector logging for the selected instance, which is
the default behavior.

For example, consider the following commands:

sig inst logvectors -p '$ASIC2/vectors/vector11.VEC'
dofile '$ASIC2/dofiles/run11.do'
sig inst nologvectors

In this example, the modeling system creates a test vector file called vector11.VEC. This
file contains the vectors played to and sensed from the selected instance during the
simulation run by the dofile. The SIGnal INSTance nologvectors command turns off the
modeling system test vector logging capability.

After logging vectors, you can replay them directly to the device and note any
discrepancies using the lm Play Vectors utility. This utility is particularly useful for
ASIC verification. For more information about ASIC verification and test vector (.VEC)
file format, refer to the LM-family Modeler Manual or the ModelSource User’s Manual.

Timing Measurement
The SIGnal INSTance tm [-p filename] command turns on the modeling system timing
measurement for the selected instance. The system then returns to the simulator the
actual measured delay values for that instance. If you provide an optional filename, the
system also saves the measured delays to a timing measurement (.TIM) file. By
convention, device_name.TIM is the filename used for the timing measurement output.

The SIGnal INSTance notm command turns off timing measurement for the selected
instance, which is the default behavior. If timing measurement is disabled, the
Technology File delays (or the Shell Software delays if SIGnal INSTance lst is
specified) are returned to the simulator.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

258 Synopsys, Inc. April 2002

v

For example, consider the following commands:

sig inst tm -p '$ASIC2/timing/timing11.TIM'
dofile '$ASIC2/dofiles/run11.do'
sig inst notm

In this example, the modeling system creates a timing measurement file called
timing11.TIM. This file contains the delays of the selected instance measured during the
simulation run created by the dofile. The SIGnal INSTance notm command turns off the
modeling system timing measurement capability.

This Signal Instance command performs a similar function to that of the lm Measure
Timing utility. Timing measurement is particularly useful for ASIC verification. For
more information about ASIC verification and timing measurement (.TIM) file format,
refer to the LM-family Modeler Manual or the ModelSource User’s Manual.

Note8
The timing measurement (.TIM) file can be converted to a Shell Software
delays (.DLY) file by using the lm Create Timing File utility. (For more
information, refer to the LM-family Modeler Manual or the ModelSource
User’s Manual.) The delays file can then be converted into a technology file,
if desired, by using the lm_model utility with the -Step Timing option.

Loop Mode
The SIGnal INSTance loop command turns on the modeling system pattern looping
capability (loop mode) for the currently selected instance. In loop mode, the modeling
system continually replays the complete pattern history of the selected instance to the
device. The SIGnal INSTance noloop command turns off pattern looping.

Pattern looping is a model development feature useful for analyzing the device behavior
and pattern history with an oscilloscope or logic analyzer connected to the device.
However, while loop mode is enabled, no other user can access the modeling system;
patterns are replayed to the selected device exclusively until loop mode is disabled. For
this reason, QuickSim II returns an error if this command is specified when more than
one user is accessing the modeling system.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 259

v

Printing Model Information
A number of Signal Instance commands are available for printing information about the
selected model instances. The SIGnal INSTance dump command prints all information
available about the currently selected instances, including:

● Instance ID

● Name of the modeling system in which the hardware model is located

● Setting for test vector logging (On or Off)

● Setting for indeterminate strength mapping (S or Z)

● Setting for Shell Software timing (On or Off)

● Model name, as specified in the Shell Software device_name

● Setting for timing measurement (On or Off)

● Setting for loop mode (On or Off)

● Runtime vector count

● Evaluation status (Enabled or Disabled)

The SIGnal INSTance lmc and SIGnal INSTance vector commands print subsets of the
information provided by SIGnal INSTance dump:

● The SIGnal INSTance lmc -p shell command prints the Shell Software timing
setting (On if you have specified SIGnal INSTance lst; Off if you have not) for the
selected instances. SIGnal INSTance lmc -p allshell prints the Shell Software timing
setting for all hardware model instances, if you have at least one instance selected. If
you do not specify one of the -p arguments, this command will print a list of the
available subcommands.

● The SIGnal INSTance vector command prints the runtime vector count of the
selected instances.

Performance Monitoring
You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

260 Synopsys, Inc. April 2002

v

Ending the Simulation Session
Termination of a normal simulation session notifies the hardware modeling system that
the simulation session has ended. All modeling system resources being used by that
simulation are then made available for other users.

If the simulation exits abnormally, “orphaned” processes may exist on the modeling
system, even though the simulation has terminated. If lmdaemon is running on your
workstation, it automatically deletes orphaned processes. You can also use the lm Abort
User utility to remove the unwanted processes manually. Both of these methods release
modeling system resources. (For more information about lmdaemon and the lm utilities,
refer to the LM-family Modeler Manual or the ModelSource User’s Manual.)

LM-family and ModelSource modeling systems support simulation save and restore
capabilities. When a save simulation state is performed, the state of all hardware models
being used by the simulation session is automatically saved into a QuickSim II save
directory. Similarly, restoring the simulation state automatically restores the state of the
model as used by the saved simulation, including all stored pattern history.

AttentionV
If you are using Shell Software that contains enhanced features—such as
model state tracking or “when” conditions—the translation to the resulting
technology file may be incomplete and contain “compromise” statements. If
you elect to use the technology file instead of the Shell Software during
simulation, the device may exhibit incorrect timing and/or behavior. To
eliminate this possibility, translate the technology file from pre-R2.0 Shell
Software, which does not contain these statements, or use the Shell Software
directly during simulation by issuing the SIGnal INSTance lst command on
the hardware model instance. For more information about this procedure,
refer to “Timing Shell Selection” on page 254.

lm_model Command Reference
The lm_model shell command registers a hardware model by invoking hardware model
registration and conversion programs.

Syntax
lm_model input_dir [output_path] [-Dir name] [-Ifc interface] [-LAbel label]

[-Mdl mdl_filename] [-Step Register|Symbol|Timing|Update] [-Replace]
[-VERBose] [-Help] [-Usage] [-VERSion] [-Old] [-LM]

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 261

v

Required Argument
input_dir Specifies the pathname to the directory containing the files to

be registered. This argument is required and must appear first.
All pathname specifications use the following location
convention:

If the pathname is relative, the input_dir is assumed to be in
the working directory, as specified by $MGC_WD. If
$MGC_WD is not set, the input_dir is assumed to be in the
current working directory.

If the pathname starts with a dollar sign ($), the input_dir is
assumed to be in the location of the location map variable
specified after the dollar sign.

If the pathname is an absolute pathname, the input_dir is
assumed to be in the location of the absolute pathname.

Optional Arguments
output_path Specifies the pathname to the directory that contains the

component information. If an output_path is not specified,
then it defaults to the parent directory of the input_dir.

-Dir name Specifies just the new name of the output component directory
within the output_path; for example, MC68020. By default,
the name is created from the base name of input_dir by
removing any leading dollar ($) characters and converting all
lowercase characters to uppercase. If the output component
directory name is the same as the input directory name,
lm_model will generate an error and fail rather than overwrite
the input directory.

-Ifc interface Specifies the component interface(s) with which to register the
model. Multiple component interfaces can be specified. By
default, the model is registered with all component interfaces.

-LAbel label Specifies the label(s) to register with the component interface.
Multiple labels can be specified. By default, the model is
registered with the $lm label, which corresponds to the
functional description.

-Mdl mdl_filename Specifies a particular model (.MDL) file within the input_dir.
By default, the system uses the model file with the same base
name as the output component directory, which is defined by
the -Dir switch.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

262 Synopsys, Inc. April 2002

v

-Step Register|Symbol|Timing|Update

Selects particular registration step(s):

- Step Register registers the model’s functional description.

- Step Symbol creates and registers the symbol.

- Step Timing creates, compiles, and registers the technology
file.

- Step Update is equivalent to -Step Register and -Step
Timing.

By default, lm_model performs all the registration steps.

-Replace Deletes the existing component directory and then recreates it.
If you try to overwrite an existing symbol without using this
switch, lm_model fails and generates an error message.

-VERBose Prints additional messages while lm_model is executing.

-Help Prints help information on each of the available options, then
immediately exits.

-Usage Expands the command line and displays each argument and
switch. After printing the usage message, lm_model
immediately exits.

-VERSion Prints the single-line version message, then immediately exits.

-Old Registers the model using the pre-V8.3 method, for
compatibility purposes.

-LM Does not affect lm_model execution. The system accepts this
argument for compatibility purposes.

Examples
The lm_model utility provides several ways of specifying input and output files and
directories. The following examples list a given input directory (model file) and desired
output component directory, and then show the lm_model command line you would use
to get this result.

Example 1
Input directory: /user/models/74ls74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

April 2002 Synopsys, Inc. 263

v

Component (output) directory: /user/models/74LS74 (default output path and
directory)

Command: lm_model 74ls74

Example 2
Input directory: /user/models/74ls74 ($MGC_WD is set to a directory other than
/user/models)

Model file: 74LS74A.MDL (different from the component name)

Component (output) directory: /user/models/74LS74 (default output path and
directory)

Command: lm_model /user/models/74ls74 -m 74LS74A

Example 3
Input directory: /user/models/74ls74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/74LS74 (default directory; non-
default path)

Command: lm_model 74ls74 /user/project_xyz

Example 4
Input directory: /user/models/74ls74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/latch_7474 (non-default path and
directory)

Command: lm_model 74ls74 /user/project_xyz -d latch_7474

tmg_to_ts Command Reference
The tmg_to_ts utility reads the Shell Software timing files to create a technology file.
Comments from the Shell Software timing statements are not copied to the technology
file. You must use the technology compiler (tc) to compile the technology file that is
created by the tmg_to_ts utility before using the technology file in QuickSim II.

In general, you should run the lm_model utility—which calls both tmg_to_ts and tc—
rather than running the stand-alone tmg_to_ts utility. If you just want to update a
model’s Technology File, you can run lm_model with the -Step Timing option. For more
information on Technology File creation, refer to “Verifying the Technology File” on
page 249.

Chapter 12: Using QuickSim II with Synopsys Models Simulator Configuration Guide

264 Synopsys, Inc. April 2002

v

Syntax
tmg_to_ts input_dir [-Out filename] [-Replace] [-Help] [-Usage] [-Version]

Required Arguments
input_dir Specifies the pathname to the Shell Software timing files that

you want to convert. If the input_dir is not a full path, it is
assumed to be relative to the current directory, specified by
$MGC_WD.

Optional Arguments
-Out filename Specifies an alternative filename for the output file. By

default, the output file is called technology.ts. All pathname
specifications use the following location convention:

If the pathname is a relative pathname, the output file is placed
relative to the component directory.

If the pathname starts with period and slash (./), the output file
is placed in the current working directory as specified by
$MGC_WD, if it exists.

If the pathname starts with a dollar sign ($), the output file is
placed in the location of the location map variable specified
after the dollar sign.

If the pathname is an absolute pathname, the output file is
placed in the location of the absolute pathname.

-Replace Replaces the existing contents of the output directory with the
new output.

-Help Prints help information on each of the available options, then
immediately exits.

-Usage Expands the command line and displays each argument and
switch. After printing the usage message, tmg_to_ts
immediately exits.

-Version Prints the single-line version message, then immediately exits.

