SYNOPSYS

SmartModel Library User’s
Manual

rrrrrrrrrrrr

SmartModel Library User’s Manual

Copyright © 2001 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

SmartModel, Model Access, Model Tools, SourceModel Library, LM-1200, and
Synopsys Eaglei are registered trademarks, MemPro, MemSpec, MemScope,
FlexModel, LM-family, LM-1400, Logic Model, Model Source, and SourceModel are
trademarks of Synopsys, Inc.

All company and product names are trademarks or registered trademarks of their
respective owners.

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Contents

Contents

PrEfaCe ... 11
About ThisManual e 11
Related DOCUMENES oot e e 11
Manual OVeIVIEW ... e e e 11

Typographical and Symbol Conventions 12
GeEtliNg HE D .o 13
The SynopsysWebSIte e 14
Synopsys Common Licensing (SCL) DocumentSet 14
oMM ? . o e e 15

Chapter 1

SmartModel Library Features i, 17
SmartModel Library OVerview 17
SmartModel Library Versioning ... 18

Model VErSIONS 20
TOOl VEISIONS ... e 20
SmartModel TYPES ... 20
Model TIMING VErSIONSot e et 21
Model Configurationttt 21
SmartModel WINdows 22
Predefined Window Elements 23
Memory WINAOWSot 23
UsingWindow Elements 25
SmartModel DatasheetS 25
Tt e Banner e 26
Supported Componentsand Devices ... 27
SOUNCES . vt ittt e et e e 27
Model HIStOry 27
Getting SmartModel Datasheets ... 27

Chapter 2

About theModels 29
INtrOdUCTION 29
FeaturesCommonto Most Models i 29

B4-Bit TIMe ... e e 29
LOgICValUBS ... 30

February 2001 Synopsys, Inc. 3

Contents SmartModel Library User’s Manual

Implementation-Specific Model Features, 33
Fault SImulation 33
Saveand Restore Operationsouv it 33
Timing Check Control e 33
Model ReSat 33
Model Reconfiguration 34
Modeling Certain Timing Relationships, 34

Modeling ASSUMPLIONSottt 34
Setupand Hold TimingChecks 35
Unprogrammed Statesin Memory Models o i 35
Read Cycle ChecksinSRAMS e 35
Simulating Processor Modelsin Partial Designs 35
Modelswith Boundary ScanFeatures, 36
Approachesfor UsingUnknowns 38

Modeling Changing or Uncertain States, 40

Chapter 3
Browser TOOl 43

INErOdUCLION . . . o e e 43

Selecting ModelsinSLMC HOME i 44

Selecting TOOl VEISIONSottt e e e e e e 45

Default Configuration (LMC) File i 45

UsingtheBrowser Tool e 45
Starting the Browser 46
CreatingaCustomUser Menu ...ttt 46
Displaying by Model Nameat Startupo a7
Disabling the Display of User-Defined Timing (UDT) Files 47

Configuration (LMC) Files e e 48
Configuration FileSyntax ... e 48

Custom Configuration (LMC) Files 49
Creating a Custom Configuration (LMC) File 50
Creating aCustom Model Filter i 51
CreatingaCustom Timing Versionc.ciiiiiienenan.n. 51
Determining the Most Recent Model Version 52
Displaying Model Datasheetsc . 53
Displaying All Timing Versionsof OneModel 53
LocatingaModel intheModel List i, 53
Displaying a Specific Vendor'sModels i, 54
Displaying All Models That Have the Same Function 55
Finding Out More DetailsAboutaModel 55

4 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Contents

Finding Out What Model Version YouHave 55
Loading a Custom ConfigurationFile 56
Use Environment SettingS (LMCS) ... oo 56
Repairing Errors Reported by aModel Report 58
Browser TOOl GUI i 59
Browser WINdOW 59
MenU Bar 61
FleMenu 61
VIBW MBNU o 62
ACHIONSMENU .o 62
USer MBNU .. e 63
DOCSMENU e 63
Help MenuU 63
Toolbar ... 64
SelectionPane 65
SALUS ATEA . . oot 66
Model FiltersDialogBoxX ... 66
Copy Customizable FilesDialogBox 67
Model Detail Dialog BOX 68
Model Report Dialog BOX 68
Save As.. DIdlogBoX 69
Open Configuration FileDialogBox 69
Chapter 4
Memory ModelS e 71
Configuring Memory Models 71
UsingMemory Models e e e 72
TheMemory ImageFile(MIF) e, 72
CreatingaMemory ImageFile(MIF) 73
UsingaMemory ImageFile(MIF) i 73
Memory Image File (MIF) Format 73
Memory Image File (MIF) AddressMapping c.couiiiiiiinennn.. 75
Memory Image File (MIF) Format Checks 76
DumpingMemory Dataco it 77
Chapter 5
PLD MOOEIS .. 79
Configuring PLD MOdElSo 79
Programming PLD Models i 80
JEDEC FileFormat Checks e 81
UsingPLD Models ... 82

February 2001 Synopsys, Inc. 5

Contents SmartModel Library User’s Manual

Chapter 6
SmartCircuit FPGA Models 83
INErOdUCTION . . o 83
Using SmartCircuit Models i 84
Quick Start for SmartCircuitModels 85
SmartCircuit Technology Overview 86
User-Defined Timing for JEDEC-based Models 88
Debugging TOOISOVEIVIEW . ..ot e 89
Sample CirCUIt 90
SmartCircuit Model PInMapping ... 90
Tracing EventsIn Your Design 91
Causal Tracing Command Descriptions, 92
Viewing Internal Nodes During Simulation 95
SmartModel WINdows 95
SmartCircuit MoNItor 96
Using Unsupported DevIiCESottt e 98
Browsing Your Design Using SmartBrowser 106
Issuing SmartBrowser Commands Interactively 107
Using the SmartBrowser Tool in StandaloneMode 107
Using the SmartBrowser Tool to Create a Windows Definition File 109
Using SmartBrowser Commands ...t 110
SmartBrowser Command Reference i 111
Model Command File (MCF) Referencec ... 119
MCF Command DesCriptionscuitiriii ittt 119
smartccn Command Reference ... 122
CCN OUtpUL FIlES . .o e e 125
cen_report Command Referenceo 125
AUIOWINAOWS .o e e 128

Chapter 7
Processor ModelsS ... 129
Configuring Processor MOdelso 129
Simulatingwith HV Models e 130
PCLFileChecks e 131
Processor Control Language (PCL)o e 132
Using PCL to Configure HV Models 132
PCL Program SITUCLUIEo ot e e e e e 133
Interruptsand EXceptions 135
TheCommand Header File i 136
Returned Values 136

6 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Contents

Unknown Values i 137
PCL CONSITUCESttt e 138
PCL Statement TYPeSo 146
PCL Program Control Statementscoiiiiiiiienenan... 148
Debugging Designswith TraceMessageso, 151
Runningthe PCL Compiler e 152
Example PCL Programt 153
Chapter 8
User-Defined Timingttt e e et 157
INtrOdUCTION . . o 157
TIMING FIlEeS .. 158
Instance-Based TiMIiNGt et 158
Timing FileSearchRuUles i 158
Creating New TIMING VErSIONSottt et 160
User-Defined Timing Examples i, 161
AddingaNew TimingVersion ..., 162
Creating Custom Timing VErSIONSovi i e 164
Timing DataFileFormat i 165
Assumed Propagation Delays ... 166
Models With Vendor-Supplied Delay Ranges 166
Calculated Propagation Delays ... 167
Timing DataFileComments i 168
General ComMMENES . ..ot 168
Timing Description COMMEeNtSttt 168
Timing EXpression CommentSttt 169
Internal PINComments 169
Range CommENntSot 170
Timing DataFileModel Block i 170
Timing Statement Format 171
Timing Statement Format 173
Timing DataFileGrammar i 174
Usingthe Timing Compiler e, 178
Timing Compiler Checks i i 178
Running the Timing Compiler e 179
Chapter 9
Back-Annotating Timing Files 181
What iISBackanno? ... 181
PrOCESS OVeIVIBIW . ot 182
Creating aConfiguration File i, 182

February 2001 Synopsys, Inc. 7

Contents SmartModel Library User’s Manual

FileFormat 182
Sample Configuration File 183
MODEL SeCtionot 184
ANNOTATE SECtION ...t e e 185
Interconnect Statement 187
Setting Environment Variables 189
Backanno Command SyntaXc.ciuiiiii 189
Running Backanno it 189
Copying the Resulting Timing Files (.tf) i 190
Replacingthe Original SDFFiles 190
Chapter 10
Library TOOIS 191
INtrOdUCTION . . o 191
Creating PortMap Files e 192
Usingtheptm makeTool 192
PortMap FileFormat 193
Copying Customizable Fileswith sl copy 197
Trandating Memory ImageFiles i i 198
Adding Back-ANnnotationot 200
Checking SmartModel Installation Integrity, 200
Appendix A
Reporting Problems 203
INtrOdUCTION . .o 203
UsingModel Loggingo.ve it 203
TransmittingtheLog File i 205
Other Diagnostic Information i 205
Model History and Fixed Bugs, 205
Model History Entry Field Descriptionsc.cooin... 206
Appendix B
Gl A Y oottt 207
INrOdUCLION . . . oo e e 207
INAEX . 211

8 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Figures
Figures
Figurel: SmartModel Versioning Environment 18
Figure2: Model Versioning Overview 19
Figure3: Diagramof TAPSaeS ... e 37
Figured: O-Bit Register e 38
Figure5: Changing StatesTimingDiagram ..., 41
Figure6: UNIX Browser Tool Window ..., 59
Figure7: NT Browser Tool Window 60
Figure8: Browser Tool MenuBar 61
Figure9: Process Flow for Memory Models 71
Figure 10: ProcessFlow forPLD Models 79
Figure 11: SmartCircuit Model DataFlow 87
Figure 12: Sample SmartModel Circuit 90
Figure 13: SmartCircuit Pin-to-Port Mapping, 91
Figure 14. DataFlow for Processor Models 129
Figure 15: PCL Program Format Example, 134
Figure 16: User-Defined TIMiNg Process, 160
Figure17. TimingDataFileElements 165
Figure 18: Assumed PropagationDelays 166
Figure 19: Calculated PropagationDelays, 167
Figure20: Timing DataFileComments iiiinnan.... 168
Figure21: Annotated Timing DataFileModel Block 170
Figure 22: SmartModel Back-AnnotationProcess, 182
Figure23:. Delay ScalingExample 186
Figure24: Interconnect Example i 188
February 2001 Synopsys, Inc. 9

Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:

10

SmartModel Library User’s Manual

Tables
Examples of Predefined Windows from Model Datasheets 23
SmartModel LogicValues 30
Comparison of Generated Unknownsin the Example Flip-Flop 39
Toolbar Button DesCriptionsvvuiiiiii i 64
Bitsin Row and Column Addresses, 75
JEDEC Standard 3-A Fieldsand Their Usesin PLD Models 80
Windows and Monitors Tool Comparisonccovuvuun... 95
Monitor Signal Values 97
Comparison of HV and Full-Functional Processor Models 130
PCL Keywords ...t e e e e 138
PCL OpBratorS . ..ottt 140
PCL Operator Precedence and Associativity 142
Conversion Specification Modifiers 144
Argument Conversion TYPES v vt 144
Derived Propagation Delay Values, 166
Output-edgeValues i i 176
TimingUnitValues e 178

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Preface

Preface

About This Manual

This manual contains user and reference information for SmartModel Library users.
Thefocusis on how to use the SmartModel simulation models and tools. This manual
does not contain information about installing the library—that information is presented
in the SmartModel Library Installation Guide.

Related Documents

For general information about SmartModel Library documentation, or to navigate to a
different online document, refer to the Guide to SmartModel Documentation. For the
information on supported platforms and simulators, refer to SmartModel Library
Supported Smulators and Platforms.

For detailed information about specific modelsin the SmartModel Library, use the
Browser tool ($LMC_HOME/bin/dl_browser) to access the online model datasheets.

Manual Overview
This manual contains the following chapters and appendixes:
Preface Describes the manual and lists the typographical

conventions and symbols used in it; tells how to get
technical assistance.

Chapter 1. Provides an overview of the library, including how
SmartModel Library model and tool versioning works and the different
Features model types.

Chapter 2: Overview of common model features and modeling
About the Models assumptions.

February 2001 Synopsys, Inc. 11

Preface

Chapter 3:
Browser Tool

Chapter 4:
Memory Models

Chapter 5:
PLD Models

Chapter 6:
SmartCircuit FPGA Models

Chapter 7:
Processor M odels

Chapter 8:

User-Defined Timing
Chapter 9:
Back-Annotating Timing
Files

Chapter 10:
Library Tools

Appendix A:
Reporting Problems

Appendix B:
Glossary

« Default UNIX prompt

SmartModel Library User’s Manual

How to use the Browser tool to select model versions
and view product documentation.

How to configure and use memory models.

How to configure and use programmable logic
device models.

How to configure and use SmartCircuit models of
FPGA and CPLD devices. Also describes how to
use the debugging tools to enhance the useful ness of
SmartCircuit models.

How to configure and use full-functional and
hardware verification models of microprocessorsand
microcontrollers.

How to use the user-defined timing feature to create
your own custom timing versions for SmartModels.

How to use the Backanno tool to back-annotate
timing values using Standard Delay Format (SDF)
files.

How to use the SmartModel Library command-line
tools.

How to diagnose problems with SmartM odels and
request technical support when necessary.

Definitions for terms that have specia meaning in
the context of this manual.

Typographical and Symbol Conventions

Represented by a percent sign (%.

. User input (text entered by the user)

Showninbol d type, asin the following command line example:

% cd $LMC_HOME/ hdl

. System-generated text (prompts, messages, files, reports)

Shown asin the following system message:

No M snatches: 66 Vectors processed: 66 Possible

Synopsys, Inc.

February 2001

SmartModel Library User’s Manual Preface

. Variablesfor which you supply a specific value
Shown initalic type, asin the following command line example:
% setenv LMC HOME prod dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

« Command syntax

Choice among alter natives is shown with a vertical bar (|), asin the following
syntax example:

-effort_level low | medium | high

In this example, you must choose one of the three possibilities: low, medium, or
high.

Optional parameter s are enclosed in square brackets ([]), asin the following
syntax example:

pinl [pin2 ... pinN]

In this example, you must enter at least one pin name (pinl), but others are optional
([pin2 ... pinN]).

Getting Help

If you have a question while using Synopsys products, use the following resources:

1. Start with the avail able product documentation installed on your network or located
at the root level of your Synopsys CD-ROM. Every documentation set contains
overview information in the intro.pdf file.

Additional Synopsys documentation is available at this URL:
http://www.synopsys.com/products/Im/doc
Datasheets for models are available using the Model Directory:
http://www.synopsys.com/products/|m/model Dir.html
2. Visit the online Support Center at this URL:
http://www.synopsys.com/support/lm/support.html
This site gives you access to the following resources:
o SOLV-IT!, the Synopsys automated problem resolution system
o product-specific FAQs (frequently asked questions)

February 2001 Synopsys, Inc. 13

http://www.synopsys.com/products/lm/doc
http://www.synopsys.com/products/lm/modelDir.html
http://www.synopsys.com/support/lm/support.html

Preface SmartModel Library User’s Manual

o lists of supported simulators and platforms

o the ability to open a support help call

o the ability to submit adelivery request for some product lines
3. If you still have questions, you can call the Support Center:

North American customers:

Call the Synopsys Eaglei and Logic Modeling Products Support Center hotline at
1-800-445-1888 (or 1-503-748-6920) from 6:30 AM to 5 PM Pacific Time, Monday
through Friday.

I nternational customers;
Call your local sales office.

The Synopsys Website
General information about Synopsys and its productsis available at this URL:
http://www.synopsys.com

Synopsys Common Licensing (SCL) Document Set

Synopsys common licensing (SCL) software is delivered on a CD that is separate from
the tools that use this software to authorize their use. The SCL documentation set
includes the following publications, which are located in (root)/docs/scl on the SCL CD
and also available on the Synopsys FTP server (ftp://ftp.synopsys.com):

« Licensing QuickSart—(142K PDF file)
This booklet provides instructions for obtaining an electronic copy of your license
key file and for installing and configuring SCL on UNIX and Windows NT.

« Licensing Installation and Administration Guide—(2.08M PDF file)
This guide provides information about installation and configuration, key concepts,
examples of license key files, migration to SCL, maintenance, and troubleshooting.

You can find general SCL information on the Web at:
http://www.synopsys.com/keys

14 Synopsys, Inc. February 2001

ftp://ftp.synopsys.com/pub/SCL/LQS.pdf
ftp://ftp.synopsys.com/pub/SCL/LIAG.pdf
http://www.synopsys.com/keys
http://www.synopsys.com

SmartModel Library User’s Manual Preface

Comments?

To report errors or make suggestions, please send e-mail to:
doc@synopsys.com
To report an error that occurs on a specific page, select the entire page (including

headers and footers), and copy to the buffer. Then paste the buffer to the body of your

e-mail message. Thiswill provide us with information to identify the source of the
problem.

February 2001 Synopsys, Inc. 15

mailto:doc@synopsys.com

Preface SmartModel Library User’s Manual

16 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

1

SmartModel Library Features

SmartModel Library Overview

The SmartModel Library isacollection of over 3,000 binary behavioral models of
standard integrated circuits supporting more than 12,000 different devices. The library
features models of devices from the world's leading semiconductor manufacturers,
including microprocessors, controllers, peripherals, FPGAs, CPLDs, memories, and
general-purpose logic. SmartModels connect to hardware simulators through the
SWIFT interface, which is integrated with over 30 commercia simulators, including
Synopsys VCS and Scirocco, Cadence Verilog-XL, and Mentor Graphics QuickSim I1.

Instead of simulating devices at the gate level, SmartM odel s represent integrated
circuits and system buses as “black boxes’ that accept input stimulus and respond with
appropriate output behavior. Such behavioral models are well suited for distribution in
object code form because they provide improved performance over gate-level models,
while at the same time protecting the proprietary designs created by semiconductor
vendors.

All SmartModels are listed in the Model Directory, which you can find on the Web at:
http://www.synopsys.com/products/lm/model Dir.html

This Web site provides the most up-to-date information about model availability and
allows you to view model datasheets, which list all device components and
manufacturers supported by each model in the library.

February 2001 Synopsys, Inc. 17

http://www.synopsys.com/products/lm/modelDir.html

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

SmartModel Library Versioning

Models are the basic unitsin the library. You can install more than one version of any
model in the same SLMC_HOME. Multiple model versions allow separate design
teams to use different versions of the same model without interfering with each other.
This means that design team #1 (for example) can get a bug fix that they need for a
particular model without affecting design team #2 that may not care about that fix in the
context of their work. You can aso install new model shipments that you receive from
Synopsysright into an existing SmartModel installation. The SmartModel environment
makes it easy to make the latest ssmulation models available to design teams that need
them without affecting the design teams that do not. Figure 1 illustrates the benefits of
the flexible SmartModel Library versioning system. Different design teams can select
new or revised models using custom configuration files. For more information, refer to
“Configuration (LMC) Files’ on page 48.

Synopsys

New Models
Bug Fixes
y 1

SmartModels
($LMC_HOME)

ttl00 (Version 01001) ttl00 (Version 01002)
Design Team Design Team
Number 1 Number 2

Figure 1: SmartModel Versioning Environment

18 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

Each versioned model supports multiple timing versions. Each timing version, in turn,
can support multiple devices, or physical integrated circuits that you can order from a
manufacturer. When you install a particular model version, you get all of the timing
versionsfor that model. Similarly, when you purge aparticular version of amodel from
the library, you purge al of itstiming versions aswell. Figure 2 illustrates how these

concepts work together.

Model

Model Version 01001

Timing
Version

Timing
Version

Device Device Device Device

Model
\7”“!‘9 Ui Model Version 01002
‘ersion Version
Device Device Device Device
Model

e e

Timing
Version

e

Device

Device

Timing
Version

¥

Device

Device

Model Version 01003

February 2001

Figure 2: Model Versioning Overview

Synopsys, Inc.

19

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

T3> Note
To seeall of the timing versions and components supported by any model in
the library, review the model’s datasheet.

Model Versions

Model versions have the five-digit format xxyyy (for example, 01001), where xx
designates amagjor revision and yyy designates aminor revision. Thisfive-digit version
number appears on all model datasheets. Look in the banner section at the top of the
datasheet for this key piece of information.

Tool Versions

SmartModel Library tools are also versioned and use the same numbering scheme as
models. For some SmartModel Library tools, called model-versioned tools, the version
of the tool to use is determined by the model. You cannot change the versions of
model-versioned tools because a particular version of amodel may depend on a specific
tool version to function properly. Examples of model-versioned tools include
compile_timing, ccn_report, smartbrowser, and smartccn. For other SmartM odel
Library tools, called user-versioned tools, you select the version of the tool to use viathe
default and custom configuration (LMC) files.

T3> Note
For information on selecting specific model and tool versions, refer to

“Selecting Modelsin $LMC_HOME” on page 44 and “ Selecting Tool
Versions” on page 45.

SmartModel Types

There are two basic types of SmartModels:

« Full-functional Models (FFMs) simulate the compl ete range of device behavior.
Most SmartModels fall into this category.

« Bus-Functional Models (BFMs) simulate all device buscycles. There aretwo types
of BFMsin the SmartModel Library:

o Hardware Verification (HV) models, which you control using Processor Control
Language (PCL), alanguage that is similar to C.

20 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

o FlexModels, which you can control using Verilog, VHDL, or C.

For some devices, more than one type of model may be available, but these are
exceptions, not the general rule. For detailed information about a specific SmartModel
(including FlexModels), refer to the model’s datasheet. For general information about
FlexModels, refer to the FlexModel User’s Manual.

Model Timing Versions

All SmartModels have at least one timing version. To see what timing versions are
available for a particular model, use the Browser tool to display alist of timing versions
for that model.

If you need atiming version that is not supplied with the library, or if you want to back-
annotate customized delays into the model’s simulation, you can create a custom timing
version as described in “User-Defined Timing” on page 157.

Model Configuration

To configure amodel means to define it completely, by doing the following:
. Setting environment variables and specifying the model version

« Creating technology-dependent setup files (JEDEC, MIF, or MCF). Different
model types require different setup files. To find out the required setup file for a
particular model, refer to the model’ s datasheet.

« Setting values for attributes that specify the instance name, timing version,
propagation delay range, and location of setup files. The way you specify attributes
depends on the smulator that you are using

o Verilog simulators—use defparamsin a.v file
o VHDL simulators—use genericsin a.vhd file

o Schematic-capture based simulators—use model symbol properties

275> Note
For information on configuring SmartModels (including FlexModels) for
use in your simulator, refer to the Smulator Configuration Guide for
Synopsys Models.

February 2001 Synopsys, Inc. 21

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

SmartModel Windows

SmartModel Windows, also referred to as “Windows,” isa SmartModel Library feature
that allows you to view and change the contents of internal registers during simulation.
Using Windows, you can:

. Display the current value of an internal register
. Force new valuesinto writable registers
« Set up amonitoring function to inform you when aregister value changes

T3> Note
FlexModels do not support SmartModel Windows.

You read and write to amodel’s internal registers through Windows using
simulator-specific commands, one for each model instance. These commands can be
issued on the command line or in a simulation script.

SmartModel Windows availability depends on the:

« Model—Only some models support Windows. Typically, these are processor,
CPLD, FPGA, and memory models. Refer to the model’s datasheet to find out if it
supports Windows.

« Simulator—Currently, SmartModel Windows is supported by many simulators,
including (but not limited to) Synopsys VCS, Cadence Verilog-XL and RapidSim,
IBM AUSSIM, Mentor Graphics QuickSim 11, ViewLogic ViewSim, MTI Verilog,
Lucent ATTSIM, and Synopsys VSS. Refer to your simulator documentation for
information about Windows support.

« Authorization—SmartModel Windows is automatically enabled if you have one of
these license features:

o simmodel-ultra

o simmodel-prem

o simmodel-sw-all

o simmodel-std

o simmodel-base

o simmodel-sw-model _name (e.g., simmodel-sw-ttl00)

o simmodel-sw-model_family. (e.g., sSsimmodel -sw-xc40000)

22 Synopsys, Inc. February 2001

SmartModel Library User’s Manual

Predefined Window Elements

For SmartModels that support Windows, Synopsys provides window elements with
names, dimensions, and read/write features that correspond to registers specified by the
manufacturer for the modeled device. These predefined window elements are
documented in each model’s datasheet.

Table 1 shows examples of predefined window elements taken from specific model

Chapter 1: SmartModel Library Features

datashests.
Table 1: Examples of Predefined Windows from Model Datasheets
Number
of Window
M odel Elements Element Name Dimensions | R/W Access

pal32vx10 10 Q0-Q9 1 bit Read/Write

i28f001bxb 2 COMMAND_REGISTER |8 bits Read Only
PROTECT_STATUS 1 bit Read/Write
xc17128d 1 BIT_ADDR_REGISTER |18 bit Read/Write
mt581c64k18b2 3 MEM 65K x 18 bit | Read/Write

array
MEM _addr 16 Read Only
MEM _rw 2 Read Only

In addition to theinformation in Table 1, some model datasheets provide instructions on
how to use a particular model’s window el ements.

Memory Windows

Notice that the predefined window elementsin Table 1 represent either single-bit
registers, one-dimensional arrays (multibit registers), or two-dimensional arrays. Two-
dimensional arrays are used for memory array windows.

Within SmartModel Windows, memory array windows let you monitor events that take
place in amemory array during simulation. The memory array can be part of a memory
device or any other device that contains on-chip memory. Using this functionality, you
can monitor read and write operations in the array without individually monitoring
every array location. (For large memories, monitoring every array element is not
practical.)

February 2001 Synopsys, Inc. 23

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

Each model's memory array hasthree associated windows. the Memory Array Window,
the Memory Address Window, and the Memory Read/Write Window.

The Memory Array Window:

Represents the memory array itself

Has the same dimensions as the specific model's memory array (for example, a 16K
X 32-bit memory)

Supports read/write access
Has a model -specific name that is specified in the model datasheet
Has an initia value of “X” (unknown)

For example, in Table 1 the model mt581c64k18b2 has a 64k x 18 bit array named
MEM that has read/write access.

The Memory Address Window:

Represents the array index

Has as many bhits as needed to contain the binary representation of the array size
Is read-only

Is named by appending “_addr” to the memory array window name.

For example, in Table 1 the model mt581c64k18b2 has a 16-bit memory address
window named MEM _addr that has read-only access.

The memory address window is loaded with the appropriate index value each time
thereisamemory array transaction. Thus, the contents of this window always
represent the index of the last location accessed by either aread or awrite. Inrare
cases where more than one array location is accessed during a single model
evaluation, the memory address window contains al Xs (unknowns); thisisalso the
initial value of the memory address window.