April 2002 Synopsys, Inc. 265

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

13
Using VERA with Synopsys

Models

Overview
VERA is a testbench automation tool that works as a front-end to Verilog or VHDL
simulators. For general information on VERA, refer to:

http://www.synopsys.com/products/vera

The procedures are organized into the following major sections:

● “Using VERA with FlexModels” on page 265

● “Using VERA with MemPro Models” on page 276

Using VERA with FlexModels
This section explains how to use VERA with FlexModels, including a special section on
how to use VERA with FlexModels with VCS. This information is presented in the
following sections:

● “Using FlexModels with the VERA UDF Interface” on page 266

● “Creating a VERA Testbench” on page 268

● “VERA Testbench Example” on page 269

● “Incorporating FlexModels in a VERA Testbench” on page 271

● “Using VERA with VCS” on page 273

http://www.synopsys.com/products/vera

266 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Using FlexModels with the VERA UDF Interface
FlexModels use the VERA user-defined functions (UDF) interface. UDFs are “bodies”
(written in C) of VERA methods. They are much like Verilog, PLI, or VHDL functions.
UDFs must be declared in a VERA header (.vrh) file to be usable by VERA programs.
They must also be compiled and linked into the simulator executable.

To use FlexModels with VERA, you need to build the VERA dynamic library. Building
the VERA dynamic library is a two step process:

1. Compile the vera_user.c file to create vera_user.o.

2. Link the object file for the simulator you are using (found in Table 34 on page 267),
where the object file contains the compiled code for the UDF functions used by
FlexModels.

For more information on building the VERA dynamic library, refer to the UDF
information in the VERA User Guide.

Attention
If you are building the VERA dynamic library for Verilog on Solaris, do not
use the -B symbolic. Using this switch results in unresolved symbol
warnings.

Table 33 lists files you will need in order to build the VERA dynamic library.
:

Table 33: FlexModel Files Used with the VERA UDF Interface

File Name Description Location

vera_user.c Source file containing table of UDF
functions used by FlexModels.

$LMC_HOME/sim/vera/src

vera_slm_pli.o Object file for VCS, NC-VHDL, and
Verilog-XL. This file contains the compiled
code for the UDF functions used by
FlexModels.

$LMC_HOME/lib/platform.lib

vera_slm_mti.o Object file for MTI Verilog and MTI
VHDL. This file contains the compiled code
for the UDF functions used by FlexModels.

$LMC_HOME/lib/platform.lib

vera_slm_vhpi.o Object file for Scirocco. This file contains
the compiled code for the UDF functions
used by FlexModels.

$LMC_HOME/lib/platform.lib

libfmi_ar.a Object file for NC Verilog. This file
contains the compiled code for the UDF
functions used by FlexModels.

$LMC_HOME/lib/platform.lib

April 2002 Synopsys, Inc. 267

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Attention
You need to re-build the VERA dynamic library whenever a new version of
VERA is introduced.

Linking VERA with the Simulator
For details on how to link VERA with individual simulators using the PLI, refer to the
VERA User Guide.

Table 34 details which object files are needed on the link line for the simulator you are
using.

lmtv.o This file contains the compiled code for the
UDF functions used by SWIFT.

$LMC_HOME/lib/platform.lib

slm_pli.o This file contains the compiled code for the
UDF functions used by Flex.

$LMC_HOME/lib/platform.lib

Table 34: Link Line Object Files

Simulator Object Files on the Link Line

VCS vera_slm_pli.o and vera_user.o

Verilog-XL lmtv.o, slm_pli.o, and vera_user.o

NC Verilog lmtv.o, slm_pli.o, and vera_user.o

MTI Verilog vera_slm_mti.o and and vera_user.o

MTI VHDL vera_slm_mti.o and vera_user.o

NC VHDL use vera_user.o, sim_user.o, vera_slm_pli.o, and libfmi_ar.a
See the Note below this table for special instruction on using NC VHDL.

Scirocco vera_user.o and vera_slm_vhpi.o

Table 33: FlexModel Files Used with the VERA UDF Interface

File Name Description Location

268 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Note
If you are using NC VHDL, you need to modify the
$VERA_HOME/lib/nc_vhdl/sim_user.c by

1) Adding the following line to the external declarations:
extern fmiModelTableT CpipeModelTable;

2) Adding the following line to the fmiLibrary Table:
{ "Cpipe", CpipeModelTable },

3) Compiling sim_user.c file to create the sim_user.o file.

Creating a VERA Testbench
To create a VERA testbench to use with FlexModels, follow these steps:

1. Include the header files.
Table 35 lists the two required header files.

2. Create an instance of the ModelFx (or ModelFz) class.
Before using FlexModel commands, you must create an instance of the ModelFx or
ModelFz class in the VERA testbench.

3. Send commands to a FlexModel through the model’s methods.
In VERA Command Mode, you can use the same FlexModel features and
commands that you use in HDL Command Mode. There are a few differences in
command usage, however; refer to “Command Syntax Differences in VERA
Command Model” in the FlexModel User’s Manual. For details on specific
commands, refer to “FlexModel Command Reference” in the FlexModel User’s
Manual.

Table 35: VERA Header Files

File Name Description Location

flexmodel_pkg.vrh Contains definitions for generic constants
useful in FlexModel commands.

$LMC_HOME/sim/vera/src

model_pkg.vrh Contains definitions for model class and
model-specific constants useful in
FlexModel commands.

$LMC_HOME/models/model
_fx/model_fxversion/src/vera

April 2002 Synopsys, Inc. 269

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

VERA Testbench Example
The following example shows how to incorporate FlexModels in a VERA testbench.

#include <vera_defines.vrh> // Vera Defines
#include “flexmodel_pkg.vrh” // FlexModel generic constants defined
here
#include “model_pkg.vrh” // Model class, and model-specific
constants defined here

program model_test
{

 /*
 * Create an instance of the model, argument 1 to the
 * constructor is the string name of the instance in
 * top level Verilog/VHDL testbench.
 * argument 2 is the path to the models clock pin
 * Here the assumption made is that the model is
 * instantiated in a Verilog testbench
 * Since the constructor has been called, this will
 * return at the next posedge of u1.CLK.
 */
 ModelFx model_1 = new(“modelInstName_1”, “u1.CLK”);

 // Create another instance, since time has already elapsed
 // above, this call will return immediately.
 ModelFx model_2 = new(“modelInstName_2”, “u2.CLK”);

 // NOTE : This example assumes that the aguments to the
 // methods have been defined in the VERA testbench.

 // Check that no errors have occured
 if (model_1.showStatus() == FLEX_VERA_FATAL ||
 model_2.showStatus() == FLEX_VERA_FATAL) {

// Errors exist, take suitable action
 }

 fork
 {
 // Send commands to the FlexModel Instance 1

 // Note that the id is encapsulated in the model
 // class and thus is not an argument to the commands.

 model_1.write(address1, data1, ‘FLEX_WAIT_F, status);
 model_1.write(address2, data2, ‘FLEX_WAIT_F, status);
 model_1.write(address3, data3, ‘FLEX_WAIT_F, status);

270 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

 model_1.write(address4, data4, ‘FLEX_WAIT_F, status);

 // Perform a read cycle
 model_1.read_req(address1, ‘FLEX_WAIT_F, status);
 model_1.read_req(address2, ‘FLEX_WAIT_F, status);
 model_1.read_req(address3, ‘FLEX_WAIT_F, status);
 model_1.read_req(address4, ‘FLEX_WAIT_F, status);

 // Get the read results back to the testbench
 model_1.read_rslt(address1, tag, result1, status);
 model_1.read_rslt(address2, tag, result2, status);
 model_1.read_rslt(address3, tag, result3, status);
 model_1.read_rslt(address4, tag, result4, status);

 // Synchronize Instance 1 & 2

 // Note that the generic commands are also sent to
 // through the model’s instance.

 model_1.synchronize(2, “synch_2”, ‘timeout, status);
 }
 {
 // Send commands to the FlexModel Instance 2
 model_2.write(address1, data1, ‘FLEX_WAIT_F, status);
 model_2.write(address2, data2, ‘FLEX_WAIT_F, status);
 model_2.write(address3, data3, ‘FLEX_WAIT_F, status);

 // Synchronize Instance 1 & 2
 model_2.synchronize(2, “synch_2”, ‘timeout, status);
 }
 join // End of fork

} // End of program model_test

April 2002 Synopsys, Inc. 271

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Incorporating FlexModels in a VERA Testbench
To incorporate FlexModels in your VERA testbench, use the following procedure. For
more information on creating VERA interface files and using models in VERA, refer to
the VERA User Guide.

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with a
new model version. Table 36 lists the files that flexm_setup copies to your working
directory.

2. Set the VERA_HOME variable to point to the location of your VERA
installation directory:

% setenv VERA_HOME path_to_VERA_installation

3. Compile the VERA source files in the LMC_HOME tree.
You need to compile three files: lstmodel.vr, swiftmodel.vr, and flexmodel_pkg.vr.
The following is a sample compile script:

% vera -cmp -I$LMC_HOME/sim/vera/src/lstmodel.vr
% vera -cmp -I$LMC_HOME/sim/vera/src/swiftmodel.vr
% vera -cmp -I$LMC_HOME/sim/vera/src/flexmodel_pkg.vr

If you are using VERA version 4.0 or earlier, you must compile the
flexmodel_pkg.vr object with a “VERA_4” preprocessor flag. Your compile line
would therefore look like the following example:

% vera -cmp -I$LMC_HOME/sim/vera/src/flexmodel_pkg.vr -DVERA_4

4. Compile the model’s VERA source file, model_pkg.vr
This file includes the flexmodel_pkg.vrh file, but the VERA compiler needs to find
the other header files too; therefore, you must include the path to the other header
files. The following is a sample compile script:

% vera -cmp -I$LMC_HOME/sim/vera/src -Iworkdir/src/vera \
workdir/src/vera/model_pkg.vr

Table 36: FlexModel VERA Files

File Name Description Location

model_pkg.vr Contains FlexModel VERA class and
method definitions.

workdir/src/vera

model_pkg.vrh Contains model definitions for use in
VERA testbenches.

workdir/src/vera

272 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Note
If you are building the VERA dynamic library on Solaris, do not use the -B
symbolic switch. Using this switch results in unresolved symbol warnings.

5. Create a VERA testbench.
For details, refer to “Creating a VERA Testbench” on page 268.

6. Compile the VERA testbench.
Although you need to include only the flexmodel_pkg.vrh and model_pkg.vrh files
in your VERA testbench, the VERA compiler needs to find the other header files
too; therefore, you need to include the path to the VERA header files included in
LMC_HOME. The following is a sample compile script:

% vera -cmp -I$LMC_HOME/sim/vera/src -I/workdir/src/vera \
vera_testbench.vr

This step produces two files: testbench.vro and testbench.vshell.

7. Run the VERA testbench in a Verilog or VHDL simulation environment.
When you run the Verilog or VHDL simulator, the VERA simulator needs to load
your compiled VERA object files. You also need to load the following VERA object
files:

• lstmodel.vro

• swiftmodel.vro

• flexmodel_pkg.vro

• model_pkg.vro

• testbench.vro

For more information on loading VERA object files, refer to the VERA User Guide.

Attention
To prevent your simulation from ending prematurely in cases where the
VERA testbench completes before the Verilog/VHDL testbench, use the
+vera_finish_on_end switch on your simulator invocation line.

April 2002 Synopsys, Inc. 273

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Using VERA with VCS
The following steps show how to use FlexModels with VERA and VCS. This is just one
way of using the VERA simulator's UDF, multiple .vro files, and so on. For more
information, refer to the VERA User Guide. All steps shown here are also documented in
that manual.

1. Build vera_local.dl:
❍ Compile $LMC_HOME/sim/vera/src/vera_user.c

HP-UX

% /bin/c89 -c +z -I$VERA_HOME/lib \
$LMC_HOME/sim/vera/src/vera_user.c

Solaris

% cc -K pic -c -I$VERA_HOME/lib \
$LMC_HOME/sim/vera/src/vera_user.c

❍ Link in $LMC_HOME/lib/platform.lib/vera_slm_pli.o and vera_user.o during
the link stage of building the vera_local.dl.