The Memory Read/Write Window:

24

Represents the read/write and access status

Isaways 2 bitswide

Isread only

Is named by appending “_rw” to the memory array window name
Has an initial value of “1X”

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

For example, in Table 1 the model mt581c64k18b2 has a 2-bit Memory Read/Write
window named MEM _rw that has read-only access.

The least-significant bit of the Memory Read/Write window is the Read/Write bit,
which initially is X (unknown) and contains a

o Oif thearray iswritten to

o 1if thearray isread from

o X if anarray read and write occurred in the same cycle
For ROM models, this bit always contains a 1.

The most-significant bit of the Memory Read/Write window is an access flag, which
Istoggled each time a model evaluation causes aread or awrite of the memory
array. Thus, you can detect a situation where there may have been two consecutive
memory transactions of the same type at the same address.

Refer to the individual model datasheets for the names, dimensions, and read/write
access characteristics of each model's predefined memory windows.

Using Window Elements

You read from and write to window elements using simulator-specific commands. For
details, refer to the command set for your simulator.

For examples of using window elements with Cadence Verilog-XL or Mentor Graphics
QuickSim |1, refer to the Smulator Configuration Guide for Synopsys Models.

SmartModel Datasheets

SmartModel datasheets provide specific user information about each model in the
library. The model datasheets supplement, but do not duplicate, the manufacturer’s
datasheets for the hardware parts. I1n general, the model datasheets describe:

« Supported hardware components and devices

« Bibliographic sources used to develop the model (i.e., specific vendor databooks or
datasheets)

. How to configure and operate the model

« Any timing parameters that differ from the vendor specifications

« How to program the device (if applicable) or otherwise useit in simulation
. Differences between the model and the corresponding hardware device

February 2001 Synopsys, Inc. 25

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

Models are partitioned by function, including:
« ProcessorgVLS
« Programmables
. Memories
. Standards/Buses
« General Purpose

SmartModel datasheets have standard sections that apply to all models and model-
specific sections whose contents depend on the model type. The following sections
provide general information about what to expect from the various sectionsin a
SmartM odel datasheet.

275> Note
FlexModel datasheets follow a different format than other SmartM odel
datasheets, but are similarly designed to provide you with all the
information needed to successfully use the model.

Title Banner

Thetitle banner providesinformation about the model name, title, function, subfunction,
MDL version number, and date of the last change to the model.

MDL Version Numbers and Model History

With the SmartModel Library, model versions are called MDL version numbers. Not all
MDL version number changes are significant to model users. For example, making an
editorial change in amodel’s datasheet will cause the model’s MDL version to
increment, but model users would see no difference in the behavior of the model with
the later version. For this reason, the model history section at the end of each
SmartModel datasheet lists model history only for significant changes, where the model
would behave differently in simulation.

Providing model history just for significant changes also means that there will often be
gapsin the published model history. For example, the title banner on amodel datasheet
might reference MDL version 01024, but the model history section shows the last
significant model change to be at MDL version 01021. This means that the intervening
MDL version numbers (01022 and 01023) did not change model behavior in any way
that would be visible to users. Note that al model bug fixes generate model history
entries and cause the MDL version number to increment.

26 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

Supported Components and Devices

Each model datasheet includes a section entitled “ Supported Components and Devices’
which lists al of the hardware parts, by manufacturer, that the model can substitute for
during ssimulation. In this section, each component represents one of the unique timing
versions or speed grades supported by the model. Similarly, each device represents a
hardware part that you can buy from the listed manufacturer.

Sources

This section lists al of the specific bibliographic references used for information about
the behavioral and timing characteristics of the modeled device.

Model History

This section appears at the end of each datasheet. It only contains model history change
information if there were significant changes to the model’s behavior in the previous
year. Read this section to get information on the latest model versions. Each change
entry that appearsin the “Model History” section notes the model version number
associated with that particular change. For more information about model history, refer
to “Model History and Fixed Bugs’ on page 205.

Models versions are identified with the five-digit MDL version number that appears at
the top of every SmartModel datasheet, in the Banner section.

Getting SmartModel Datasheets
You can get SmartModel datasheets severa different ways:

« Through the Browser tool. To make a datasheet appear, just select the model you
are interested in and click on the datasheet icon in the upper left portion of the
vertical tool bar.

« Through the Model Directory on the Web:
http://www.synopsys.com/products/lm/model Dir.html

I°5> Note
The Model Directory on the Web always provides datasheets for the latest
SmartModel versions. The Browser tool shows you datasheets only for
modelsinstalled at your site, which may or may not be the latest versions
available.

February 2001 Synopsys, Inc. 27

http://www.synopsys.com/products/lm/modelDir.html

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

28 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 2: About the Models

2

About the Models

Introduction

SmartModel Library models are behavioral simulation models of integrated circuits.
This chapter provides information about standard and model-specific SmartModel
featuresin the following major sections:

« Features Common to Most Models

« Implementation-Specific Model Features
« Modeling Assumptions

« Modeling Changing or Uncertain States

Features Common to Most Models

SmartModel Library models have many features in common. This bedrock technology
helps give models from the library asimilar look and feel that makes them easier to use.
Common features include 64-bit time, supported logic values, status reporting, error
checking, unknown handling, user-defined timing, and selectable propagation delays.

64-Bit Time
All SmartModels use 64-bits to compute elapsed simulation time. If simulation time
exceeds this capacity, the models behave unpredictably.

February 2001 Synopsys, Inc. 29

Chapter 2: About the Models

Logic Values

SmartModel Library User’s Manual

Modelsin the SmartModel Library use alogic value system based on the IEEE 1164.1

VHDL nine-state, multivalue logic system, as shown in Table 2.

Table 2: SmartModel Logic Values

Symbol

M eaning

0

Strong O

Strong 1

Strong X

Weak 0

Weak 1

Weak Unknown

High-Impedance

CIN|S|T||X|kr

Uninitialized (treated as
unknown)

Don't care (treated as
unknown)

Model Status Reports

You can generate amodel status report by issuing the ReportStatus command through
the command channel at any time during asimulation. Model status reports contain the

following information:

« Mode name and version
« Modd attributes and their values

. Timing constraint setting

« Names, descriptions, and values of each window element

« Names and descriptions of each window array

30

Synopsys, Inc.

February 2001

SmartModel Library User’s Manual Chapter 2: About the Models

The general format of the model status report message is as follows:

Not e: <<Status Report>>

Model Logical Nare: swiftnand

Model Physical Nane: swi ftnand

Model '.mdl" Version: 01000

Model Directory: /1 nt_hone/ nodel s/ swi ft nand

Model '.Int' Nanme: /| nt_hone/ dat a/ hp700. | nt

Model -reported Version of Miin Shared Library: 01000
Model -reported Version of SnartLink Interface: v1.0
I nst anceNarre: | $xx

Ti m ngVersi on: SWFTNAND- 1

Del ayRange: M N

Timng Constraints: n

Error Checking

SmartModel Library models provide usage and timing checks that display error, note,
trace, or warning messages during simulation. The format and location of these
messages depends on the design environment, but the content is essentially the same.

Usage Checks

Usage checks, which vary greatly with devicetype, help ensure achip is used correctly.
For example, aDMA controller model might include a check on whether or not all
internal nodes and registerswereinitialized. An SRAM check might produce a message
like: “Address, AO-A13, changed within Write cycle.” These checks aso document
times, device names, instances, and error types.

For example:

WARNI NG | gnoring unknown signal level on HALT pin, assume pin inactive.
(TEST68K MXB8020RC12. 1P) [MX68020-12], at 185.0 ns

Elements of this example have the following meanings:
« FError type:
WARNING Ignoring ...
Design name:
TEST68K

Device name:

MO68020RC12. 1P
Timing version:
M368020- 12

February 2001 Synopsys, Inc. 31

Chapter 2: About the Models SmartModel Library User’s Manual

Timing Checks

Timing checks include the component-specific set-up, hold, frequency, pulse width, and
recovery times specified in the semiconductor vendor’s specifications. Timing checks
generate a single value—they do not have arange and thus are not affected by the
propagation delay range.

For example:
ERROR PULSE WDIH on CLK (H gh) was 1.0 ns; 10.0 ns is the specified
m ni num
(DEMX68K PAL16L8A-2M). 167P) [MM _16L8A-CQOM, at 12201.0 ns

Nominal and Worst-Case Specifications for Timing Checks

In cases where amanufacturer specifies both nominal and worst-case valuesfor atiming
parameter, the model always uses the worst-case specification.

Turning Off Timing Checks
You can turn off timing checks using any of the following methods:

« Through the SWIFT command channel with the SetConstraints ON | OFF command
(not available for FlexModels).

« Using asimulator command implemented by the vendor. Note that this method may
not be available; refer to your ssmulator documentation for information about
turning timing checks on or off for SmartM odels.

« With explicit settings in a user-defined timing file.

Handling of Unknowns

SmartM odels make the most of each simulation by generating or propagating unknowns
only when necessary. When appropriate, amodel issues awarning message rather than
propagating an unknown. This pessimistic unknown handling can preserve the
usefullness of a simulation.

User-Defined Timing

Most SmartModels support user-defined timing. 1f you need a model timing version
that Synopsys has not provided, you can create custom timing files to usein simulation.
For more information, refer to “User-Defined Timing” on page 157.

T3> Note
Netlist-driven SmartCircuit models do not support user-defined timing.

32 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 2: About the Models

Selectable Propagation Delays

All SmartModels support arange of propagation delay values to represent minimum,
typical, and maximum specifications.

Implementation-Specific Model Features

The availability of some SmartModel features depends on whether they are supportedin
your particular ssmulation environment. Consult your simulator documentation to
determine which of these capabilities are supported and how to access them. Following
are brief introductory descriptions of these implementation-specific model features.

Fault Simulation

Fault simulation allows concurrent evaluation of multiple faulty circuitsin a design.
The SmartModel Library supports this feature as an extension to the logic simulation
capabilities of SmartModels.

Save and Restore Operations

If your simulation environment supports Save and Restore operations, you can save a
simulation state, then later restore the saved state to the circuit using the SmartM odel
Library save and restore capability.

Timing Check Control

Timing check control allows you to control the timing constraint checks issued during
simulation. By default, all SmartModels start up with setup, hold, and recovery timing
checksenabled. Thetiming check control feature allows you to enable and disable these
timing checks at any time during asimulation. Thisfeature affects all timing checks of
amodel instance except those explicitly turned off in the external timing file.

Model Reset

SmartM odels support the ability to reset amodel to itsinitial state at any time during a
simulation. The model reset operation resets the internal state variables, but not the
input port values, attribute values, and mode settings, which retain their current values.
For example, if timing checks are disabled before performing the reset operation, then
timing checks remain disabled even though the default is for timing checks to be
enabled.

February 2001 Synopsys, Inc. 33

Chapter 2: About the Models SmartModel Library User’s Manual

Model Reconfiguration

SmartM odel s support the ability to force amodel to reload any or al of its configuration
files (memory image, JEDEC, MCF, PCL), or select a new timing version at any time
during asimulation.

Modeling Certain Timing Relationships

In some cases a model’ s timing specifications do not map perfectly to a semiconductor
vendor’s specifications. One example of this type of variance iswhere a crystal clock
input is used to update an internal state machine that in turn drives the outputs of the
device. The vendor’s datasheet describes only the timing relationships among external
output signals without reference to the internal clock.

To accurately model the internal behavior of such adevice, the model timing is specified
relative to the internal clock. For example, in the model of the Intel 87C51FA 8-bit
microcontroller, timing is specified relative to the internal clock (XTAL2). These
timing values are derived from Intel's data—the values faithfully reproduce the
relationships among external signals as they are described in the vendor’s datasheet.

Theinternal clock-to-output timing relationships are modeled to approximate the
vendor’s output-to-output timing specifications. |f you need to duplicate individual
vendor specifications, you can use the user-defined timing feature of the SmartM odel
Library, but note that there is no way to model the complete set of vendor timings
simultaneously.

Modeling Assumptions

In most cases SmartModel Library models represent all of a device's functional
behavior, but there are exceptions. Sometimes a manufacturer does not quantify a
component parameter or amodel is designed in cooperation with avendor before the
actual deviceisavailablein silicon. In addition, there are some device capabilities that
do not make sense in the context of logic simulation, because the chip’s electronic
environment is not the same as a simulation environment. The electrical programming
of an EEPROM is a good example; programming voltage levels do not exist in logic
simulation.

In some cases a model goes beyond the manufacturer’s specifications in order to make
simulation more useful. For example, the model of the Brooktree Bt458 RAMDAC (a
color palette component) has a special test mode that does not exist in the component.

All model-specific exceptions between the behavior of an actual device and its model
are documented in the model's datasheet. When appropriate, notes and warning
messages generated by a model also inform users about exceptions.

34 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 2: About the Models

The following sections provide details on modeling assumptions that are common to all
modelsin the SmartModel Library. Refer to the individual model datasheets for
information about model-specific assumptions.

Setup and Hold Timing Checks

When arange of valuesis specified by a semiconductor vendor, setup and hold timing
errors are triggered by violations of the worst-case specifications.

Unprogrammed States in Memory Models

All memory locationsin RAM models, if used without memory imagefiles, are read as
unknowns.

The uninitialized contents of ROM models vary according to the manufacturer’s
specifications and are noted in the model datasheets. ROM models do not need to be
programmed as long as their data is not used during simulation.

Read Cycle Checks in SRAMs

Read cycle timing checks are not performed in SRAM models. This eliminates spurious
read cycle timing violation messages during the ssmulation of most designs. The
messages would be generated in designs where the SRAMs are continuously selected
while new read addresses are supplied. Due to dlight differences between high-to-low
and low-to-high propagation delays, transitions from the previous address to the new
one could pass through an undesired address for avery short period of time. The same
message generation problem can occur with read cycle timing violations based on chip
select pins.

Read cycle timeis simply the minimum amount of time required to successfully access
the SRAM; therefore, the model does not supply valid data until the read accesstime has
been satisfied.

Simulating Processor Models in Partial Designs

To alow for simulations with designsthat are not fully operational, processor models do
not propagate unknowns on some inputs (the clock and various control pins, primarily).
Instead, the models substitute a 1 or 0—whichever has the least effect on the
simulation—and issues a warning message aerting you to the change.

February 2001 Synopsys, Inc. 35

Chapter 2: About the Models SmartModel Library User’s Manual

Models with Boundary Scan Features

Models of boundary scan devices have a 2-byte state code assigned to each of 16
possible TAP controller states. When you access the TAP register using SmartM odel
Windows, the model returns a state code, indicating the current TAP controller state.
The TAP register is aread-only element, so forcing the TAP register to avalue has no
effect. Figure 3 shows the TAP states and their associated state codes.

36 Synopsys, Inc. February 2001

SmartModel Library User’s Manual

Chapter 2: About the Models

™

Test-Logic-Reset
Run-test/idle

TMS=1

Select-DR-Scan

D1

Capture-DR

Select-IR-Scan

TMS=0

TMS=1

February 2001

Figure 3: Diagram of TAP States

Synopsys, Inc.

37

Chapter 2: About the Models SmartModel Library User’s Manual

Approaches for Using Unknowns

Depending on where an unknown occurs in acircuit, it can propagate through your
entire smulation. Later events can become buried in unknowns, making your
simulation less useful than it could be. To gain more information, you would haveto fix
the first problem and then rerun the simulation.

SmartModel Library models are designed not to generate or propagate unknowns
unnecessarily. A model uses error messages to inform you about its states and the
assumptions made to substitute a good value for an unknown.

For example, Figure 4 shows a simple 9-hit register. When “enable” is asserted, on the
next rising clock edge, the register puts the value of the D pinsinto the internal Q
registers and also on the output pins. When “clear” is asserted, the internal registers are
cleared to zero.

AM29823 COM
REGISTER
Ll_~JoLr
L_~JloE
I olEN
13 ~cp
d
2 o vYovl 23
3 Ip1 Y1yl 22
4 Ipo y2 g 21
S Ip3 Y3yl 20
5 Ipy Yol 19
T Ips YSyl 18
8 Ipe YEvl L'
S pv Y7ol 16
10__ ps Y812
TYP

Figure 4. 9-Bit Register

Internally, this device is a series of positive edge-triggered, D-type flip-flops. Evenin
so simple adevice, there are many opportunities for unknowns; the clock, clear, D, or
any combination of these could be unknowns. In addition, the Q register could start as
an unknown.

38 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 2: About the Models

Let uslook at how a* Smart Flip-Flop” handles unknowns. The operation of the Smart
Flip-Flop is shown in Table 3. The following definitions apply to symbols used in the
table:

« CLR~. Clear input, asserted when low.
« Q. Value of the Q output prior to evaluation.
. “Smart” newQ. Value of the Q output of a Smart Flip-Flop after the evaluation.

« “Not Smart” newQ. Vaue of the Q output of aflip-flop modeled without the
techniques used to develop SmartModel Library models.

. Caret (). A vadidrising clock edge.

. Hyphen (-). Theclock isknown not to berising; it is stable high or low, or
could fall once from high to low.

« X. Anunknown on either an input or an output, which refers to the logic values of
X, W, U, or D described in “ Features Common to Most Models’ on page 29.

Table 3: Comparison of Generated Unknowns in the Example Flip-Flop

“smart | “not smart
Case Row | CLR~ Q D CLK newQ” newQ
Casel 1 1 X 1 n 1 1
Case 2 2 0 X X X 0 0
Case 3 3 X X 0 n 0 X
Case 3 4 X X 1 A X X
Case 4 5 X 0 X - 0 X
Case 4 6 X 1 X - X X
Casel

Row 1 of the table shows that CL R~ is deasserted high, and thereisal on D. The
original state of Q doesn’'t matter in this case, and thereisarising clock edge. The
resultisalinQ.

Case?2
Row 2 showsthat CLR~ isasserted low. Theresulting Q is0 even though there are
unknowns on D and Q because the states of D, CLK, and Q do not matter with
“clear” asserted.

February 2001 Synopsys, Inc. 39

Chapter 2: About the Models SmartModel Library User’s Manual

Case3
Rows 3 and 4 show what happens when both CLR~ and Q are unknown and there
isarising clock edge. Inthe“not smart” flip-flop the output is unknown; however,
in the “Smart Flip-Flop” the output depends on the D input. For the “Smart Flip-
Flop,” if D isOasin Row 3, then newQ isknown to be 0. This situation leads to
either CLR~ being asserted, or the O at D being captured by the clock (CLK).
Conversely, if D is1 asin Row 4, then newQ istruly unknown. Inthiscase, if
CLR~ is asserted, then newQ is0. However, if CLR~ isnot asserted, thenthe 1 at
D is captured by the clock, which makes newQ a 1.

Case4
Rows 5 and 6 show what happens when both the CLR~ and D are unknown, and
the clock has not changed while Q has been at a steady state. In the “not smart”
flip-flop the output is unknown. However, in the “Smart Flip-Flop” the output
depends on the previous state of the Q output.

For the “ Smart Flip-Flop,” if Q is0 asin Row 5, then newQ remains at O either
because CLR~ is asserted or no clock has occurred to change the output.
Conversely, if Qis1asin Row 6, then newQ istruly unknown. Inthiscase, if
CLR~ is asserted then newQ is 0. However, if CLR~ is not asserted, then the
output remains the same.

Modeling Changing or Uncertain States

SmartModel Library models simulate all the timing parameters and logic states
specified by the device manufacturer, but in some situations the states of some pins are
uncertain. In most memory parts, for example, the data input/output lines can be either
high, low, high-impedance, or changing from one state to another. The models simulate
each known state according to its specifications, and use unknowns to represent the
uncertain or changing states. This concept isillustrated in Figure 5.

40 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 2: About the Models

ADD address(i) > address(i+1)
CE
< tCE - o
OE
tOE o {OH tDF
-
data(i) data(i+1)
X |
< tACC > < tACC - tOH

Figure 5: Changing States Timing Diagram

For example, amemory part manufacturer cannot be specific about the data line states
between the end of the data hold time and the end of the data access time. During that
time the I/O lines could be carrying the data from the last cycle or the current cycle. To
prevent data from a previous cycle from being accepted as valid, the model generates
unknowns during that time segment.

Though a memory part is used in the example, this modeling technique is useful in any
situation where uncertainties exist—as in the transitions from and to high-impedance
shown in Figure 5. If you push your designsto the limit, as you might when designing a
memory cache, you may appreciate this logically pessimistic behavior.

The access delay feature of memory models can be turned off using the library’s user-
defined timing feature.

February 2001 Synopsys, Inc. 41

Chapter 2: About the Models SmartModel Library User’s Manual

42 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

3

Browser Tool

Introduction

The Browser tool (LMC_HOME/bin/d_browser) providesagraphical user interfaceto
the SmartModel Library and the online documentation. This chapter provides
information about how to use the Browser to perform the day-to-day functions required
to make optimal use of the SmartModel Library of behavioral smulation models. This
information is organized in the following major sections:

« Selecting Modelsin SLMC_HOME
. Selecting Tool Versions

« Default Configuration (LMC) File
. Using the Browser Tool

« Configuration (LMC) Files

« Custom Configuration (LMC) Files

« Browser Tool GUI

Setting Environment Variables on NT Platforms

Many SmartModel Library installation and configuration steps require that you set
environment variables. Most of the examplesin this manua show how to set an
environment variablein UNIX using aC shell. For NT, you set environment variables
using the System Properties window. To access the System Properties window select
Sart > Settings > Control Panel and double-click the System icon. From the System
Properties window, select the Environment tab, enter the variable name and value, and
click Set. Then click on OK to dismiss the window.

February 2001 Synopsys, Inc. 43

Chapter 3: Browser Tool SmartModel Library User’s Manual

By default, new variables that you enter become “User” environment variables. If you
have administrator privileges you will also be allowed to create “ System” environment
variables. Note that any “User” variablesthat you create will override “ System”
variables set up by the system administrator at your site.

If the NT machinewhere you installed the SmartModel Library isto be used by multiple
usersit is probably best to set basic environment variables such as$LMC_HOME as
“System” variables. To do thisyou need administrator privileges. First, highlight an
existing entry in the System Variables portion of the System Properties window. Then
enter the variable name and value and click Set.

Running Console Applications on NT Platforms

Many SmartModel Library user procedures assume that you have accessto a UNIX
shell such asthe C shell. For example, instructions and examplesfor using SmartM odel
Library command-line tools assume that you have accessto a C shell. If you are
running on an NT platform, use the Console Application to run these tools. To access
the Windows NT Console Application, select Sart > Programs > Command Prompt.

References to environment variables on the NT command line must be delimited by the
percent sign (%). This differs from the way environment variables are typed on the
UNIX command line where the variable is simply introduced with the dollar sign ($).
For example, LM C_HOME/bin/mytool works on UNIX platforms, but must be typed
as %LMC_HOME%\bin\mytool on NT.

Selecting Models in $LMC_HOME

You can install and maintain multiple versions of the same model can in the same
$LMC_HOME. You select a specific version of amodel to usein adesign simulation
using configuration (LMC) files.

The default model version is the most recently installed version. In cases where you do
not want to use the latest installed version of amodel, you can override the default
model version by creating one or more custom configuration (LMC) files. The software
locates the default and custom configuration files using the SLMC_HOME and
$LMC_CONFIG environment variables. For more information about model versioning,
refer to “ SmartModel Library Versioning” on page 18.

When you invoke the Browser, the selection pane displays a list of timing versions for
the models that will be used by the ssmulator based on your $LMC_HOME and
$LMC_CONFIG variable settings. To find out what other versions of amodel are
installed in your library, use the Model Detail command.

44 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

Selecting Tool Versions

For some SmartModel Library tools, called model-versioned tools, the version of the
tool that is used is determined by the model. You cannot change the versions of model-
versioned tools because a particular version of amodel may depend on a specific tool
version to function properly. Examples of model-versioned tools include
compile_timing, ccn_report, smartbrowser, and smartcen.

For other SmartModel Library tools, called user-versioned tools, you select the version
of thetool to use viathe default and custom configuration (LMC) files, in the same way
that you select different model versions. You can select and use any version of a user-
versionsed tool that you have installed. However, it is often best to use the latest
version. Examples of user-versioned toolsinclude ptm_make, mi_trans, and
swiftcheck.

For more information about SmartModel Library tools refer to “Library Tools” on
page 191.

Default Configuration (LMC) File

The default configuration (LMC) file that comes with the SmartModel Library contains
alist of al installed SmartModel Library models, user-versioned tools, and their most
recently-installed versions. The LMC fileis platform-specific, and is typically named
platform.Imc (for example, hp700.Imc). Normally, when amodel versionisinstalled in
the library, the SLMC_HOM E/data/platform.Imc file is updated with the most recently
added model version. If, for example, Version 01002 has been more recently installed
than Version 01004, then Version 01002 is the default version used even though Version
01004 has a higher version number.

Before using the Browser tool, you must specify the default configuration file for the
Browser by setting your local 3LMC_HOME environment variable to the install
directory. The model versions specified in the default configuration file will be used by
the ssimulator unless you define other model versionsin one or more custom
configuration (LMC) files.

Using the Browser Tool

Set your environment variables and search paths by following the setup instructions
provided in the SmartModel Library Installation Guide. You are now ready to use the
Browser.

February 2001 Synopsys, Inc. 45

Chapter 3: Browser Tool SmartModel Library User’s Manual

Starting the Browser
At the command-line prompt, enter the following command to start the Browser:
% $LMC_HOWE bi n/ sl _br owser

You can also customize some Browser features by creating aninitialization file called an
sl_browser.ini file. Featuresthat you can customize include creating a custom user
menu, displaying by model at startup, and disabling the display of user-defined timing
(UDT) files. Following are procedures that you can follow to accomplish any of these
tasks.

Creating a Custom User Menu

If you have your own custom programs that operate on a specific model, and you want
to integrate these programs with the Browser, you can customize the Browser interface
to create a User menu that invokes these programs.

In the current working directory or in $SHOME (for access by you only); or in
$LMC_HOME/data (for access by all who use the same $LMC_HOME), create afile
named dl_browser.ini.

Enter the following linesin thefile:

[USER TOCOLY)

menu text l=commandl to execute
menu text 2=command2 to execute
menu text 3=command3 to execute
menu text n=commandn to execute

Note that you must enter the string [USER TOOLS] literally.

The following example sl _browser.ini file specifies the command /user/joeb/bin/foobar,
and names the corresponding menu entry Foobar.

[USER TOOLS]
Foobar =/ user/j oeb/ bi n/ f oobar

In the Browser, before executing your program, you must select a model on which the
program isto operate. For the model selected, the Browser automatically passes to your
program three arguments:

argl arg2 arg3

where argl is the model name, arg2 is the version number, and arg3 is the timing-
version (optional).

When you start the Browser, the User menu appears on the menu bar to the right of the
Actions menu.