HP-UX

% ld -b +e syssci_prod_entry +e errno -o vera_local.dl \
vera_user.o \
$LMC_HOME/lib/hp700.lib/vera_slm_pli.o \
$VERA_HOME/lib/vlog/libvlog_br.a \
$VERA_HOME/lib/libVERA.a -lm -lc

Solaris

% ld -G -z text -o vera_local.dl \
vera_user.o \
$LMC_HOME/lib/sun4Solaris.lib/vera_slm_pli.o \
$VERA_HOME/lib/vlog/libvlog_br.a \
$VERA_HOME/lib/libVERA.a

2. Set the SSI_LIB_FILES variable to point to the vera_local.dl that you built in
Step 1:

% setenv SSI_LIB_FILES ./vera_local.dl

Note
If you are using multiple dynamic libraries (.dl files), use a colon-separated
list to specify the search path.

274 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

3. Modify the simv build.
Modify the simv build by adding the following:

❍ -P ${VERA_HOME}/lib/vera_pli_dyn.tab

❍ ${VERA_HOME}/lib/libSysSciTask.a

❍ the vshell file created when you compiled the VERA testbench

Note
For HP-UX, add -LDFLAGS -E.

For more information, refer to the installation and setup chapter in the VERA User
Guide.

With VERA 5.0 and VCS 6.0.1 two new VCS compile switches, -vera and
-vera_dbind, have been added. These switches automatically link into the VERA
library and include platform specific VCS compiler switches. You need to use the
+vera_udf=vera_local.dl switch when compiling with –vera or –vera_dbind. For
details please refer to VERA 5.0 Release Notes.

The -vera switch can only be used for designs that do not use dynamic binding.
This means that the system clock has to be used in the FlexModel VERA interface.
To use the system clock, the model constructor must leave out the clk_path
argument and default to the system clock

(new(InstName, “”))

If a direct connection to the HDL clock is desired you must use the –vera_dbind
switch and specify the full path to the clock. The VERA interface then uses the
signal_connect function to perform dynamic binding.

The model’s VERA interface will issue a warning, informing you that you have
specified a clock instead of using the default system clock. This warning can be
switched off by compiling the flexmodel_pkg.vr file with the -DNO_WARNING
preprocessor flag.

4. Create a file for VERA to load at runtime.
This step assumes that the vro files are in the current working directory. You need to
create a file that looks like the following example. The file name for this example
file is files_to_load:

./lstmodel.vro

./swiftmodel.vro

./flexmodel_pkg.vro

./model_pkg.vro

./testbench.vro

April 2002 Synopsys, Inc. 275

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

For more information, refer to the documentation on vera_mload in the VERA User
Guide.

5. Run the simv executable
Add the +vera_mload switch as shown in the following example:

% simv +vera_mload = files_to_load +vera_finish_on_end

Note
The +vera_finish_on_end switch prevents your simulation from ending
prematurely in cases where the VERA testbench completes before the
Verilog testbench.

276 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Using VERA with MemPro Models
This section contains the following topics:

● “Mempro-VERA Overview” on page 276

● “Adding MemPro Commands to the VERA Testbench” on page 283

● “Building the VERA UDF Dynamic Library” on page 287

● “Compiling the VERA Source Files” on page 288

● “Building the Simulator Executable” on page 289

● “Running the Simulation” on page 290

Mempro-VERA Overview

The MemPro-VERA Interface
MemPro has an object-oriented VERA command interface you can use to control
MemPro models from VERA, thereby retaining the benefits of the VERA verification
language while using the MemPro testbench commands. For information abut the
MemPro VERA testbench commands, see the MemPro User’s Manual.

Figure 18 shows the MemPro-VERA interface.

April 2002 Synopsys, Inc. 277

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Figure 18: The MemPro-VERA Interface

MemPro-VERA
Interface files
(mempromodel.vro,
lstmodel.vro)

VERA testbench
(vera_testbench.vro)

VERA Dynamic Library with
UDF Table (vera_local.dl)

VERA
Virtual
Machine

HDL
Simulator

MemPro
HDL
Model

VERA-generated
HDL Shell MemPro

Binary
Core

Top-level HDL
testbench file

278 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

MemPro VERA Classes
VERA implements a number of useful features of an object-oriented language. The
MemPro-VERA interface provides a MemPro class, which contains public method
functions so that a VERA testbench can access MemPro models. The MemPro class
inherits the base class LstModel features.

Figure 19 shows the model hierarchy.

Figure 19: VERA Model Class Hierarchy

LstModel is an abstract or virtual class and cannot be instantiated directly in VERA
testbenches. Only an instance of a MemPro class can be created in a VERA Testbench.

The commands used to control MemPro models are public methods of the MemPro
class. You can send MemPro models commands from VERA only through an instance
of the MemPro class.

The following section refers often to user-defined functions (UDF). UDFs are “bodies”
(written in C) of VERA methods. They are much like Verilog, PLI, or VHDL functions.
UDFs must be declared in a VERA header (.vrh) file to be usable by VERA programs.
They must also be compiled and linked into the simulator executable.

Key MemPro-VERA Files
This section lists and describes files that are necessary for performing a VERA
simulation. Some are provided by Synopsys and are installed in your LMC_HOME
directory; others you must create.

Table 37 on page 279 lists and describes the key MemPro-VERA files.

LstModel

MemPro
Model

April 2002 Synopsys, Inc. 279

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Table 37: Key MemPro-VERA Files

Filename Description Origin

vera_user.ca A source file containing a table of
UDF functions used by MemPro
models. You compile this for use
in building the VERA dynamic
library.

Provided in your
$LMC_HOME/sim/vera/src
directory.

vera_user.o An object file containing a table
of UDF functions used by
MemPro models. You use this in
building the VERA dynamic
library.

You create this file when you
compile vera_user.c.

vera_slm_pli.o An object file for Synopsys VCS
and Cadence Verilog-XL. This
file contains the compiled code
for the UDF functions used by
MemPro models. You use this in
building the VERA dynamic
library.

Provided in your
$LMC_HOME/lib/platform.lib
directory.

vera_slm_mti.o An object file for MTI
ModelSim. This file contains the
compiled code for the UDF
functions used by MemPro
models. You use this in building
the VERA dynamic library.

Provided in your
$LMC_HOME/lib/platform.lib
directory.

vera_slm_vhpi.o An object file for Scirocco. This
file contains the compiled code
for the UDF functions used by
MemPro models. You use this in
building the VERA dynamic
library.

Provided in your
$LMC_HOME/lib/platform.lib
directory.

vera_dyn_library This is the VERA dynamic
library, which is loaded during
simulation. For instructions on
loading this library, see the VERA
User Guide.

You create this file when you
build the VERA dynamic library;
the name is arbitrary (for
example, vera_local.dl)

model.{v, vhd} The MemPro model file for the
model you want to instantiate.

You create this file using
MemSpec and MemGen,
according to instructions in the
MemPro User’s Manual.

280 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

lstmodel.vrh A file containing the external
class declaration for the LstModel
class. This file is included in the
mempromodel.vrh file.

Provided in your
$LMC_HOME/sim/vera/src
directory.

mempromodel.vrh The mempromodel header file.
Contains definitions for the
MemPro model class and for
model-specific constants useful in
MemPro commands. You include
this header in your VERA
testbench.

Provided in your
$LMC_HOME/sim/vera/src
directory.

lstmodel.vr A VERA source file containing
the LstModel class definition.
You compile this file for use
during the simulation.

Provided in your
$LMC_HOME/sim/vera/src
directory.

mempromodel.vr A VERA source file containing
testbench commands, along with
the MemPro model class
definition for model instantiation.
You compile this file for use
during simulation.

Provided in your
$LMC_HOME/sim/vera/src
directory.

vera_testbench.vr The user’s VERA testbench file,
which creates MemPro class
instances and calls the MemPro
testbench methods.You compile
this file for use during simulation.

You create this file with a text
editor.

lstmodel.vro The object file after compiling
lstmodel.vr. This file is used
during simulation.

You create this file when you
compile lstmodel.vr.

mempromodel.vro The object file after compiling
mempromodel.vr. This file is used
during simulation.

You create this file when you
compile mempromodel.vr.

vera_testbench.vro The object file after compiling
vera_testbench.vr. This file is
used during simulation.

You create this file when you
compile the VERA testbench file.

vera_shell.{v, vhd} This file is the mediator between
the model and VERA, and is used
during Verilog or VHDL
compilation.

This file is generated by VERA
when you compile your testbench
file.

Table 37: Key MemPro-VERA Files (Continued)

Filename Description Origin

April 2002 Synopsys, Inc. 281

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Prerequisites to Using the VERA-MemPro Interface
The discussion of the MemPro-VERA design flow assumes that you have already
generated your memory models, have instantiated the models in your design, and have
created both the top-level HDL testbench and the VERA testbench.

MemPro-VERA Design Flow
Figure 20 on page 282 shows the MemPro-VERA design flow. First, add MemPro
commands to the VERA testbench, vera_testbench.vr. Next, to be able to use MemPro
models with the VERA User-Defined Functions (UDF) interface, you must build a
simulator-specific VERA dynamic library, to be linked into your simulator executable.
Next, you compile the VERA testbench, along with the Synopsys-supplied source files
lstmodel.vr and mempromodel.vr, to obtain object files *.vro. In addition, the compile
process generates the vera_shell.{v, vhd} file.

Next, you build the simulator executable, linking in the HDL files (model.{v, vhd}, the
top-level HDL testbench, and vera_shell.{v, vhd}). Finally, you run the simulation.

design_testbench.top.{v, vhd} The top-level HDL testbench.
This file is used during Verilog or
VHDL compilation.

Create this file with a text editor,
according to instructions in
“Building the Simulator
Executable” on page 289.

design.{v, vhd} Your design. You created these files in order to
build your design.

files_to_load This file contains the pathnames
of the VERA object files
lstmodel.vro, mempromodel.vro,
and design_testbench.vro.The
simulator looks in this file for
VERA objects to load during
runtime.

You create this file in a text editor.
The name is arbitrary.

a. A vera_user.c file also exists in $VERA_HOME, but does not declare the MemPro and LstModel
UDF functions and does not work with MemPro. If you use a vera_user.c file other than the one
provided in $LMC_HOME, make sure you include the function declarations found in the
$LMC_HOME version.

Table 37: Key MemPro-VERA Files (Continued)

Filename Description Origin

282 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Figure 20: Mempro-VERA Design Flow

Add MemPro Commands to
the VERA Testbench

Build the VERA UDF
Dynamic Library

model.{v, vhd}

vera_testbench.vr

lstmodel.vr
mempromodel.vr

vera_testbench.vro

design_testbench.top.{v, vhd}

Build the Simulator
Executable

vera_slm_pli.o | vera_slm_mti.o |

vera_dyn_lib

lstmodel.vro
mempromodel.vro

files_to_load

vera_slm_vhpi.o

vera_user.o

vera_shell.{v, vhd}

vera_shell.{v, vhd}

Run the
Simulation

vera_testbench.vr

vera_testbench.vr

vera_dyn.lib will be
dynamically loaded

Compile the
VERA Source

April 2002 Synopsys, Inc. 283

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

Adding MemPro Commands to the VERA Testbench
The following steps describe how to add MemPro commands to a VERA testbench so
that you can use it with MemPro models.

1. Open your VERA testbench in a text editor.

2. In order to include the MemPro class in the mempromodel.vrh file, add the line

#include "mempro model.vrh"

after the line

#include <vera_defines.vrh>

3. Create an instance of the MemPro class for each MemPro model in your design.

In order to use the MemPro class methods, you must use the “new” constructor to
create a MemPro object that maps to a MemPro model instance in your HDL
design. The “new” constructor expects one integer argument, the MemPro model
instance ID, which is the numeric instance ID given to the MemPro model (in the
Verilog or VHDL testbench). The constructor uses this argument to get an instance
handle for the MemPro model. If the instance ID passed is invalid, the model issues
an error message and sets a flag in the class indicating the severity of the error.