46 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

Displaying by Model Name at Startup
By default, the Browser window displays the library models by timing version name. |If
you want the Browser to display by model name instead, you can override this default
using the sl _browser.ini file. Follow these steps:
1. If you aready have an ol _browser.ini file, useit in the instructions that follow.
Otherwise, create the file in the current working directory, in $SHOME, or in
$LMC_HOME/data.

2. Enter these linesin thefile:

[CPTI ONS]
show nodel s=true

Note that you must enter the string [OPTIONS] literaly.

Disabling the Display of User-Defined Timing (UDT)

Files
By default, the Browser window displays any compiled user-defined timing (UDT) files

that arein SLMC_PATH. If you want to disable the display of UDT files, you can
override this default using the sl_browser.ini file. Follow these steps:

1. If you aready have an ol _browser.ini file, useit in the instructions that follow.
Otherwise, create the file in the current working directory, in SHOME, or in

$LMC _HOME/data.
2. Enter theselinesin thefile:

[CPTI ONS]
show udt =f al se

Note that you must enter the string [OPTIONS] literaly.

The following example shows an sl_browser.ini file that creates the command
/user/joeb/bin/repl and names the menu entry Replace. This example also configures
the Browser to display by model name and disables the display of UDT files.

[USER TOOLY]
Repl ace=/ user/j oeb/ bi n/ repl

[CPTI ONS}
show nodel s=true
show udt =f al se

February 2001 Synopsys, Inc. 47

Chapter 3: Browser Tool SmartModel Library User’s Manual

Configuration (LMC) Files

A configuration fileisalso called an “.Imc” fileor “LMC” file. LMC standsfor “List of
Model Configurations.” There are two kinds of configuration files: default
configuration files and custom configuration files. All configuration files must have the
extension .Imc.

Configuration files contain alist of model names and user-versioned tool names, with a
version number specified for each model and tool. Following is an example of a
configuration file:

%°LT hp700
Model s added by S _Adnin: Fri Feb 23 15:56: 24 1996

%XE swi ftcheck 01009
%EXE m _trans 04059
%EXE pt m make 01006
90D at v2500 01000
9D bt 458 01000
%D c5¢_c8c_2 01000
%D dnv4s188 01000
9D ecl 01 01000
%D gal 18v10 01000
%D hn658128 01000
90D i fcl61 01000

%/CD ttl 0 01000 7400 74LS00

9%/LCD w ndows 01000
9D z8536 01000

Configuration File Syntax
There are three commands that can appear in an LM C file, asfollows:

%PLT platform_name

If this optional command is present, it indicates that a check is to be made to determine
if the platform specified is the same as that on which the software is currently running.
Examples of alowed values are decal pha, hp700, sunos, solaris, ibmrs, and pcnt. The
first line in the above example,

%LT hp700
indicates the hp700 platform. If PLT is absent, no checking is done.

48 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

X° Hint
If you want asingle LMC fileto be shared among severa platforms, omit
the PLT command.

%EXE tool_name version

This command specifies the versions of the most recently installed user-versioned
SmartModel Library tools. Examples of user-versioned tools include the following:

. swiftcheck—performs integrity checks on theinstalled library
« Mi_trans—translates memory image files for memory models

« ptm_make—creates simulator-specific portmap files, which list the port names of a
model and map those port names to the physical pins of the device.
In the example, the lines:

%EXE swi ftcheck 01009
%XE m _trans 04059
%EXE pt m make 01006

indicate that, when the tools are called, the versions that will be used are 01009 for
swiftcheck, 04059 for mi_trans, and 01006 for ptm_make.

%MOD model_name model_version [alias[alias]

This command specifies the model name, model version, and any aliases that might
apply to the model. In the example, the line

9D ttl 00 01000 7400 74LS00
indicates model ttl00, version 01000, with aliases of 7400 and 74L SO0.

Custom Configuration (LMC) Files

A custom configuration file contains alist of installed SmartModel Library models and
user-versioned tools to be used by the smulator. If you want to use tool or model
versionsthat are different from those in the default configuration file, create one or more
custom configuration files that specify the names and versions of those models and
tools.

February 2001 Synopsys, Inc. 49

Chapter 3: Browser Tool SmartModel Library User’s Manual

LMC files are platform-specific and must have the extension .Imc. You locate customer
configuration files for the Browser and your simulator by setting the SLMC_CONFIG
environment variable to the paths to the .Imc files. There are several reasons why you
might want to create a custom configuration file:

« Freezeyour design, so that it aways references the same model versions.

« Access aspecialized model version that no one else in your group should use.
« Check new models before releasing them to others.

« Archiveyour design, along with the model versions used.

« Access an updated model version to use anew or revised function, when other
design teams do not want to disturb their designs by using the updated model.

. Revert to aprevious version of one of the tools.

For NT, separate multiple entries for the SLMC_CONFIG environment variable using a
semicolon-separated list, not a colon-separated list asin UNIX.

The model versions specified in custom configuration files are used by the simulator,
overriding the versions of those same models that are specified in the default
configuration file. However, the model versions you specify must be installed in the
library at your location. To determine what versions of a specific model areinstalled in
your library, use the model detail function.

Creating a Custom Configuration (LMC) File
To create a custom configuration file, follow these steps:

1. In your home directory, open a new file named (for example) my_platform.Imc.
Although the file will be platform-specific, you do not have to use “platform.Imc”.

2. In another window, open aread only copy of the default configuration file,
$LMC_HOME/data/platform.Imc.

3. Inthe default configuration file, search for the models and tools whose version
numbers you want to change.

4. Asyou find each item, copy its version record (the entire line on which the item
appears) into the new file.

5. In the new file, change the version numbers to the ones you want.
6. Savethefile.

50 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

As an aternative, instead of copying the version record, you can create new version
records using the syntax rules described in “ Custom Configuration (LMC) Files” on
page 49. For example, to revert to the previous version of the swiftcheck tool and the
model adsp1008a, you would follow these steps:

1. In the default configuration file, locate those two items, and copy the respective
version records into your new file. The lines you copied might look like this:

o%XE swi ft check 04091
90D adspl008a 01003

The version numbers represent the current versions; the previous versions are
therefore 04090 and 01002.

2. Change each version number to the previous version and save thefile.

o%XE swi ft check 04090
90D adspl008a 01002

Creating a Custom Model Filter

When you start up the Browser, it displays alarge list of models and timing versions.
Normally, each user's design does not use all of the models. To limit the display to only
those models that are of interest to you, use the Model Filters dialog box. You can filter
the display using any combination of names, vendors, functions, and license packages.
For specific instructions, refer to “Model Filters Dialog Box” on page 66.

Creating a Custom Timing Version

If you need atiming version that is not already available with the SmartModel Library,
you can create your own custom timing version by copying and modifying an existing
timing file. Follow these steps to create a custom timing version:

1. Create adirectory for the customized timing file.

2. In the Browser selection pane, select the model whose timing file you want to
customize.

3. From the Actions menu, choose Copy Customizable Files, or click on the Copy
Customizable Files button in the toolbar. The Copy Customizable Files dialog box
opens.

4. 1f Timing Source Fileis not already selected, select it by clicking on its check box.

5. In the To Destination Directory text field, type the path name of the directory you
just created.

6. Click on the Copy button. The dialog box closes. The file has been copied to the
specified directory.

February 2001 Synopsys, Inc. 51

Chapter 3: Browser Tool SmartModel Library User’s Manual

To edit the timing file, follow these steps:
1. Open thetiming file.

2. Edit the timing file. If you are not familiar with the format and grammar of timing
data, refer to “User-Defined Timing” on page 157.

3. Save the timing file as model.td in the directory you created.

To prepare the timing file for simulation, compile the timing file. For details, refer to
“Running the Timing Compiler” on page 179.

I°5> Note
You must recompile the timing file each time you set your custom
configuration fileto adifferent model version or install anew model version
inthelibrary. Each compiled timing file (.tf file) iscompatible only with
the model version in the configuration files at the time the timing fileis
compiled.

To locate the timing file for the Browser and the simulator, set your $LMC_PATH
environment variable to the directory that contains the compiled timing file, as shownin
the example below:

% set env LMC_PATH / user/ e/

Your custom timing version isnow ready for usein simulation. By default, the Browser
displays this timing version and any other custom timing versions you may havein
$LMC_PATH.

Determining the Most Recent Model Version

To determine whether you have the most recent model version available, follow these
steps:

1. Select the model in the Browser’s main window and click on the Model Detall
toolbar button. Thisbringsup aModel Detail window which listsall versions of that
model installed in your SLMC_HOME.

2. Locate the latest datasheet for the model, using one of the following methods.
a. Go to the Model Directory on the Web:
http://www.synopsys.com/products/lm/model Dir.html

Enter the timing version name and start the search. From the resulting list,
select the required timing version. When the product information appears, click
on the product code to show the datashest.

b. Contact your local Synopsys representative.

52 Synopsys, Inc. February 2001

http://www.synopsys.com/products/lm/modelDir.html

SmartModel Library User’s Manual Chapter 3: Browser Tool

3. Look in the banner section at the top of the datasheet for the version number of the
model. Compare the version number with that of the model in your library. If they
match, you have the most recent version. If the datasheet shows a more recent
version, the difference may or may not be significant.

4. Read the more recent datasheet's history section to find out how the model changed.
(Model history sections appear at the end of each datasheet.) If the change was
functional or due to a bug fix, then there could be a significant difference between
the most recent version and the one you have. If the change was purely
administrative and did not affect model functionality, you may not need the most
recent version.

Displaying Model Datasheets
To display the datasheet for any model installed at your site, follow these steps:
1. From the Browser window selection pane, select a model.

2. Choose the Display Datasheet command from the Actions menu, or click on the
Display Datasheet toolbar button to make the datasheet appear.

Displaying All Timing Versions of One Model
To display all timing versions of one model, follow these steps:

1. If the selection paneis displaying the models by timing versions, choose Display by
Model Name from the View menu.

2. Locate the model whose timing versions you want to display.

3. Click on the folder icon next to the model name. In the selection pane, the timing
versions, including any custom timing versionsthat are in SLMC_PATH, appear in
hierarchical fashion, subordinate to the model.

Locating a Model in the Model List
To locate a model in the model list, follow these steps:

1. If the selection paneis displaying the models by timing versions, choose Display by
Model Name from the View menu.

2. To locate the desired model, choose the Filter command from the Actions menu, or
click on the Filter toolbar button. The Model Filters dialog box appears.

3. If the String Search option is not already selected, select it by clicking on its check
box. Inthe String Search text field, type in the model name.

February 2001 Synopsys, Inc. 53

Chapter 3: Browser Tool SmartModel Library User’s Manual

4. Deselect any other options that are selected by clicking on the check boxes. Only
the String Search check box should be selected.

5. Click on Filter.
6. Click on Close. The Model Filtersdialog box closes and the selection pane contains
the model.

T3> Note
You can aso scroll to the desired model if it is currently in the selection

pane.

If you do not find the model you are looking for, try expanding the search criteria by
putting wild cards in the search string. Model names generally do not exactly match the
vendor device names.

If you know the model is not in the library installed at your site, check with your system
administrator to find out whether the model is available on the CD but was not installed.
If the model is not available at your site, check the Model Directory on the Web at:

http://www.synopsys.com/products/lm/model Dir.html

or call your local Synopsys representative to find out if the model has recently become
available.

Displaying a Specific Vendor's Models
To display models of a specific vendor's devices, follow these steps:

1. Choose the Filter command from the Actions menu, or click on the Filter toolbar
button. The Model Filters dialog box appears.

2. Select the Vendors option by clicking on its check box.

3. Deselect the String Search field and any other options that are selected by clicking
on the appropriate check boxes. Only the Vendors check box should be sel ected.

4. In the Vendors list box, scroll to the desired vendor and select it.
5. Click on Filter.

6. Click on Close. The Model Filters dialog box closes and the selection pane lists all
models of the specific vendor.

54 Synopsys, Inc. February 2001

http://www.synopsys.com/products/lm/modelDir.html

SmartModel Library User’s Manual Chapter 3: Browser Tool

Displaying All Models That Have the Same Function
To display all models that have the same function, follow these steps:

1. If the selection pane is displaying the models by timing versions, choose Display by
Model Name from the View menu.

2. Choose the Filter command from the Actions menu, or click on the Filter toolbar
button. The Model Filters dialog box appears.

3. Select the Function/Subfunction option by clicking on its check box.

4. Deselect the String Search field and any other options that are selected by clicking
on the appropriate check boxes. Only the Function/Subfunction check box should
be selected.

5. In the Function/Subfunction list box, scroll to the desired function and select it.
6. Click on Filter.

7. Click on Close. The Model Filters dialog box closes and the selection pane lists all
models that have the specified function.

Finding Out More Details About a Model
To find out more details about a model, follow these steps:
1. Locate the model you are interested in.

2. Double-click on the model (or use the Model Detail command on the Actions
menu). The Model Detail dialog box appears. It contains information about the
version, configuration file, timing versions, and other details.

3. Click on Close. The dialog box closes.

Finding Out What Model Version You Have
To find out what model version you have, follow these steps.
1. In the selection pane, select the model or timing-version you are interested in.

2. From the Actions menu or the toolbar, choose Model Detail. The Model Detail
window opens. The model version is displayed in the Version box.