Note
Always call inst.showStatus() after inst = new (inst_id); to ensure that the
MemPro class constructor worked properly and that you provided the ID of
a MemPro model.

The following example creates an instance of the VERA MemPro object connected
to the HDL model with an instance ID of 67, and checks for errors.

// 67 is the model instance id, defined in the
// top-level HDL testbench.
MemPro mem1 = new(67);
if (mem1.showStatus()!= SLM_TESTBENCH_SUCCESS){

//Error handling
exit(1);

}

You can then call MemPro testbench methods for MemPro object “mem1”.

284 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

4. Send commands to a MemPro model through the model object’s testbench methods.

The VERA testbench methods are similar to the C testbench functions. However,
there are some differences in the way they are called. The VERA/Mempro
testbench interface is implemented using the object-oriented features of VERA.
The testbench functions are available as methods of the MemPro class.

The following example sets the message level to issue all messages.

mem1.set_msg_level(SLM_ALL_MSGS, status);

Note that the method does not take the model instance ID as an argument. The
mem1 object stores its instance ID when it is constructed and therefore does not
need the instance ID when any of the testbench methods are called.

For details on testbench setup, see the VERA User Guide.

VERA Testbench Example
The following example shows MemPro models controlled from a VERA testbench.

#define OUTPUT_EDGE PHOLD
#define OUTPUT_SKEW #1
#define INPUT_EDGE PSAMPLE

#include <vera_defines.vrh>
#include "MemSpec1.if.vrh"
#include "mempromodel.vrh"

program MemSpec1_test
{ // start of top block

 // global variables
 integer data_width, addr_width, status;
 string instance_name, class_name;
 bit[2047:0] tData;
 integer msgLevel;

 // MemPro instance variable
 MemPro mem1;

 //// Start of MemSpec1_test ////

// Create an instance of the MemPro model with model_id = 5
mem1 = new(5);
if (mem1.showStatus()!= SLM_TESTBENCH_SUCCESS){

printf (“Error: failure instantiating MemPro Model/n”);
exit (1);

}

April 2002 Synopsys, Inc. 285

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

 // Retrieve the instance info
 mem1.instance_info(data_width, addr_width, instance_name,

 class_name, status);
printf("instance_info status = %d\n", status);
if (status == SIM TESTBENCH_SUCCESS) {

printf("Data_width = %d\n", data_width);
printf("Addr_width = %d\n", addr_width);
printf("Instance_name = %s\n", instance_name);
printf("Class_name = %s\n", class_name);

}
else {

printf ("Error: Could not set info for mem1\n");
exit(.);
}
// Set the message level

 mem1.set_message_level(SLM_ALL_MSGS, status); }
 printf(" Set msg level status = %d\n", status);

 // Retrieve the message level
 mem1.get_message_level(msgLevel, status);
 printf(" Get msg level status = %d\n", status);
 printf(" msg level = %d\n", msgLevel);

if (msgLevel != SLM_ALL_MSGS) {
printf("Error: incorrect message level returned - %d\n",
 msgLevel);

 }

 // Poke some values into memory
 mem1.poke(128'h00, 66'h1f, status);
 mem1.poke(128'hFF, 66'hff, status);

 // Load a memory image file
 mem1.load("./memory_images/sram1.mif", status);

 // Peek at some memory locations
 mem1.peek(128'hFF, tData, status);
 printf(" Peek status = %d\n", status);
 printf(" Peek data = %h\n", tData);

 mem1.peek(128'h00, tData, status);
 printf(" Peek status = %d\n", status);
 printf(" Peek data = %h\n", tData);

 // Unload part of the memory
 mem1.unload(128'ha0, 128'hff, status);

 // Dump the memory contents in Verilog format

286 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

 mem1.dump("./memory_images/sram2.mif", `SLM_FMT_VLOG, 128'h00,
128'hffff, status);

 printf(" Dump status = %d\n", status);
} // end of program MemSpec1_test

A top-level HDL testbench file is required to connect your VERA testbench to the
MemPro HDL model. The following two VERA testbench examples show a VERA
testbench paired with a Verilog testbench top module and a VERA testbench paired with
a VHDL testbench top module.

VERA Testbench Paired with Top-level Verilog Testbench
1. Top-level Verilog Testbench Example

module top;
 .
 .
 .
StaticRam U1 (.io(io), .we(we), .ce(ce), .oe(oe), .a(a));

defparam
 U1.model_id = 5; //set ID of U1

2. VERA Testbench Example

program model_test {
MemPro inst1;

inst1 = new(5); // inst1 corresponds to U1 in Verilog testbench

if (inst1.showStatus()!= SLM_TESTBENCH_SUCCESS) {

//Error handling

}

}

April 2002 Synopsys, Inc. 287

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

VERA Testbench Paired with Top-level VHDL Testbench
1. Top-level VHDL Testbench Example

entity top if end top;

architecture test of top is
 .
 .
 .
U1 : StaticRam
 generic map (model_id => 5) // set ID of U1
 port map (

io => io
we => we
ce => ce
oe => oe
a => a
);

2. VERA Testbench Example

program model_test {
MemPro inst1;

inst1 = new(5); // inst1 corresponds to U1 in VHDL code

if (inst1.showStatus()!= SLM_TESTBENCH_SUCCESS){

//Error handling

}

}

Building the VERA UDF Dynamic Library
The MemPro VERA testbench interface accesses MemPro internal testbench commands
via the VERA User-Defined Functions (UDF) interface. In order to use MemPro
models with VERA, you must build a dynamic library that contains the VERA UDF
declarations for MemPro.

When building the VERA dynamic library, you compile the vera_user.c file, and link a
Synopsys-supplied object file (vera_slm_pli.o, vera_slm_mti.o, or vera_slm_vhpi.o) for
the simulator you are using. For information about other simulators, see the VERA User
Guide.

The following are VERA dynamic library build examples for VCS 6.0 with VERA 5.0.

288 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Solaris
cc -Kpic -c -I. -I$VERA_HOME/lib \

${LMC_HOME}/sim/vera/src/vera_user.c

ld -G -z text -o ./vera_local.dl ./vera_user.o \
${LMC_HOME}/lib/sun4Solaris.lib/vera_slm_pli.o \
-lsocket -lnsl -lintl -lc -ldl

HP-UX
c89 -c +z -I. -I$VERA_HOME/lib \

${LMC_HOME}/sim/vera/src/vera_user.c

ld -b +e syssci_prod_entry +e errno \
-o ./vera_local.dl ./vera_user.o \
$VERA_HOME/lib/libVERA.a -lc -lm

Linux
gcc -fpic -c -I. -I$VERA_HOME/lib \

${LMC_HOME}/sim/vera/src/vera_user.c

ld -shared -Bdynamic -o vera_local.dl \
${LMC_HOME}/lib/x86_linux.lib/vera_slm_pli.o \
vera_user.o

Compiling the VERA Source Files
MemPro provides VERA source files that contain the classes and methods from the
MemPro testbench interface. You must compile these files, along with your VERA
testbench that uses these methods, into object files (.vro) that are loaded by the simulator
at runtime.

To compile the required VERA source files follow these steps:

1. Compile the VERA source files for the MemPro/VERA Testbench Interface.

You need to compile two files: lstmodel.vr and mempromodel.vr. The following is
a sample compile script:

vera -cmp $LMC_HOME/sim/vera/src/lstmodel.vr \
-I$LMC_HOME/sim/vera/src

vera -cmp $LMC_HOME/sim/vera/src/mempromodel.vr \
-I$LMC_HOME/sim/vera/src

April 2002 Synopsys, Inc. 289

Simulator Configuration Guide Chapter 13: Using VERA with Synopsys Models

2. Compile the VERA testbench.

You also need to include the path to the VERA header files in LMC_HOME. The
following is a sample compile script:

vera -cmp vera_testbench.vr -I$LMC_HOME/sim/vera/src

MTI ModelSim users should add the -mti switch. Scirocco users should add the -sro
switch. An example for MTI is

vera -cmp -mti vera_testbench.vr -I$LMC_HOME/sim/vera/src

For details on compiling VERA source files with different simulators, see the VERA
User Guide.

Building the Simulator Executable
To build a simulator executable, follow these steps.

1. Optionally, create a load file that contains the pathnames of the VERA object files to
be loaded during simulation, as in the following example:

./lstmodel.vro

./mempromodel.vro

./vera_testbench.vro

Alternatively, you can enter the names of the files to be loaded, when you invoke the
command to build the simulator. For details on loading VERA object files, see the
VERA User Guide.

2. Build the executable.

An example for VCS 6.0 commands, using files built with VERA 5.0:

vcs -o simv \
-vera \
+vera_mload=files_to_load \
./vera_testbench.test_top.v ./MemPro_model.v \
./vera_testbench.vshell \
$LMC_LIB_DIR/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src

where

on Solaris:
LMC_LIB_DIR = $LMC_HOME/lib/sun4Solaris.lib

on HP-UX:
LMC_LIB_DIR = $LMC_HOME/lib/hp700.lib

on Linux:
LMC_LIB_DIR = $LMC_HOME/lib/x86_linux.lib

290 Synopsys, Inc. April 2002

Chapter 13: Using VERA with Synopsys Models Simulator Configuration Guide

Running the Simulation
Refer to the following examples for simulating with your VERA testbench. For
information about using VERA with different simulators, see the VERA User Guide.

An example for VCS 6.0 commands, using files built with VERA 5.0:

simv +vera_udf=./vera_local.dl

Simulator Configuration Guide Appendix A: LMTV Command Reference

April 2002 Synopsys, Inc. 291

v

A
LMTV Command Reference

Overview
LMTV is a PLI application that is used to interface SmartModels and FlexModels with
Verilog-XL, NC-Verilog, and MTI Verilog. Note that VCS uses the SWIFT interface
and not LMTV. You can control the features of the LMTV interface by using:

● “LMTV Command Line Switches” on page 291

● “LMTV Commands” on page 293

LMTV Command Line Switches
LMTV command line switches have a session-wide scope that impacts all SmartModel
instances. Notice that the +laiobj switch, used by the LAI interface, is not used in either
mode of the LMTV interface. Following are brief descriptions for each of the command
line switches that you can use with the LMTV interface:

+notimingchecks Disables timing checks (for example, setup and hold
times) and their accompanying messages. The default
is to perform the timing checks.

+[min | typ | max]delays Specifies a single delay range for all SmartModel
instances. The default is to use the delay range in the
SmartModel’s DelayRange or RANGE attributes.

+lmudtmsg or +laiudtmsg Generates a list of the timing files loaded at simulation
startup. This is equivalent to setting the command
channel command TraceTimeFile to ON. The default
is not to list the timing files. For more information
about the command channel. refer to the SmartModel
Library User’s Manual.

Appendix A: LMTV Command Reference Simulator Configuration Guide

292 Synopsys, Inc. April 2002

v

+lmoldstr Maps all SmartModel Library signal strengths to
“strong” for all output events that have resistive
strength. The default is to use resistive strength to
reflect the true state of the SWIFT pin. Use this switch
if you have a design that was created in the Verilog-XL-
specific SmartModel Library environment and you
want simulation conditions to match the Verilog-XL-
specific SmartModel Library.

+lmoldtrans Indicates that the historic style is to be used for
transcribing messages. The historic style message
contains references only to timing version names and
does not specify any time units. The default is that
messages contain references to both timing version
names and model names. Timing values are in
nanoseconds (ns). Use this switch if you want to match
the Verilog-XL-specific SmartModel Library
simulation conditions.

+lmresstr Disables mapping of SmartModel Library signal
strengths to “strong” strength, even if a historic model
model.v file (vshell) is detected. Use this switch if you
want your historic-mode design to use true resistive
strengths. This switch only works with the SWIFT
interface.

Simulator Configuration Guide Appendix A: LMTV Command Reference

April 2002 Synopsys, Inc. 293

v

LMTV Commands
LMTV commands are predefined tasks that you place within your testbench or design.
LMTV commands all begin with an $lm_ prefix. Some of them have historic
counterparts, which begin with an $lai_ prefix. You can use any or all commands in
either the SWIFT or the Historic SmartModel modes, except for the
$lm_monitor_vec_map() command, which can be used only in SWIFT SmartModel
mode.

Note8
The $lai_ commands are provided to support older designs. Therefore, you
do not have to convert $lai_ commands to $lm_ commands. However,
when starting a new design it is best to use the $lm_ commands and not the
$lai_ commands.

Here is a list of the LMTV interface commands:

● “$lm_command() or $lai_command()” on page 294

● “$lm_dump_file() or $lai_dump_file()” on page 295

● “$lm_help()” on page 296

● “$lm_load_file() or $lai_load_file()” on page 297

● “$lm_monitor_enable() or $lai_enable_monitor()” on page 298

● “$lm_monitor_disable() or $lai_disable_monitor()” on page 298

● “$lm_monitor_vec_map() and $lm_monitor_vec_unmap()” on page 300

● “$lm_status() or $lai_status()” on page 302

Appendix A: LMTV Command Reference Simulator Configuration Guide

294 Synopsys, Inc. April 2002

v

$lm_command() or $lai_command()
These commands provide access to the SWIFT command channel. You can use them to
send a command to the session or to a model instance.

Syntax
$lm_command (“session_cmmd_string”);

$lm_command (inst_path, “model_cmmd_string”);

$lai_command (“session_cmmd_string”);

$lai_command (inst_path, “model_cmmd_string”);

Arguments
session_cmmd_string The SWIFT interface command to be sent to the

session.

inst_path The path name to the SmartModel instance to send the
command to. Used only with model commands.

model_cmmd_string The SWIFT interface command to be sent to the model
instance.

For more information about the SWIFT command channel, refer to “The SWIFT
Command Channel” on page 23.

Examples
The following example sends the ReportStatus command to the instance “U1”, causing
it to generate a message reporting its configuration status.

% $lm_command ("U1", "ReportStatus");

The following example sends the TraceTimeFile off command to the session, causing it
to stop issuing trace messages. Note that the absence of an instance name identifies the
command as session-specific.

% $lm_command ("TraceTimeFile off")

Simulator Configuration Guide Appendix A: LMTV Command Reference

April 2002 Synopsys, Inc. 295

v

$lm_dump_file() or $lai_dump_file()
Use these commands to dump the memory contents of the instance inst_path into the file
filename. This works only for memory models. If the specified file already exists, it is
overwritten. Using this command eliminates the read cycles required to verify the
success of a test.

You can reload the dumped file into a memory model using the $lm_load_file()
command. The format of the dumped file is the same as the Synopsys memory image
file format required by a memory model at initialization.

Syntax
$lm_dump_file (inst_path, “filename” [,“file_type”]);

$lai_dump_file (inst_path, “filename” [,”file_type”]);

Arguments
inst_path The path name to the SmartModel instance whose

memory information is to be dumped.

filename The path name to the file that is to receive the dumped
memory information from the model instance.

file_type The type of configuration file to be dumped. The only
allowed value is MEMORY, which is also the default.
This argument is provided for compatibility with the
historic environment.

Appendix A: LMTV Command Reference Simulator Configuration Guide

296 Synopsys, Inc. April 2002

v

$lm_help()
Use this command to display the syntax for all of the SWIFT interface commands.

Syntax
$lm_help();

Examples
The following example shows the results of issuing the command $lm_help.

 C2 > $lm_help;

 LMTV commands:
 lm_command("session_command"): execute a session command.
 lm_command(inst_path, "model_command"):
 execute a model command.
 lm_dump_file(inst_path, "file_name", ["file_type"]):
 dump memory into file.
 lm_load_file(inst_path, ["file_name", "file_type"]):
 load file of programmable device or memory.
 lm_monitor_enable(inst_path [, "win_element" [,...]]):
 enable window Monitor.
 lm_monitor_disable(inst_path [, "win_element" [,...]]):
 disable window Monitor
 lm_monitor_vec_map(var_name, inst_path, "win_element" [, index]):
 map window to a variable for monitoring.
 lm_monitor_vec_unmap([var_name,] inst_path):
 unmap window to stop monitoring.
 lm_status(inst_path): dump instance status.

 Commands compatible with old release :
 lai_enable_monitor("inst_path", [win_element],...):
 enable window Monitor.
 lai_disable_monitor("inst_path", [win_element],...):
 disable window Monitor.
 lai_dump_file("inst_path", "file_name", "file_type"):
 dump memory into file.
 lai_load_file("inst_path", "file_name", "file_type"):
 load file of programmable device or memory.
 lai_status("inst_path"): dump instance data.

Simulator Configuration Guide Appendix A: LMTV Command Reference

April 2002 Synopsys, Inc. 297

v

$lm_load_file() or $lai_load_file()
Use these commands to load the memory contents of the file filename into the instance
inst_path, which can be either a programmable device or a memory model. Using these
commands eliminates the write cycles required to set up the contents of the model.

The load_file operation causes the selected model to reset its internal state to simulation
startup conditions and then read the specified file. After the file is read, the model is
evaluated as a function of the new internal state and the current inputs and outputs are
scheduled with zero delay. After this initial evaluation phase, the model behaves as it
would normally.

You can load a model with any file type that would normally be accepted by the model at
initialization. Additionally, the new configuration file you load is used for the specified
model instance after any subsequent command to reset or reinitialize.

Syntax
$lm_load_file (inst_path [, “filename”, “file_type”]);

$lai_load_file (inst_path [, “filename”, “file_type”]);

Arguments
inst_path The path name to the SmartModel instance into which

the contents of filename is to be loaded.

filename The path name to the configuration file that is to be
loaded for the model instance specified by inst_path.
The default is to use a path name defined with the
defparam statement in the design.

file_type The type of file to be loaded. Allowed values are
MEMORY, JEDEC, PCL, and SCF. The default is to
use the file type of the file defined with the defparam
statement in the design.

Appendix A: LMTV Command Reference Simulator Configuration Guide

298 Synopsys, Inc. April 2002

v

$lm_monitor_enable() or $lai_enable_monitor()

$lm_monitor_disable() or $lai_disable_monitor()
Use these commands to enable or disable SmartModel Windows for one or more
window elements of a model instance specified by inst_path. The SmartModel
Windows feature allows you to view and change the contents of a model's internal
registers through predefined windows, which usually reflect the model's internal state.
After enabling SmartModel Windows, you can read from the register using an
appropriate Verilog command or by adding the path name to the list of signals being
traced. If you attempt to read from an internal register without enabling SmartModel
Windows the window content is not read.

The $lm_monitor_enable() and $lm_monitor_disable() commands are provided for
compatibility with the historic environment. You cannot access arrays of registers, as in
memory window elements, using these commands. In addition, you cannot create
dynamic windows needed for SmartCircuit models if you define a window in a
configuration file. The $lm_monitor_vec_map() and $lm_monitor_vec_unmap()
commands provide these capabilities.

Note8
Accessing internal states is memory-intensive, so you may notice some
performance degradation when SmartModel Windows is enabled.

Syntax
$lm_monitor_enable (inst_path [, “window_element” [,...]]);

$lm_monitor_disable (inst_path [, “window_element” [,...]]);

$lai_enable_monitor (inst_path [, “window_element” [,...]]);

$lai_disable_monitor (inst_path [, “window_element” [,...]]);

Arguments
inst_path The path name to the SmartModel instance for which

SmartModel Windows is to be enabled.

window_element The name of the internal register to read. This can be a
single value or a list. The default is to read all internal
registers of the instance.

Simulator Configuration Guide Appendix A: LMTV Command Reference

April 2002 Synopsys, Inc. 299

v

Examples
The following example enables SmartModel Windows for all windows in instance “U1”,
then reads from the predefined window element IENA. Notice that you must enable
SmartModel Windows before attempting to read from the window element.

 // somewhere in the testbench ...
 // enable access to all windows in instance U1
 $lm_monitor_enable(U1);
 // display contents of window element IENA
 $display("Value of register IENA is %h", $IENA);

The following example disables the window explicitly for the register IENA.

 % $lm_monitor_disable(U1, "IENA");

The following example disables all windows in instance U1.

 % $lm_monitor_disable(U1);

The following example does not read the register IENA, because SmartModel Windows
was not enabled.

 // somewhere in the testbench ...
 $display("Value of register IENA is %h", $IENA);

Appendix A: LMTV Command Reference Simulator Configuration Guide

300 Synopsys, Inc. April 2002

v

$lm_monitor_vec_map() and
$lm_monitor_vec_unmap()

Use these commands to enable or disable direct mapping between the user-defined
variable var_name and a model instance's internal register window_element. This
mapping allows you to read from, write to, or trace the internal register through your
user-defined variable. You must define this variable with a width corresponding to that
of the predefined window somewhere in the design hierarchy (typically in the testbench)
before using these commands. Note that these commands only work in SWIFT
SmartModel mode.

Using $lm_monitor_vec_map(), you can access arrays of registers, which is useful for
addressing specific memory locations, as in the memory window elements feature. In
addition, $lm_monitor_vec_map() allows dynamic window creation. Thus, if a
SmartCircuit model changes its configuration file so that more windows are created, you
can add those names to your testbench, and enable tracing directly.

Syntax
$lm_monitor_vec_map (var_name, inst_path, “window_element” [,index]);

$lm_monitor_vec_unmap ([var_name,] inst_path);

Arguments
var_name The name of a user-defined variable to map to

window_element. The variable must be already
defined somewhere in the design hierarchy. The
default for $lm_monitor_vec_unmap() is to unmap all
mapped variables for that instance.

inst_path The path name to the SmartModel instance whose
internal register is to be mapped to the user-defined
variable var_name.

window_element The name of the internal register to be mapped to
var_name. Can be part of an array.

index The index of the array, if the window element is a
memory window. The default is 0.

Examples
The following example defines three variables and maps them to specific memory
locations in the memory array UMEM for memory model instance “U1”. Note that
these tasks cannot be performed using $lm_monitor_enable(). Although the example
features an array of registers, the tasks are equally useful for scalar windows, where you
can omit the index option or set it to 0.

Simulator Configuration Guide Appendix A: LMTV Command Reference

April 2002 Synopsys, Inc. 301

v

// Assume a 4Kx8 memory model, on a controller board.
// Such a model would typically have one window called UMEM.
// This window is a 4K deep array of 8 bit registers. In
// particular, the user is interested in these 3 locations:
// Interrupt service routine, LOW ADDRESS: 100
// Interrupt service routine, HIGH ADDRESS: 101
// Control store : 200
// that are significant to the design.
reg [7:0] ISR_LOW; // variable to map to location 100
reg [7:0] ISR_HIGH; // variable to map to location 101
reg [7:0] CONTROL; // variable to map to location 200
// enable monitoring of these variables
$lm_monitor_vec_map(ISR_LOW, U1, "UMEM", 100);
$lm_monitor_vec_map(ISR_HIGH, U1, "UMEM", 101);
$lm_monitor_vec_map(CONTROL, U1, "UMEM", 200);

// ... at this time, you can read, write, or trace these
// variables. For example, assign the address of the interrupt
// service routine to be 0x5000

ISR_LOW = 0x00 ;
ISR_HIGH = 0x50 ;

// or the same assignment can be done as follows:
define ISR {ISR_HIGH,ISR_LOW}
ISR = 16h5000 ;
// this one statement will access two different
// and independent memory locations at once.
// later in the simulation, you can disable monitoring
// for the ‘CONTROL' register:
$lm_monitor_vec_unmap(CONTROL, U1);
// or you can disable monitoring of all windows in that instance:
$lm_monitor_vec_unmap(U1);

Appendix A: LMTV Command Reference Simulator Configuration Guide

302 Synopsys, Inc. April 2002

v

$lm_status() or $lai_status()
Use these commands to report the current status of the model instance inst_path. The
report includes the names and values of internal windows.