February 2001 Synopsys, Inc. 55

Chapter 3: Browser Tool SmartModel Library User’s Manual

Loading a Custom Configuration File
To load a previously created custom configuration (LMC) file, follow these steps:
1. If you are currently running the Browser, exit it.
2. Set your SLMC_CONFIG environment variable to the path of your LMC file.

o If you have no other configuration file already defined in SLMC_CONFIG or if
you do have an older file aready defined but want the file you are now loading
to replace the old file for thiswork session, enter the following on the command
line:

% set env LMC CONFI G /user/j ohng/ newfi | enane. | nt

o If you have a configuration file already defined in $LMC_CONFIG, and for this
work session want to use this existing file in addition to the configuration file
you are how loading, set 3LMC_CONFIG to both file names, separated by a
colon, in the order in which you want the files to be searched for models, as
shown in the following example:

% set env LMC_CONFI G user/johng/ newfi | enare. | nt :
[user/johng/ ol dfi | enarre. | nc

For NT, you must separate multiple entries for the SLMC_CONFIG
environment variabl e using asemicolon-separated list, not a colon-separated list
asin UNIX.

3. Invoke the Browser. The selection panedisplaysalist of timing versions, including
any model versions you specified in your new configuration file. The status pane
still contains the path referenced by the SLMC_HOME environment variable.

Use Environment Settings (LMCs)

Selecting this menu entry returns you to the list of models or timing versions originally
displayed in the Browser's selection pane. Thislist shows the models that the simulator
will useat ssimulationtime. To derivethelist, the software uses the environment settings
$LMC_CONFIG (which contains path names to any custom configuration files) and
$LMC_HOME (which points to the default configuration file). Therefore, the list can
be derived from more than one configuration (LM C) file, asindicated by the designation
“(LMCyg)” following the Use Environment Settings menu entry. If there are no custom
configuration (LMC) files, then thelist isderived entirely from the default configuration
(LMC) file.

For each model called by the design, the software searches first for model versions
specified in the custom configuration fileslisted in SLMC_CONFIG, in the order in
which they arelisted. If amodel isnot found, the software next searchesfor it in the
default configuration (LMC) file, 3LMC_HOM E/data/platform.Imc.

56 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

For example, if:
« LMC_HOME=/d/Id/latest
and
« LMC_CONFIG=/user/me/my_platform.Imc:/user/joel/joes _platform.Imc
for each model, the model version is obtained as follows:

1. The software first searches for the model in /user/me/my_platform.Imc. |If the
model is found, that model version is used and the software stops searching for the
model even though it might also be present in subsequent files.

2. If the software does not find the model in thefirst file, it searches
/user/joeljoes platform.Imc. Asbefore, if the model isfound, that model versionis
used and the software stops searching for that model.

I°5> Note
If the first model encountered isaversion that isnot in the library, the
selection pane does not display that model at al, even though there might be
other versions of it inthelibrary. Thisbehavior mirrorsthat of the simulator
at smulation time. Models that are missing from the displayed list will not
be found by the simulator. To detect and prevent potential simulation errors,
check to seeif any models called by your design are missing from the
displayed list. If so, generate aModel Report and then repair any errors
reported.

3. If the software does not find the model in the last custom configuration file, it
searches the default platform.Imc file found in the directory /d/Idl/latest/data. 1If the
model isfound, that model version is used and the search ends.

4. If the model is not found in any file, the SWIFT interface indicates to the simulator
that the model isinvalid. Depending on the simulator, it may issue an error message.
If you receive an error message about bad integration and a possible missing model,
or if you are unable to create an instance of amodel, first set your
LMC_COMMAND environment variable to “verbose on” and rerun the ssmulation.
If the messages produced are not sufficient to help you diagnose the problem, then
run the swiftcheck utility program.

Before running swiftcheck, make sure that one of the configuration files contains an
EXE command that specifies a version of swiftcheck. Also, check your custom
configuration files for a possible typing error in entering the model name, or for a
possible reference to amodel version not installed in the library at your site.

February 2001 Synopsys, Inc. 57

Chapter 3: Browser Tool SmartModel Library User’s Manual

For more information about using LMC_COMMAND, refer to the Smulator
Configuration Guide for Synopsys Models. For more information about swiftcheck,
refer to “ Checking SmartModel Installation Integrity” on page 200.

Repairing Errors Reported by a Model Report
To generate a model report, follow these steps:
1. Select one of the model report options by clicking on its radio button.

2. Click OK. Thedialog box closes and the Model Report results window appears.
Thiswindow contains the model report.
For more information about model reports, refer to “Model Report Dialog Box” on
page 68.

Models found in configuration files but not in library

When you select this report, the Browser lists models found in the default configuration
file (platform.Imc) or in your custom configuration files but not in the library installed at
your site. The Browser reports these models as errors. To repair errors, follow these
steps:

1. For each model, note whether or not it isused in your design.

2. For each model used in your design, use the Admin tool to install the model or
model version in the library at your location, or ask your system administrator for
help installing the models.

Models found in library but not in configuration files

When you select this report, the Browser lists models that were found in the library
installed at your site but not in the default configuration file (platform.Imc) or in your
custom configuration files. The Browser reports these conditions as errors. To repair
errors, follow these steps:

1. For each model, note whether or not it isused in your design.

2. For each model used in your design, check all configuration files for an incorrectly
entered model name.

3. Edit your custom configuration files to correct incorrect model names and to add
missing models.

58 Synopsys, Inc. February 2001

SmartModel Library User’s Manual

Browser Tool GUI

The Browser tool has standard graphical user interface features. Following are brief

Chapter 3: Browser Tool

descriptions of the windows, menus, icons, and dialog boxes you can use to work with
the models.

Browser Window

The Browser window is the command center from which you control the Browser as

you work with models.

Toolbar

.

-

Menu Bar
S sl_browser
File Yiew Actions Docs Help
(| [saacoo—rar cee100:

BAACL1000 (££100)
E|rl§|

BAACT11000 (££100
BAFOO-FAT {1003
EAFO0-GIG (££100)

FAACOO-FAT (LE100%

FAACLL000 CEE100%

@ & |2 |3 |

Library: fnets/grumoiresscratchylmc_home

2 models, 34 timing-wersions found

Status Area Selection Pane

Figure 6: UNIX Browser Tool Window

February 2001 Synopsys, Inc.

59

Chapter 3: Browser Tool SmartModel Library User’s Manual

Menu Bar
® s| browser Hi=] E3
File “iew Achionz Help
=R - 1010_100
(=] m-a1020_68
D38 |l - m1240_144
Toolbar | [PB || & a1240_84
Fler | a2 7s190
\ &5 || - epmB016
Custien|| . 256001 b
@ || = r4300_hv
Detal
Ch-le.:lk
[acs \
Library Directory |F:/gui_test/me_horme
Ready 4
Status Area Selection Pane

Figure 7: NT Browser Tool Window

The are four Browser window el ements

. Menu Bar—At the top of the Browser window, the menu bar contains the File,
View, Actions, Docs, and Help menus. You use these menus to initiate all Browser
functions.

. Toolbar—Arranged vertically at the left side of the Browser window, the toolbar
buttons provide easy access to functions also available through the Actions and
Docs menus.

« Selection Pane—T he sel ection pane takes up most of the window, and containslists
of models and timing versions.

. Satus Area—The status area shows the path name to the SmartModel Library
being operated on, and gives various status messages as appropriate.

60 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

You can customize the Browser window by adding an optional User menu or changing
the default display. For more information, refer to “Creating a Custom User Menu” on

page 46.

Menu Bar

The menu bar (see Figure 8) features several pull-down menus that you can use to
perform the tasks described below.

S g2l_browser

File Miew PBActions Docs Help

Figure 8: Browser Tool Menu Bar

File Menu
The File menu has the following options:

Use Environment Settings (LMCs)

Displays an alphabetical list of models or timing versions. Thelist is based on
configuration (LMC) files specified by the SLMC_CONFIG and $LMC_HOME
environment variables.

Open Specific Configuration (LMC)

Opensthe Open Configuration File dialog box to select asingle LM C file from which to
obtain alist of timing versions to display.

Print
Opens the Print dialog box (available only on NT platforms).

Print Preview
Opens the Print Preview (available only on NT platforms.)

Print Setup

Opensthe Print Setup dialog box, where you can select a default or user-defined printer.
(Thismenu item isonly available on NT platforms.)

February 2001 Synopsys, Inc. 61

Chapter 3: Browser Tool SmartModel Library User’s Manual

Exit
Ends the active Browser tool session.

View Menu
The View menu has the following options:

Display by Timing-Version Name
Displays an alphabetical list of timing version names from modelsin the LMC files.

Display by Model Name
Displays an alphabetical list of model names from the LMC files.

Show Model Names
Displays the model name associated with each timing version name. .

Expand Model

Expands the models by displaying hierarchical trees of the available timing versions for
each selected model. You can do the same thing by clicking on the model icons.

Expand All

Expands all models by displaying hierarchical trees of the available timing versions for
all models.

Collapse Model

Hides the timing versions for the selected models. You can do the same thing by
clicking on the icons of the expanded models.

Collapse All
Hides the timing versions for all models.

Actions Menu
The Actions menu has the following options.

Display Datasheet

Displays the datasheet for the selected model or atiming version. (Same as the Display
Datasheet toolbar button.)

62 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

Filter...

Opens the Model Filter dialog box, where you can select filtering criteriafor displaying
asubset of the model list. (Same asthe Filter toolbar button.)

Copy Customizable Files (timing,...)

Opens the Copy Customizable Files dialog box, where you can copy timing files or
other customizable files for the selected model or timing version to a specified directory
for customization. (Same as the Copy Customizable Files toolbar button.)

Model Detalil...

Opens the Model Detail dialog box, which provides version, platform, and other
information about the selected model or timing version. (Same as the Model Detail
toolbar button.)

Report...

Opens the Report dialog box, which displays environment information and allows you
to perform consistency checks on the installed library. (Same as the Report tool bar
button.)

User Menu

A custom User menu appears only if you create one using the optional sl_browser.ini
file. Clicking on the dashed line lets you “tear off” the User menu and drag it to a
convenient spot on your desktop for easy reference as you work. The following
example menu entries invoke the external commands as specified in the sl_browser.ini
file. You must select amodel before choosing one of these entries.

pti onal Wser Command 1
pti onal Wser Command 2

pti onal Wser Conmand n

Docs Menu
The Docs menu provides links to the SmartModel Library online documentation.

Help Menu

The Help menu displays the tool version number, copyright, and other information.

February 2001 Synopsys, Inc. 63

Chapter 3: Browser Tool SmartModel Library User’s Manual

Toolbar

You can invoke the major Browser tool functions from the toolbar. The toolbar buttons
provide another way to access functions available from the Actions and Docs menus. To
display the function of each toolbar button, place the pointer on the button. Table 4
describes the different toolbar buttons and what you can do with them.

Table 4. Toolbar Button Descriptions

Button UseTo...

Display Datasheet—
Displays the datasheet for the selected

model or timing version. (Same as the
EI Display datasheet command on the Actions
menu.)

Filter—
Opens the Model Filters dialog box, which
you can use to select the filtering criteria
EIHEl | for displaying a subset of the model list.
(Same as the Filter command on the
Actions menu.)

Copy Customizable Files—

Opens the Copy Customizable Files dialog
box, which you can use to copy timing files
@j or other customizable files for the selected
model or timing-version to a specified
directory for customization. (Same as the
Copy Customizable Files... command on
the Actions menu.)

Model Detail—
Opens the Model Detail dialog box, which
displays version, platform, and other
G‘l information about the selected model or
timing-version. (Same as the Model Detail
command on the Actions menu.)

Report—
Opens the Report dialog box, which

o displays environment information and
allows you to perform consistency checks
on theinstaled library. (Same asthe
Report command on the Actions menu.)

64 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

Table 4: Toolbar Button Descriptions (Continued)

Button UseTo...
Docs Button—
Opens the SmartModel Library User’s
Manual (this manual) in PDF format using
@l the Acrobat Reader.

Selection Pane

The Selection Pane displays an ordered list of models or their timing versions. When
you invoke the Browser, by default the selection pane displays alist of timing versions
corresponding to the Use Environment Settings (LM Cs) menu entry, and includes any
user-defined timing (UDT) files that are contained in the SLMC_PATH variable. Each
timing version name lists the corresponding model name in parentheses next to the
timing version name.

In the View menu, the Expand Model, Collapse Model, Expand All, and Collapse All
commands are grayed out.

To display asmaller subset of the list:

1. Choose the Filter command from the Actions menu, or click on the Filter toolbar
button (second from top). The Model Filters dialog box is displayed.

2. Filter the list as described in “Model Filters Dialog Box” on page 66.

To display the list by model name, choose the Display by Model Name command from
the View menu. The selection pane displays an ordered list of models by model name.
In the View menu, the Expand Model, Collapse Model, Expand All, and Collapse All
commands are no longer grayed out.

To toggle the hierarchical display of timing versions for asingle model:

1. With the selection pane displaying an ordered list of models by model name, click
on the folder icon of the desired model. The selection pane displays the model and
itstiming files as a hierarchical tree.

2. Click again on the folder icon of the same model. The timing files disappear.
I35 Note

You can also toggle the hierarchical display using the Expand Model,
Collapse Model, Expand All, and Collapse All commands.

February 2001 Synopsys, Inc. 65

Chapter 3: Browser Tool SmartModel Library User’s Manual

To toggle the hierarchical display of timing versions for al models:

1. Select the Expand All command from the View menu. The selection pane displays
all models and their timing files as hierarchical trees.

2. Choose the Collapse All command from the View menu. Thetiming files disappear.
To display alist of timing versions from a single configuration (LMC) file:

1. From the File menu, choose Open Specific Configuration (LMC). The Open
Configuration File dialog box opens.

2. Select the desired configuration file and click OK. The Open Configuration File
dialog box closes and the selection pane displays the corresponding set of timing
Versions.

Status Area

The status area displays the path to the model library that appears in the Selection Pane,
the number of models and timing versions found, and various status messages.

The status area also displays tool tips for the toolbar buttons as you move the pointer
over them.

Model Filters Dialog Box

The Filter function opens the Model Filters dialog box. Useit to specify filter options
for displaying a subset of the model library. You can select one or more of the four filter
options by checking the appropriate check box. The dialog box fields are as follows:

. Sring Search field—Contains a string that specifies amodel name or timing
version nameto search for. The search field isinitially set to display al models or
timing versions. By default, thisfield is selected (checked) when the dialog box
opens.

. Vendorslist box—Contains alist of vendorsto select asfilter options. Use this
field if you want to narrow the display to models of devices from specific vendors.

. Function/Subfunction list box—Contains alist of functions and subfunctions to
select asfilter options. Usethisfield if you want to confine the display to models
that have specific functions or subfunctions.

. Licensed Packageslist box—Containsalist of licensed packages to select asfilter
options. Usethisfieldif you want to confine the display to models contained in one
or more specific licensed packages, or if you want to know whether a specific model
Is contained in a particular licensed package.

. Summary Filter Optionsfield—Displays the filter options currently selected.

66 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

Execute the filter function using the Filter button at the bottom of the dialog box.

To specify amodel or timing version to search for, type the complete name of the model
or timing version, or a partial name with the wild card character (*) in the String Search
text field in each position where you have omitted characters.

To select one or more of the three remaining filter options, follow these steps:

1. Click on the check box for each desired option. Some combination of (No Vendor),
(No Function), and (No Marketing Group) appears in the Summary of Filter
Options list box. These appear ANDed with each other and with the String Search
value.

2. For each option you checked, select one or more items from itslist box. Usethe
scroll bar to traverse the list. To select more than one item, hold down the Ctrl key
asyou click on each item. Asyou select each item, its name appearsin the
Summary of Filter Optionslist box. If you select multiple items, they appear ORed
together.

To filter the models, follow these steps:
1. When you have finished selecting filter options, click on the Filter button.

2. Movethe Filter dialog box or click on the Close button to dismissit. Thelist box in
the Browser window displays alist of models and timing versions that meet the
filtering criteria. The status pane displays the number of models and timing
versions found.

Copy Customizable Files Dialog Box

The Copy Customizable Files function opens the Copy Customizable Files dialog box.
Useit to copy amodel'stiming file (or other customizable file) to your directory for
customization. For information about customizing timing files, refer to “ User-Defined
Timing” on page 157.

To copy acustomizable file, follow these steps:

1. From the selection pane, select the model or timing version whose timing file or
other customizable file you want to copy.

2. From the Actions menu, choose Copy Customizable Files. The Copy Customizable
Files dialog box opens. All customizable filesfor that model appear in the dialog
box.

3. If thefile you want to customize is not already selected, click on its check box.

February 2001 Synopsys, Inc. 67

Chapter 3: Browser Tool SmartModel Library User’s Manual

4. In the To Destination Directory text field, type the full path name of the directory
where you want the file to be copied.

5. Click on the Copy button.

Model Detail Dialog Box

The Model Detail function opensthe Model Detail dialog box. Useit to get information
about a specific model, such asits configuration file, installed versions, timing versions,
and installed platforms.

Initially, thelist of installed versionsin the Installed Versions field shows the top version
selected. The Timing Versions and Installed Platforms list boxes show information
specific to the installed version selected.

To display timing versions and platforms for another installed version, use the Installed
Versions list box to select another version.

Model Report Dialog Box

The Report function opens the Model Report dialog box. Use it to view information
about environment variables and select reports by clicking on their radio buttons.

The dialog box fields are as follows:

. Environment Variablefield—At thetop of the dialog box, thisfield contains paths
referenced by the environment variables used by the Browser. Usethisinformation
to verify that the models are referenced as you intended.

« Report Selection field—Following the environment variable field, thisfield
contains three options you can choose for generating reports:

o Report Configuration (LMC) file errors

Choose this option if you want to know about any models used by your design
that cannot be found in the library installed at your site. Thisoption is selected
initially.

o Report modelsfound in Library but not in Configuration (LMC) files

Choose this option if you want to know whether any modelsin the library
installed at your site are not listed either in the default configuration file or in
your custom configuration files.

o List al modelswith their source Configuration (LMC) files

68 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 3: Browser Tool

Choose this option if you want to see a mapping of each model to the
configuration file in which the Browser found it. Using this report, along with
the contents of the SLMC_CONFIG environment variable, you can verify that
thefilelisted first in $LMC_CONFIG contains the version of the model you
want to use in your design.

Save As... Dialog Box
You can use the Save As... button to save amodel report for future viewing or printing.

If the existing file name you want to use is not in the currently selected directory, you
can search for it in directories above and below the current directory.

To traverse the directory structure, follow these steps:
1. Select adirectory from the Directories list box.

2. Click on the Filter button. The selected directory now appears as the top-level
directory in the Directorieslist box. The Fileslist box containsthe names of filesin
the selected directory that have the extension .rpt. Notice that the file names are not
displayed until you click on the Filter button. Alternatively, if you know thefile
name directory you want to use, you can type it directly into the Filter or Selection
fields.

On NT platforms, use the standard Windows navigational tools to get to the
directory where you want to save the model report.

To save areport under an existing file name, follow these steps:

1. Select the desired file from the Fileslist box. The file nameis now appended to the
directory path name in the Selection text field.

2. Click on OK.

To save areport under a new file name, follow these steps:
1. In the Filter text field, change the old path name to the new path name.
2. Click on OK.

Open Configuration File Dialog Box

The Open Specific Configuration (LMC) function opens the Open Configuration File
dialog box. On NT, thisdialog box is called Open. Useit to display the contents of a
configuration (LMC) file (custom or default). If the file you want to open is not in the
currently selected directory, you can search for it in directories above and below the
current directory.

February 2001 Synopsys, Inc. 69

Chapter 3: Browser Tool SmartModel Library User’s Manual

To traverse the directory structure, follow these steps:
1. Select adirectory from the Directories list box.

2. Click on the Filter button. The selected directory now appears as the top-level
directory in the Directorieslist box. The Fileslist box containsthe names of filesin
the selected directory that have the extension .Imc. Notice that the file names are
not displayed until you click on the Filter button.

On NT, use the standard Windows navigational toolsto find and open the
configuration file that you want.

To open afile, follow these steps:

1. Select the desired file from the Fileslist box. The file nameis now appended to the
directory path name in the Selection text field.

2. Click on OK. The Browser window selection pane now displays the model names
from the selected file. Note that the Browser does not display a model if the
configuration file specifies aversion that is not in the installed library.

By default, the Browser searches for files with the extension .Imc. However, you can
search for files with a different extension, and you can search for a specific file. To
search for files with a different name or extension, follow these steps:

1. Inthe Filter text field, edit the file name so that it contains the desired name or * .ext.

2. Click on the Filter button. The Fileslist box now contains names of filesin the
selected directory that have the current name or extension.

To search for filesin a different directory, follow these steps:
1. Delete the text in the Filter text field.
2. Typein the desired path name, including the file name or extension.

3. Click on the Filter button. The Fileslist box now contains names of filesin the
specified directory that meet the filtering criteria

On NT, use the standard Windows navigational toolsto navigate and find the
configuration file that you want.

70 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 4: Memory Models

A

Memory Models

Configuring Memory Models

Memory models simulate internal memory locations. Most memory models are for
memory devices, but there are some processor, interface, and oscillator modelsthat also
have on-chip memory. You configure memory models at simulation startup using a
Synopsys memory image file (MIF). For on-chip memory in processor models you
configure the memory from a PCL program using the model-specific PCL commands
documented in the model's datasheet. Memory models check their initialization files
when they are loaded for ssmulation, as shown in Figure 9.

MIF File
Creation

Memory
Model

Figure 9: Process Flow for Memory Models

February 2001 Synopsys, Inc. 71

Chapter 4: Memory Models SmartModel Library User’s Manual

Using Memory Models

Memory models are flexible enough to support awide range of potential usesin
simulation. To make optimal use of thisflexibility, keep the following pointsin mind:

« Load minimum memory. Because memory allocation is dynamic and due to the
fact that you do not have to load al of the memory locationsin adevice, it isgood
practice to load only the minimum necessary to support the simulation. At
simulation startup the model allocates only as much system memory as required by
the data. The memory is allocated in groups of bytes based on the model's memory
size in order to minimize the number of allocations. During simulation, if an
address is used that is in an unallocated area, the model allocates new memory
locations to support the data written to the model.

. Key memory imagefile (MIF) namesto your schematic. It isbest to name MIF
fileswith the model instance name as part of the file name. Because model instance
names are always unique, thisis a handy way to pair memory devices with their
correct MIF files.

« Reuse MIF files. You canload the same MIF fileinto as many models as you want
by using the same file name with all instances on the schematic diagram.

« Turn off accessdelays. Memory models prevent invalid data from being accessed
before the minimum read cycle time has been satisfied by outputting unknowns. If
thisfeature is not useful for your particular ssimulation needs, you can disable it by
creating a custom timing file. For information about custom timing files, refer to
“User-Defined Timing” on page 157.

« Monitor internal memory. Change or monitor the values of internal memory
locations using SmartModel Windows memory window elements. For processor
models that have internal memory, you can use PCL commands to get the values of
internal memory locations. .

The Memory Image File (MIF)

A memory imagefile (MIF) isan ASCII file containing memory datato be loaded into a
model before simulation, thus saving the simulation time that would otherwise be
required to load the memory. You can load a memory model with afile that has
previously been dumped from the same or from a different memory model, as long as
their word widths are compatible.

One common use of memory image filesis for programming models of ROMs and
PROMs. If these models are not configured with an associated MIF file, they issue a
warning message at simulation startup.

72 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 4: Memory Models

Creating a Memory Image File (MIF)
To create a MIF file, follow these steps:
1. Using atext editor, create afile (for example, ramdkx4.img)
2. Enter the memory data, using the correct MIF file format.

Using a Memory Image File (MIF)
To load amodel’s ssimulated memory from a MIF file, follow these steps:

1. Configure the mode to use the MIF file by assigning the file to the SWIFT
MemoryFile parameter.

2. Start the simulation. MIF files are automatically loaded and checked for format
errors.

If you do not load memory data at simulation startup, check the model datasheet to
determine the default memory values at initialization. The contents of amemory device
model’sinternal memory at initialization depend on the manufacturer’s implementation.
Typicaly, the default for RAMsis “unknown” and the default for ROMsis*“1.”

You can modify previously addressed |ocations multipletimesusing one MIFfile. This
way you can load the entire memory image with one line in your MIF file and then
modify selected values on a case-by-case basis.

Memory Image File (MIF) Format

A MIF file contains one or more records. Each record specifies the data to be written to
one or more memory locations.

MIF File Conventions

The following list shows the conventions and rules that apply to the syntax description
for MIF file records:

. Braces({ }) indicate alist of one or more entries.

. Brackets ([]) indicate optional entries.

. ltalicsindicate variables for which you specify actual values.
. Fieldsare not case-sensitive.

« Morethan one record can appear on aline.

« Thecharacter “X” or “x” indicates an unknown value, and isillegal except in adata
word where the data is expressed in binary, octal, or hexadecimal (not decimal).

February 2001 Synopsys, Inc. 73

Chapter 4: Memory Models SmartModel Library User’s Manual

MIF File Record Syntax
Following is the syntax for MIF file records:
{addressl [:address2] / base specifier data value;} [# comment]

addressl
The memory location to which dataisto be written, or the beginning address of a

range.
-address2
The end address of arange. Either acolon (:) or ahyphen (-) can be used asa
delimiter.
/base_specifier
A dlash (/) separates the address specification from the dataword. The
base specifier argument is one of the following:

“b. Binary

0. Cetal

“d. Decimal

"h. Hexadecimal (the default)

You can mix different base numbers within a record.

data_value;
The value of the data word to be written to the specified memory locations. A

semicolon (;) defines the end of each record.

comment
A comment can be included in arecord by using the pound sign (#). All
information from the pound sign to the end of the lineis treated as a comment.

Example 1

The following example shows how various constructs can be used or combined inaMIF
file. In thisexample, the width of the memory location is 8 bits.

0:3/0; #Col on separator for address range

4-6/0; #Hyphen separator for address range

“d7/' b10101110; #Addr ess and data can use a different
#nuneri c base

10/ 0; 11/ b10000000; #Two records on the sane |line

12: 1e/' HxF; ~d31/ " hX8; #Information is case-insensitive

20: 7TFF/ 4; #Load renai ni ng addresses w th 00000100

74 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 4: Memory Models

Example 2

When you specify the data value to load into memory, the safest practice is to specify
values that match the width of the memory location; however, thisisnot required. If the
data value has fewer bits than the memory location, the model pads the value with
leading zeros. If the datavalueislarger than the memory location, the model rejects the
data and issues awarning message.

The following example specifies that the hex value F (binary 1111) is to be loaded into
memory location O (zero). If the memory location is 9 bits wide, the value entered is
000001111; if the location is 6 bits wide, the value is 001111; and so on.

0/ F

Example 3

Unknown values are most easily specified in binary; often the unknown represents a
single bit. Inthe following example, for an 8-bit memory location the binary valueis
loaded into OF exactly aswritten; the hex value xF isloaded into FA asxxxx1111. For a
9-bit memory location, the binary value is loaded as 01010x0x1 and the hex value as
Oxxxx1111.