Syntax
$lm_status (inst_path)

$lai_status (inst_path);

Arguments
inst_path The path name to the SmartModel instance whose

status is to be reported.

Examples
The following example shows the output of the $lm_status() command for model
instance “U1”.

 C1 > $lm_status(U1);

 Note: <>
 Model template: mem
 Version: not available
 InstanceName: DESIGN.U1
 TimingVersion: MEM-0
 DelayRange: MAX
 MemoryFile: memory.1
 Timing Constraints: On
 SmartModel Instance DESIGN.U1(mem:MEM-0), at time 1000.0 ns

 Note: SmartModel Windows Description:
 UMEM[2048] "2K x 8 Static RAM":
 SmartModel Windows not enabled for this model.
 SmartModel Instance DESIGN.U1(mem:MEM-0), at time 1000.0 ns

Simulator Configuration Guide Index

April 2002 Synopsys, Inc. 303

Index

Symbols
$add_instance command 223, 224
$display command 74
$lai_command command 294
$lai_disable_monitor command 70, 298
$lai_dump_file command 295
$lai_enable_monitor command 70, 72, 73,

298
$lai_load_file command 297
$lai_status command 70, 72, 302
$lm_command command 294
$lm_dump_file command 295
$lm_help command 296
$lm_load_file command 297
$lm_log_test_vectors 93
$lm_loop_instance 94
$lm_monitor_disable command 70, 298
$lm_monitor_enable command 70, 71, 72,

73, 298
$lm_monitor_vec_map command 70, 71,

74, 300
$lm_monitor_vec_unmap command 70,

300
$lm_status command 70, 72, 302
$lm_timing_information 95
$lm_timing_measurements 96
$lm_unknowns 96
+vera_finish_on_end switch 272

A
add breakpoint command 232
add bus command 233
add lists command 231, 233
add monitors command 231
add primitive command 224
add synonym command 233
add traces command 231
Admin tool 216
AIX

compiling C files 30
AMPLE_PATH environment variable 216
Analysis tools

Mentor Graphics 243
rules to determine descriptors 244

ANSI C compiler
with Cyclone 187

Attributes
SmartModel 20

B
Breakpoints

setting with SmartModels 232
Bus symbols

SmartModel 218
Buses

renaming with hardware models 188

C
C compiler 187
ccn_report command 71
cds.lib path 205
CDS_INST_DIR environment variable

102
CDS_VHDL environment variable 192
cflags 187
Characters, mapping 188
Characters, replacing special 188
Check Shell Software utility 248
Command Channel

SWIFT 227
Command interaction

QuickSim II 227
Command line

switches, LMTV 77
switches, QuickSim II 226

Commands
$add_instance 223, 224
$display 74

Index Simulator Configuration Guide

304 Synopsys, Inc. April 2002

$lai_command 294
$lai_disable_monitor 70, 298
$lai_dump_file 295
$lai_enable_monitor 70, 72, 73, 298
$lai_load_file 297
$lai_status 70, 72, 302
$lm_command 294
$lm_dump_file 295
$lm_help 296
$lm_load_file 297
$lm_log_test_vectors 93
$lm_loop_instance 94
$lm_monitor_disable 70, 298
$lm_monitor_enable 70, 71, 72, 73, 298
$lm_monitor_vec_map 70, 71, 74, 300
$lm_monitor_vec_unmap 70, 300
$lm_status 70, 72, 302
$lm_timing_information 95
$lm_timing_measurements 96
$lm_unknowns 96
add breakpoint 232
add bus 233
add lists 231, 233
add monitors 231
add primitive 224
add synonym 233
add traces 231
ccn_report 71
command channel 23
create_smartmodel_lib 126, 143
flexm_setup 27
force 232
genInterface 182
lm_disable_timing_checks 198, 210
lm_enable_timing_checks 198, 210
lm_log_test_vectors 198
lm_loop_instance 198, 211
lm_model 243, 245, 246, 248, 249, 251,

252
lm_model, syntax 260
lm_pam_shortage 198, 211
lm_pattern_history 199, 211
lm_timing_measurements 198, 210
lm_unknowns 198, 210
lm_vconfig 98

lmsi list 133
lmsi logon 133
lmsvg 98
LMTV 291
LMTV SmartModel windows 70
lmvc_template 57
ncelab 207
ncshell 202
ncsim 203
ncverilog 108
ncvhdl 203
nologvectors signal instance 257
propagation 255
reg_model 236, 245, 252
reread modelfile 235
restore state 234
save state 234
signal instance 227, 252, 257, 258, 260
simv 275
sm_entity 155, 158
tmg_to_ts 245
tmg_to_ts, syntax 263
unknown handling 255
vcom 157, 160
VERA 272
vhdlan 129, 131
vhdlsim 145
vlib 157
vsim 157, 161

Comments
submitting 17

COMP property 221
Compiling C files

AIX 30
HP-UX 30
Linux 31
NT 31
Solaris 30

Component interface 245
Component registration 236
Concept

procedure 69
C-only Command Mode

compiling C files 30
with FlexModels 28

Simulator Configuration Guide Index

April 2002 Synopsys, Inc. 305

Constraint mode switch 226
Conversions

shell software 250
technology file 250

Converter
tmg_to_ts 245

create_smartmodel_lib command 126, 143
Custom symbols 235

mapping 237
Cyclone

elaboration warnings with hardware
models 185

setup options with hardware models 186
with FlexMocdels 169
with MemPro models 169
with SmartModels 169

cylab, -4-state in 185
cysim, -4 state in 185

D
Declarations, variable 249
defparam statement

with hardware models 88
Delay files 249
DelayRange 26
Delays, propagation 249
Descriptions

functional 243, 245
graphical 243, 245
technology 245
timing 245

Descriptors, determining for hardware
models 244

Design
capture, Verilog-XL 68
flow, Verilog-XL 66

Design Architect
SmartModel library menus to 216
with SmartModels 216

Design Architect menus
building designs with SmartModels 221
levels 222
system 222

Design environment, MGC 243
Designs

building, using menus 221
building, without menus 223

-DLM_HW_DEBUG flag 187
-DLM_HW_PIN_DEBUG flag 187
Drive strengths 225

E
Environment variables

AMPLE_PATH 216
CDS_INST_DIR 102
CDS_VHDL 192
LAI_LIB 77
LAI_OBJ 77
LD_LIBRARY_PATH 40, 41, 62, 63,

102, 112, 140, 154, 168, 192,
202, 214

LM_DIR 40, 62, 112, 140, 154, 192
LM_LIB 40, 62, 112, 140, 154, 192
LM_LICENSE_FILE 40, 62, 102, 112,

124, 140, 153, 167, 192, 201, 213
LM_OPTION 88, 184
LMC_HOME 40, 61, 77
LMC_PATH 77
LMC_SFI 57
LMC_TIMEUNIT 203
LMC_VLOG 77
MA_CY 175
setting for LMTV 77
SHLIB_PATH 41, 63, 103, 112, 140,

154, 168, 192, 202, 214
SNPSLMD_LICENSE_FILE 40, 62,

102, 112, 124, 140, 153, 167,
192, 201, 213

SSI_LIB_FILES 271, 273
SYNOPSYS 139
SYNOPSYS_SIM 123, 139
VCS_HOME 41
VCS_LMC 57
VCS_LMC_HM_ARCH 57
VCS_SWIFT_NOTES 41

Error message "Keys do not match" 185
Errors

messages 229

Index Simulator Configuration Guide

306 Synopsys, Inc. April 2002

registration 248
Evaluation

hardware models in QucikSim II 254
Examples

FlexModel VHDL instantiation 45, 80,
105, 115, 129, 145, 160

FlexModels with VCS 48

F
Fault simulation

with SmartModels 25
Files

cds.lib 205
delay (.DLY) 249
force value (.FRC) 249
lfsmLibPck 193
lmtv.o 82, 104, 106, 107, 114, 117, 119
mapping, pin 237
MCF 226
model.vhd 105, 115, 159
model_fx_comp.vhd 159
model_fx_sim.vhd 104, 114, 159
model_tst.vhd 105, 115, 159
modelsim.ini 155, 160
ncshell 205
ncsim 207
pin_map 237
pin_map, example 238
SMILibrary.vhd 193
SMLibrary.vhd 203
SMpackage.vhd 193
state tracking (.TRK) 249
synopsys_vss.setup 128
technology 245, 249, 260
technology, types 249
timing 247
timing check (.TCK) 249
variable declaration (.DCL) 249
veriuser.c 82, 104, 106, 107, 114, 117,

119
vhdlsim 146
vsystem.ini 160

FlexCFile 27
flexm_setup 27, 29
FlexModel

attributes 21
examples with VCS 48
fault simulation 25

FlexModel SWIFT parameters 26
FlexModelId 26
FlexModels

dynamic linking with PLI 104, 114
example isnatiations 203, 206
model.vhd 79
model_fx_sim.vhd 79
model_pkg.inc 79
model_tst.vhd 79
PLI static linking 106, 117
using with MTI VHDL 158
VHDL instantiation 203, 206
with Cyclone 169
with Leapfrog 169, 194
with MTI-Verilog 114
with NC-VHDL 204
with Scirocco 127
with VCS 43
with VERA 265
with VSS 143

FlexModelSrc 27
FlexTimingMode 26
FMI libary 194, 204, 207
Force command 232
Force values file 249

G
geniIterface command 182
genInterface

deleting intermediate files 180
example 184
examples 183
how it works 175
options per model 181
overwriting files 181
overwriting pin names per model 182
processing 187
running 182

Simulator Configuration Guide Index

April 2002 Synopsys, Inc. 307

syntax 182
Getting help 16
Graphical descriptions 245

H
Hardware model functional descriptions

with QuickSim II 245
Hardware models

dynamic linking with PLI 89, 108, 119
elaborating and simulating design 184
functional descriptions with QuickSim II

243
installation prerequisites 174
instantiating 88
instantiating in Verilog-XL 88
keyword replacement 189
linking simulators 37
linking with SFI 37
loop mode 258
modifying 251
performance monitoring 88, 184, 255,

259, 260
propagation delays 249
registering 245, 246
registration 245
rules for determining descriptors 244
script for Scirocco 135
SFI 84
shell timing 254
test vector symbols 92
timing

measurement 257
timing checks 249
timing checks with Cyclone 178
timing delays with Cyclone 178
understanding test vector files 92
unknown propagation 256
variable declarations 249
verilog.log file example 89
with Cyclone 179
with IKOS Voyager 38
with Leapfrog 197
with MTI Verilog 119
with MTI VHDL 162
with NC-Verilog 108

with QuickSim II 243, 252
with Scirocco 132
with Teradyne LASAR 38
with VEDA Vulcan 38
with ViewLogic Fusion 38

HP-UX
compiling C files 30

I
Iflags 187
IKOS Voyager 38

with hardware models 38
Indeterminate strength mapping 257
Information, signal instance 259
Installation prerequisites

hardware model 174
Instantiation

FlexModel VHDL 42, 45, 63, 80, 103,
105, 113, 115, 129, 145, 160

Instruction
tracing, execution 232

Intel NT
using MTI Verilog 114
using MTI VHDL 158

Interfaces
hardware model component 245

Index Simulator Configuration Guide

308 Synopsys, Inc. April 2002

J
JEDECFile property 220

K
Keys do not match, error message 185

L
LAI_LIB environment variable 77
LAI_OBJ environment variable 77
ld linker 187
LD_LIBRARY_PATH environment

variable 40, 41, 62, 63, 102, 112,
140, 154, 168, 185, 192, 202, 214

-LDFLAGS -E switch 274
Leapfrog

with FlexModels 169, 194
with hardware models 197
with MemPro 194, 207

Lespfrog utilities
with hardware models 198

lfsmLibPck file 193
Libraries

CLI functions 144
FMI 194, 204, 207
model_pkg.inc 44, 114
model_pkg.o 29
model_pkg.vhd 159
model_pkg.vr 271
model_pkg.vrh 271
model_user_pkg.vhd 159
slm_lib 129, 145, 160, 207
slm_pli.o 29
slm_pli_dyn 82, 106, 108, 117, 119
SmartModel Library menus 216
SmartModel, LMTV/SWIFT 76
SmartModel, Verilog-XL 76
SMpackage.vhd 203
swiftpli 63, 79, 80, 81, 103, 104, 106,

107, 113, 114, 117
vera_local_dll 273

LIBRARY statement 129, 145, 160, 203,
206

license file settings
ModelSource 177

linker 187
Linux

compiling C files 31
with MemPro 161

LM_DIR environment variable 40, 62,
112, 140, 154, 192

lm_disable_timing_checks command 198,
210

lm_enable_timing_checks ommand 198,
210

LM_LIB environment variable 40, 62,
112, 140, 154, 192

LM_LICENSE_FILE environment
variable 40, 62, 102, 112, 124,
140, 153, 167, 192, 201, 213

lm_log_test_vectors command 198
lm_loop_instance command 198, 211
lm_model command 243, 245, 246, 248,

249, 251, 252, 260
lm_model symbol generation 249
LM_OPTION environment variable 88,

184
lm_pam_shortage command 198, 211
lm_pattern_history command 199, 211
lm_timing_measurements command 198,

210
lm_unknowns command 198, 210
lm_vconfig command 98
LM-1200 171
LM-1400 171
LMC_COMMAND

setting SWIFT session commands 24

Simulator Configuration Guide Index

April 2002 Synopsys, Inc. 309

LMC_HOME environment variable 40, 61,
77, 101, 111, 123, 139, 153, 167,
191, 201, 213

LMC_PATH environment variable 77
LMC_SFI environment variable 57
LMC_TIMEUNIT environment variable

203
LMC_VLOG environment variable 77
LMC_VLOG environment variables 77
lmmsi logon command 133
lmsi list command 133
LMSI_DELAY_TYPE VHDL generic

134, 150
LMSI_LOG VHDL generic 134, 150
LMSI_TIMING_MEASUREMENT

VHDL generic 133, 150
LMTV

command reference 291
command-line switches 77, 291
historic SmartModel mode for Verilog-

XL 64
modes of operation for Verilog-XL 64
simulating older designs with Verilog-

XL 76
static linking with PLI 82, 106, 107, 117
SWIFT SmartModel mode with Verilog-

XL 64
lmvc_template command 57
lmvsg command 84
lmvsg commnd 98
Location maps

variables, Mentor Graphics 216
Logging test vectors 257
Logic simulation 224

with SmartModels 224
Loop mode, with hardware models in

QuickSim II 258

M
MA_CY environment variable 175
ma_cyclone software tree 174
Manual overview 13
Mapping

indeterminate strength 257

pin 237
PIN_NAME 236
pins, conditional 239
rules for special characters 188
unknowns 255

MCF file 226
with SmartModels 226

Measurement, timing 257
MemoryFile property 219
MemPro

with NC-VHDL 207
MemPro models

controlling message output 36
dynamic linking with PLI 81, 108, 117
error messages 35
fatal messages 35
generics 31
info messages 35
instantiating 34
message level constants 36
parameters 31
PLI static linking 82, 107, 119
timing messages 35
using with simulators 31
warning messages 35
with Cyclone 169
with Leapfrog 194, 207
with MTI Verilog 117
with MTI VHDL 161
with NC-Verilog 108
with Scirocco 130
with VCS 53
with Verilog-XL 81
with VSS 146
X-handling messages 35

Mentor Graphics
analysis tools 243
design environment 243
location map variables 216
user tree management 215

Messages
constants, level with MemPro 36
controlling output with MemPro 36
MemPro error 35
MemPro fatal 35

Index Simulator Configuration Guide

310 Synopsys, Inc. April 2002

MemPro info 35
MemPro timing 35
MemPro warning 35
MemPro X-handling 35
SmartModel error 229
SmartModel format 229
SmartModel note 229
SmartModel trace 229
SmartModel warning 229

MGC component interface 243
Model Access

Cycolne configuration options 171
Model files

model_fx_sim.vhd 159
MODEL property 220
model.v files generated by crshell 85
model.v files, generating 84
model.vhd 115, 159
model.vhd file 105
model_fx_comp.vhd 159
model_fx_sim.vhd 114, 159
model_fx_sim.vhd file 104
model_pkg.o 29
model_pkg.vhd 159
model_tst.vhd 115, 159
model_tst.vhd file 105
model_user_pkg.vhd 159
ModelAccess

for Cyclone 170
for QuickSim II 240
for Verilog 85

ModelAccess for Cyclone
version number 170

ModelAccess for QuickSim II
version number 240

ModelAccess for Verilog
version number 89

modelsim.ini file 155, 160
ModelSource

license file settings 177
system hardware and software 171

MS-3200 171
MS-3400 171
MTI Verilog

simulating using LMTV 113
with FlexModels 114
with Hardware models 119
with MemPro models 117

MTI VHDL
with FlexModels 158
with hardware models 162
with MemPro models 161
with SmartModels 155, 193

N
ncshell command 202
ncshell file 205
ncsim command 203
ncsim file 207
NC-Verilog

simulating with LMTV 103
with hardware models 108
with MemPro models 108
with SmartModels 103

ncverilog command 108
NC-VHDL

with FlexModels 204
with MemPro 207
with SmartModels 202

ncvhdl command 203
nologvectors signal instance command 257
NT

compiling C files 31

P
Parameters

also called attributes 20
DelayRange 26
FlexCFile 27
FlexModelId 26
FlexModelSrc 27
FlexTimingMode 26
TimingVersion 26

Simulator Configuration Guide Index

April 2002 Synopsys, Inc. 311

PCLFile property 220
pin names, overwriting by genInterface 182
PIN property 220, 236
Pin symbols 218
pin_map file 237

example 238
PIN_NAME mapping 236
PIN_NAME property 221, 236
pin_name_ovr statement 182
PIN_NO property 221
Pins

mapping 237
mapping, conditional 239

PINTYPE property 220
PKG property 221
PLI

communication with Simulator Function
Interface (SFI) 84

dynamic linking with FlexModels 114
dynamic linking with Hardware models

108
dynamic linking with MemPro models

108, 117
dynamic linking with SmartModels 63,

113
static linking with FlexModels 106, 117
static linking with MemPro models 107,

119
static linking with SmartModels 114

PLIWizard 82, 104, 106, 107
Properties

COMP 221
editing 229
JEDECFile 220
MemoryFile 219
MODEL 220, 243
PCLFile 220
PIN 220, 236
PIN_NAME 221, 236
PIN_NO 221
PINTYPE 220
PKG 221
REF 221
SCFFile 220
SWIFT 235

SWIFT_TEMPLATE 220
symbol 218
symbol, required for simulation 220
TimingVersion 219

propogation command 255

Q
QuickSim II

changing timing 229
command interaction 227
command line switches 226
component interface 243
constraint checking 229
constraint, switch 226
default timing 225
installing SWIFT interface 215
interactive commands 227
managing user trees 215
model symbol properties 220
simulating logic models 252
SmartModel windows with 231
SWIFT interface 215
-time_scale switch 226
timing,switch 226
with hardware models 243

R
Reconfiguration

models, for simulation 228
REF property 221
reg_model command 236, 245, 252
Register elements

combining with SmartModels 233
Registration 252

component 236
errors, dealing with 248
hardware models 245
logic models 245, 246
models 245

Index Simulator Configuration Guide

312 Synopsys, Inc. April 2002

Registration tools, reference 260
Related documents 13
reread modelfile command 235
restore state command 234
run_flex_examples_in_vcs.pl Script 53
running verifySetup 175

S
save state command 234
SCFFile property 220
Schematic capture

adding SmartModel to schematic 217
Schematic Editor

creating instances 223, 224
Scirocco

hardware model utilities 133
script for hardware models 135
VHDL generics 133
with FlexModels 127
with hardware models 132
with MemPro models 130
with SmartModels 124

Scripts
run_flex_examples_in_vcs.pl 53

Selection, timing shell 254
Session, ending the simulation 260
setup file, editing 180
SFI

linking hardware models 37
SFI. see Simulator Function Interface
Shell Software

conversion to VHDL 189
names 189

Shell Software Cconversions with
hardware models 250

Shell, timing
with hardware models 254

SHLIB_PATH environment variable 41,
63, 103, 112, 140, 154, 168, 192,
202, 214

signal instance command 227, 252, 257,
258, 260

signal renaming, rules 188
Signal strength

with SmartModels 77
Simulation session, ending 260
Simulations

fault 25
reconfiguring models for 228
single-step 232

Simulator Function Interface (SFI) 84
version number 89

Simulator integration
Cyclone 169
Leapfrog 194, 207
ModelSim 158
ModelSim VHDL 161
MTI VHDL 158
V-System 5.0 158

simv command 275
Slang hardware model 179
Slang interface 179
sm_entity command 155, 158
SmartCirctuit models

Models
SmartCircuit 203

SmartCircuit models
with SWIFT Cxmmand Channel 23

SmartModel Library
documentation 13
fault simulation 25
message formats 229

SmartModel Windows
in SWIFT SmartModel mode 72
in Verilog-XL historic mode 71

SmartModel windows
elements 234
how they work 231
LMTV, commands 70
tracing instruction execution 232
with QuickSim II 231

Simulator Configuration Guide Index

April 2002 Synopsys, Inc. 313

with Verilog-XL 70
SmartModels

adding to schematic 217
attributes, required 21
changing program flow 234
changing program flows 234
changing timescale 76
creating instances in QuickSim 223
customizing timing 76
drive strengths 225
dynamic linking with PLI 63, 103, 113
editing properties 229
evaluation 254
fault simulation 25
functional descriptions in Quickim II 243
graphical descriptions with QuickSim II

243
instantiating 22
library menus, to Design Architect 216
LMTV/SWIFT libraries 76
logic simulation 224
message format 229
message formats 229
pin and bus symbols 218
PLI static linking 104, 114
reconfiguring for simulation 228
renaming instances in QuickSIM 233
signal levels 225
status checking 228
support levels 225
SWIFT usage notes for MGC users 217
symbol properties used by SWIFT 219
symbols, creating new 235
symbols, modifying 235
technology descriptions with QuickSim

II 243
timing constraint checks 229
trace messages 229
user-defined window elements 70
using with SWIFT simulators 20
Verilog-XL libraries 76
warning messages 229
Windows, SWIFT mode 72
with Cyclone 169
with MTI VHDL 155, 193

with NC-Verilog 103
with NC-VHDL 202
with Scirocco 124
with VCS 41
with Verilog-XL 63, 64
with VSS 141

SMILibrary.vhd file 193
SMLibrary.vhd 203
SMpackage.vhd 203
SMpackage.vhd file 193
SNPSLMD_LICENSE_FILE environment

variable 40, 62, 102, 112, 124,
140, 153, 167, 192, 201, 213

Solaris
compiling C files 30

Special characters
mapping rules 188
replacing 188

SSI_LIB_FILES environment variable
271, 273

State tracking 249
Statements

technology file 249
SunOS, changing global settings on 180
Support levels

SmartModels 225
SWIFT 19
SWIFT Command Channel 23, 227
SWIFT interface

properties 235
QuickSim II, installing 215
symbol properties 218
usage notes for MGC users 217

SWIFT parameters
with FlexModels 26
with SmartModels 20

SWIFT_TEMPLATE property 220
swiftpli 63, 79, 80, 81, 103, 104, 106,

107, 113, 114, 117
Switches

+vera_finish_on_end 272
command line, QuickSim II 226
constraint mode 226
-LDFLAGS -E. 274

Index Simulator Configuration Guide

314 Synopsys, Inc. April 2002

time scale 226
timing mode 226
VCS -Zp4 55, 56

Symbol properties
required for simulation 220

Symbols 217, 252
alternate, selecting 224
buses 218
creation 245
custom 235
editing 249
pins 218
properties 218
registration 245
rules for creating 249
SmartModel, creating new 235
SmartModel, modifying 235

SYNOPSYS environment variable 139
synopsys_lm_hw.setup file 180
synopsys_lm_hw.setup.sunos file 180
SYNOPSYS_SIM environment variable

123, 139
synopsys_vss.setup file 128, 145

T
Technology descriptions 245
Technology files 245, 249, 260

conversions 250
types 249

Teradyne LASAR
with hardware models 38

Test vector logging 257
Test vector logging, hardware model

example 90
Timescale

changing with SmartModels 76
switch with SmartModels 226

Timing checks
with hardware models 249

Timing descriptions 245
Timing files 247
Timing measurement

with hardware models 90

Timing modes
changing 229
default 225
switch 226

Timing shell selection 254
TimingVersion 26
TimingVersion property 219
tmg_to_ts command 263
tmg_to_ts converter 245
Tools

Admin 216
analysis, Mentor Graphics 243
flexm_setup 27, 29
lm_model 243, 245, 246, 248, 249, 251,

252
lm_model, syntax 260
reg_model 236, 245, 252
registration, reference 260
tmg_to_ts 245
tmg_to_ts, syntax 263

Tracing
instruction, execution 232

Tracking, state 249
Transcript, registration - checking 248
Trees

management, Mentor Graphics 215
Triggering

word, setting 232
Typographical conventions 15

U
Unknown mapping

with hardware models 255
Unknown propagation

with hardware models 256
USE statement 129, 145, 160, 203, 206
Using 82
Using FlexModels

with C-only Command Mode 28
with SWIFT simulators 28

Using MemPro models
with Verilog simulators 33
with VHDL simulators 33

Simulator Configuration Guide Index

April 2002 Synopsys, Inc. 315

Utilities
called by lm_model command 245
Check Shell Software 248
lm_model 243, 245, 246, 248, 249, 251,

252

V
Variables

location map, Mentor Graphics 216
vcom command 157, 160
VCS

FlexModel examples run script 51
invoking on AIX 42
invoking on HP-UX 42
invoking on Linux 42
invoking on Solaris 42
with FlexModels 43
with MemPro models 53
with SmartModels 41
with VERA 273

VCS utilities
with hardware models 60

VCS_HOME environment variable 41
VCS_LMC environment variable 57
VCS_LMC_HM_ARCH environment

variable 57
VCS_SWIFT_NOTES environment

variable 41
Vectors, test, logging 257
VEDA Vulcan

with hardware models 38
VERA

compiling source files 271
compiling testbench 272
testbench creation 268
testbench example 269
UDF interface 266
with FlexModels 265
with FlexModels in testbench 269
with VCS 273

VERA command 272
vera_local.dll library 273
verifySetup

error message 175

executing 175
Verilog

include pkgs 115
slm_pli.o 29

Verilog-XL
capturing designs 66
compiling and simulating 89
Concept procedure 69
design

capture with Concept 68
design capture 68
design flow 66
design flow with SmartModels 67
executable 89
save and restore 93
simulating and compiling 89
simulating using LMTV 76
using SmartModel windows with 70
using with SmartModels 64
with MemPro 81
with SmartModels 63

Version numbers, finding 89
VHDL generics

LMSI_DELAY_TYPE 134, 150
LMSI_LOG 134, 150
LMSI_TIMING_MEASUREMENT

133, 150
with Scirocco 133
with VSS 149

VHDL keywords, unacceptable as signal
names 189

VHDL shell, creating for Cyclone 187
vhdlan command 129, 131
vhdlsim command 145
vhdlsim file 146
ViewLogic Fusion

with hardware models 38
Visual C++ 31, 47
vlib command 157
vsim command 157, 161
VSS

VHDL generics 149
with FlexModels 143
with MemPro models 146

Index Simulator Configuration Guide

316 Synopsys, Inc. April 2002

with SmartModels 141
V-System 158
vsystem.ini file 160

W
Windows

LMTV SmartModel commands 70
SmartModel, elements 234
SmartModel, tracing instruction

execution 232
SmartModels, how they work 231
SmartModels, with QuickSim II 231

Word triggering
setting 232

Wrappers
SWIFT 104

Z
-Zp4 switch for VCS 55, 56

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Some Hyperlinks May Not Work
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website

	Comments?

	1 Using Synopsys Models with Simulators
	Overview
	Using SmartModels with SWIFT Simulators
	SmartModel SWIFT Parameters
	Instantiating SmartModels
	The SWIFT Command Channel
	Fault Simulations

	Using FlexModels with SWIFT Simulators
	flexm_setup Command Reference
	Instantiating FlexModels with C-only Command Mode

	Using MemPro Models with VHDL and Verilog Simulators
	Using MemPro Models with VHDL Simulators
	Using MemPro Models with Verilog Simulators
	Instantiating MemPro Models
	Controlling MemPro Model Messages
	Controlling MemPro Message Output
	Message Level Constants

	Using Hardware Models with Different Simulators
	Linking Other Supported Simulators

	2 Using VCS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VCS
	Using FlexModels with VCS
	VCS FlexModel Examples
	Script for Running FlexModel Examples in VCS
	Example Simulator Run Script

	Using MemPro Models with VCS
	Using MemPro Models with VCS with Verilog Testbenches
	Using MemPro Models with VCS with C Testbenches

	Using Hardware Models with VCS
	Example Using Runtime Option
	Example Using DelayRange Parameter
	VCS Utilities

	3 Using Verilog-XL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Verilog-XL
	Verilog-XL Usage Notes for SmartModels

	Using FlexModels with Verilog-XL
	Using MemPro Models with Verilog-XL
	Using MemPro Models with Verilog-XL with Verilog Testbenches
	Static Linking with LMTV

	Using Hardware Models with Verilog-XL
	Prerequisites
	Using Hardware Models
	$lm_log_test_vectors Command Reference
	$lm_loop_instance Command Reference
	$lm_timing_information Command Reference
	$lm_timing_measurements Command Reference
	$lm_unknowns Command Reference
	lmvsg Command Reference

	4 Using NC-Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-Verilog
	Static Linking with LMTV

	Using FlexModels with NC-Verilog
	Static Linking with LMTV

	Using MemPro Models with NC-Verilog on UNIX
	Static Linking with LMTV

	Using Hardware Models with NC-Verilog
	NC-Verilog Utilities

	5 Using MTI Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI Verilog
	Static Linking with LMTV

	Using FlexModels with MTI Verilog
	Static Linking with LMTV

	Using MemPro Models with MTI Verilog
	Static Linking with LMTV

	Using Hardware Models with MTI Verilog
	MTI Verilog Utilities

	6 Using Scirocco with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Scirocco
	create_smartmodel_lib Command Reference

	Using FlexModels with Scirocco
	Using MemPro Models with Scirocco
	Using Hardware Models with Scirocco
	Scirocco Utilities
	VHDL Model Generics with Scirocco

	7 Using VSS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VSS
	create_smartmodel_lib Command Reference

	Using FlexModels with VSS
	Using MemPro Models with VSS
	Using Hardware Models with VSS
	VSS Example with TILS299 Hardware Model
	VSS Utilities
	VHDL Model Generics with VSS

	8 Using MTI VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI VHDL
	sm_entity Command Reference

	Using FlexModels with MTI VHDL
	Using MemPro Models with MTI VHDL
	Using Hardware Models with MTI VHDL
	MTI VHDL Example Using TILS299 Hardware Model
	hm_entity Command Reference
	MTI VHDL Utilities

	9 Using Cyclone with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Cyclone
	Using FlexModels with Cyclone
	Using MemPro Models with Cyclone
	Using Hardware Models with Cyclone
	ModelSource System Hardware and Software
	LM-1400/LM-family System Hardware and Software
	Configuration Options
	Cyclone User Setup
	Using Hardware Models with Cycle-Based Simulators
	genInterface Command Reference
	Cyclone Simulation
	Cyclone genInterface Setup Files
	Cyclone genInterface Processing

	10 Using Leapfrog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Leapfrog
	Using FlexModels with Leapfrog
	Using MemPro Models with Leapfrog
	Using Hardware Models with Leapfrog
	Leapfrog Example with TILS299 Hardware Model
	Leapfrog Utilities

	11 Using NC-VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-VHDL
	Using FlexModels with NC-VHDL
	Using MemPro Models with NC-VHDL
	Using Hardware Models with NC-VHDL
	NC-VHDL Example with TILS299 Hardware Model
	NC-VHDL Utilities

	12 Using QuickSim II with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels and FlexModels with QuickSim II
	Installing the QuickSim II SWIFT Interface
	Using SmartModels/FlexModels with QuickSim II
	Schematic Capture
	Logic Simulation
	Custom Symbols

	Using Hardware Models with QuickSim II
	Setting up Hardware Models in QuickSim II
	Using Hardware Models in QuickSim II
	Model Registration
	Registering a Model with lm_model
	Modifying a Hardware Model
	Simulating with Hardware Models in QuickSim II
	lm_model Command Reference
	tmg_to_ts Command Reference

	13 Using VERA with Synopsys Models
	Overview
	Using VERA with FlexModels
	Using FlexModels with the VERA UDF Interface
	Table 33: FlexModel Files Used with the VERA UDF Interface
	Table 34: Link Line Object Files

	Creating a VERA Testbench
	Table 35: VERA Header Files

	VERA Testbench Example
	Incorporating FlexModels in a VERA Testbench
	Table 36: FlexModel VERA Files

	Using VERA with VCS

	Using VERA with MemPro Models
	Mempro-VERA Overview
	Figure 18: The MemPro-VERA Interface
	Figure 19: VERA Model Class Hierarchy
	Table 37: Key MemPro-VERA Files
	Figure 20: Mempro-VERA Design Flow

	Adding MemPro Commands to the VERA Testbench
	Building the VERA UDF Dynamic Library
	Compiling the VERA Source Files
	Building the Simulator Executable
	Running the Simulation

	A LMTV Command Reference
	Overview
	LMTV Command Line Switches
	LMTV Commands
	$lm_command() or $lai_command()
	$lm_dump_file() or $lai_dump_file()
	$lm_help()
	$lm_load_file() or $lai_load_file()
	$lm_monitor_enable() or $lai_enable_monitor()
	$lm_monitor_disable() or $lai_disable_monitor()
	$lm_monitor_vec_map() and $lm_monitor_vec_unmap()
	$lm_status() or $lai_status()

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