CF/ ' b1010x0x1;
FA xF;

Memory Image File (MIF) Address Mapping

Each record in a MIF file specifies an address followed by the data value to load at that
address. To trandate the address in aMIF file to a column and row address (or vice
versa), follow the steps below. (Or, if you have an Intel Hex or a Motorola S-record
memory image file, you can usethe mi_transtool to translate the file into the format
used by memory models in the SmartModel Library. For more information, refer to
“Trandating Memory Image Files’ on page 198.)

1. Use Table 5 to find the number of bitsin the row and column addresses.
Table 5: Bits in Row and Column Addresses

Column
Device Size Row Bits Bits
4MB 11 11
1MB 10 10
256 KB 9 9
64 KB 8 8

February 2001 Synopsys, Inc. 75

Chapter 4: Memory Models SmartModel Library User’s Manual

2. Write the address in the memory image file, in binary, padding with leading zeroes
to get the correct number of bits. For example, withal MB memory device, the
address 4834 hexadecimal expressed in 20 bitsis:

0000 0100 1000 0011 0100

3. Divide the bitsinto two sets. The upper number of bitsis the row address and the
lower is the column address:

00 0001 0010 00 0011 0100
The row address (in hex) is 12; the column addressis 34.

As another example, we use a 256 KB memory and a MIF file address of 2405.
Written as an 18-bit value, the addressis:

00 0010 0100 0000 0101

Divide the 18-bit address into two 9-bit segments and translate back to hex:
0 0001 0010 0 0000 0101

In hex, the row addressis 12, and the column address is 05.

Memory Image File (MIF) Format Checks

When amodel configured with aMIF file isloaded for simulation, the model performs
error checksto validate that the following conditions are true:

. Vaid memory locations for the device were specified.
« Legal specifications were used.
. Datavalues do not exceed the memory width.

If amodel’s MIF file loads correctly, you will see a message similar to the following
example:

Info: Loading the nenory inage file "W2. mem'.
(n=W2) (conp=lai_cy7c128-14-0-8) (loc=Al-48) (Iai=CYrCl28-25),
at t=0 (0.0 ns).
- 17 values have been initialized.

76 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 4: Memory Models

If amodel’s MIF file does not |oad correctly, the resulting message will be similar to the
following example:

Info: Loading the nmenory inage file "W2. mem'.
(n=WR2) (conp=lai_cy7c194-14-0-8) (|l oc=Al-48) (Ilai =CY7Cl94-25),
at t=0 (0.0 ns).

--- Invalid data value "DB' on line 2.
It must be less than or equal to F. The line will
be i gnor ed.

--- Invalid data value "18" on line 3.
It must be less than or equal to F. The line will be
i gnor ed.

--- Invalid data val ue "50" on line 7.
It nust be less than or equal to F. The line will be
i gnor ed.

--- 7 values have been initialized.

If you specify a MIF file and the model fails to locate it, a warning message identifying
the model is generated when the model isloaded. Aslong asthe memory image is not
required during the simulation, neither the warning message nor the default parameter
value on the memory device will adversely affect your simulation.

Dumping Memory Data

Models that smulate internal memory locations can write their contents to an external
system file—referred to asa dump file. You can use the SWIFT command channel
DumpMemory command to write the contents of amodel's simulated memory locations
to adump file at any time during asimulation. If the specified file does not exigt, itis
created. If thefilealready exists, it isoverwritten. The memory dump operation allows
you to eliminate the read cycles required to verify the success of atest. If you issue the
DumpMemory command on amodel that does not have internal (simulated) memory
locations, a warning message is issued.

The dump file format is the same as MIF file format—addresses and data are
represented in hexadecimal, except that datais represented in binary if the data contains
any unknown hits.

February 2001 Synopsys, Inc. 77

Chapter 4: Memory Models SmartModel Library User’s Manual

The size of the dump file is minimized by filtering datathat remainsin itsinitial or
power-up state, and by writing out only one data line for contiguous addresses that
contain the same data value. For example, consider the following memory contents—
8 bitswide:

Addr
Addr
Addr
Addr
Addr
Addr

[cNeoNeoNe

0
1
2
3

8 = 11111111
15 = 1100X1X0

All other addresses contain an initial value of X.

The dump file contents would be:
0:3/0; 8/ FF; F/'bl100X1X0;

I35 Note

If you subsequently load the dump file for the same instance of a memory
model, you are guaranteed to put the memory back in exactly the same state
it was in when it was dumped.

78

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 5: PLD Models

5

PLD Models

Configuring PLD Models

Like the actual devices, Programmable Logic Device (PLD) modelsin the SmartModel
Library are programmable. To configure aPLD model, you use a JEDEC standard file.
PLD models check their initialization files when loaded for ssimulation, as shown in
Figure 10.

JEDEC File
Creation

JEDEC
File

PLD
Model

Figure 10: Process Flow for PLD Models

February 2001 Synopsys, Inc. 79

Chapter 5: PLD Models SmartModel Library User’s Manual

Like all modelsin the library, PLD and PAL models provide error checking during
simulation.

Each PLD model datasheet contains a port name to pin number cross-reference table,
which shows the mapping of a model’s port names to a particular package type’'s pin
numbering.

Programming PLD Models

PAL and PLD models are programmed with afile that conformsto JEDEC
STANDARD No 3-A, Standard Data Transfer Format Between Data Preparation
System and Programmable Logic Device Programmer, May 1986. To configure a
model to use a particular JEDEC file, use the SWIFT JEDECFile parameter. Table 6
showstheprogrammingandtestingfiel dsspecifiedby the JEDEC standard.

Table 6: JEDEC Standard 3-A Fields and Their Uses in PLD Models

Identifier Description Use

not applicable | Design specification required
N Note not used
QF Number of fusesin the device not used
QP Number of pinsin test vectors not used
Qv Maximum number of test vectors | not used

F Default fuse state optional if Field L isused

L Fuse list optional if Field F is used

C Fuse checksum optional, and “0000” isvalid

X Default test condition not used
Vv Test vectors not used
P Pin sequence not used
D Device (obsolete) not used
G Security fuse not used
R, ST Signature analysis not used
A Accesstime not used

80 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 5: PLD Models

The F and L fields are complementary; if oneis used, the other is optional. Fields
marked “not used” still can be included in the model’s programming file but they have
no effect.

You can use a JEDEC standard file already created by programs like ABEL, CUPL, or
PALASM, or you can create your own simplified version. If you create your own
JEDEC file, the PLD models do not require all the fields specified by the standard; use
the programming and testing fields described in the table.

Following is an example of asimple JEDEC programming file. The example specifies
that the default fuse condition is alow-resistance link (0). The fusesfrom O to 39 are
explicitly defined by the L field; and a checksum is used.

DUMVY HEADER®
FO*

L0000 01001110 00001000 11110000 11111111 01010001
Q021A¢

275> Note
Asdefined in the JEDEC standard, if afuse is specified more than once, the
last state replaces all previous states for that fuse. If more than one
checksum field isin thefile, the last one is used, which allows afile to be
easily modified or patched.

JEDEC File Format Checks

At simulation startup, each PLD model searchesfor its JEDEC programming file. If the
programming file is missing or unspecified the model issues awarning message. If the
programming fileis properly specified, the model instead issues an informational
message when loading is complete. The message format is similar to that shown in the
example below.

Info: Loading the JEDEC file “U23.jed".
(n=W23) (conp=EP1800) (Il oc=A9-12) (Il ai =EP1800), at t=0 (0.0 ns).
- 12680 fuses have been bl own.

When aPLD model with a JEDEC programming fileisloaded for ssmulation, the model
performs a series of error checks. The model checks the order of the fieldsin thefile
and then compares the character types and number of digits against the field type. The
model also checksthat all fuselinks are specified, and that all the addresses are legal for
the device. Finally, the model computes the checksum and checksit against the
checksum in the JEDEC file.

February 2001 Synopsys, Inc. 81

Chapter 5: PLD Models SmartModel Library User’s Manual

The following example shows the kind of information message that the model generates
after going through the error checking sequence.

Info: Loading the JEDEC file “U31.jed".
(n=U31) (conp=PAL16R4) (loc=Bl-8) (lai=mm _16r4), at t=0 (0.0 ns).
--- Invalid nuneric character "L" on |line 23.
A hexadecinal digit is expected.
--- The checksum val ue “3056” on |ine 63 does
not match the cal cul ated val ue “3543".
--- Not all of the fuses have been defined. The
first undefined fuse is at address “4".
--- 1036 fuses have been bl own.

Using PLD Models

To make PLD models easier and more efficient to use, follow these guidelines:

82

. Key JEDEC file namesto your instance name.

Use the instance name as part of your JEDEC file name. Thisisahandy way to pair
PLD modelswith their programming files because each model has aunique instance
name.

Patch programming files rather than rewriting them.

PLD models conform to the JEDEC standard, which contains provisions for easily
patching a programming file. To patch a programming file, ssmply append the new
fuse and/or checksum data to the end. The new data always replaces previous
specifications.

Reuse file names rather than changing the SWIFT JEDECFile parameter.

In many simulation environments, changing the file name requires changing the
schematic, recompiling, and then restarting the simulation. You can avoid this

problem by reusing a model's file name for afile with new information in it rather
than instantiating the part and changing the value of the property or parameter.

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

6

SmartCircuit FPGA Models

Introduction

SmartCircuit models simplify the integration and simulation of device models from the
leading FPGA and CPLD device vendors. And the debugging tools designed
specifically for use with SmartCircuit models enable you to monitor design state, trace
cause and effect events, and analyze your design structure.

This chapter presents user and reference information for SmartCircuit models and their
debugging tools organized as shown in the following table.

Type of
Information IsLocated In ...
Overview « “Using SmartCircuit Models’ on page 84
« “SmartCircuit Technology Overview” on page 86
. “Debugging Tools Overview” on page 89
Procedure . “Tracing EventsIn Your Design” on page 91
« “Viewing Internal Nodes During Simulation” on page 95
. “Browsing Your Design Using SmartBrowser” on page 106
Reference . “SmartBrowser Command Reference”’ on page 111
. “Model Command File (MCF) Reference” on page 119
. “smartccn Command Reference” on page 122
. “ccn_report Command Reference” on page 125

February 2001 Synopsys, Inc. 83

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

For a detailed application note that discusses how to use the various SmartCircuit
debugging tools to verify an FPGA design, refer to the SmartModel Products
Application Notes Manual.

Using SmartCircuit Models

SmartCircuit models integrate smoothly with the software tools from leading CPLD and
FPGA device vendors and third-party vendors that produce netlist or JEDEC files
back-annotated with package-pin and/or timing information.

SmartCircuit models must be configured and initialized before they will operate. The
model configuration phase consists of attaching SWIFT parameters to a model instance
viathe simulation environment. The software assigns default names to these parameters.
With SmartCircuit models, you must set the SCFFile parameter to point to the location
of the model command file (MCF) for the model.

If the model cannot find the specified MCF file at initialization, it issues an error
message. When the model finds the specified MCF, it checks the file syntax and
executes the commands that it contains, including the “load” command found in all
MCEF files. After loading the compiled configuration netlist (CCN), the model
initializes. If the model cannot load the CCN file, it issues an error message.

The operation phase begins at time 0 after the model loads the MCF. The actual
functions performed depend on the device being model ed; details are documented in the
datasheets for the device and model.

175> Note
SmartCircuit models do not support JTAG functions or configuration
through boundary scan pins.

84 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

Quick Start for SmartCircuit Models

Before using any SmartCircuit model in adesign, refer to the model's datasheet for
specific information about how to configure and use that particular model. Individual
model datasheets provide information about technical issues or special usage
considerations you may need to be aware of, such as specific options required in the
FPGA vendor tools to target the netlist to SmartModels. For information on finding
model datasheets using the Browser tool, refer to “ SmartModel Datasheets’ on page 25.

To use a SmartCircuit model in adesign, follow these steps:
1. Instantiate the model in your design.

For information about instantiating SmartM odels and configuring them for usein
your simulator, refer to the Smulator Configuration Guide for Synopsys Models.

2. Generate adesign netlist or JEDEC file.

Using the design tools provided by the device manufacturer or third-party vendor,
generate a netlist or JEDEC file for your design. Refer to the model datasheet for
information on the required netlist format or JEDEC file for your device.

3. Create amodel command file (MCF).

An MCF fileisan ASCII file that contains instructions the model executes at
startup. Your MCF can have any name you choose, but the convention isto give
these files .mcf extensions for consistency.

Using an ASCII editor, create and save afile that contains the following line:
| oad -source netlist_name
where netlist_name is the path to the netlist or JEDEC file you generated in Step 2.

For example, if your netlist is named sample.edo, use the following command in
your MCF file:

| oad -source sanpl e. edo

The model automatically loads the specified netlist and translatesit into a compiled
configuration netlist (CCN), if necessary.

4. Verify or change the model's SCFFile parameter.

To use a SmartCircuit model in asimulation, set the value of the SCFFile parameter
to the path name of the model's MCF file. This can be done in one of two ways:

o Edit the parameter value to use the name of the MCF you created in Step 3.
Or

o Assign your MCF file the same name as the current value of the SCFFile
parameter.

February 2001 Synopsys, Inc. 85

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

1. Run your simulation.

SmartCircuit Technology Overview

86

SmartCircuit technology uses a hierarchy of cell descriptionsto model afamily of
FPGAs or CPLDs. Each cell provides logic building blocks that map to specific
functions of the device. The cell descriptions for a device family are combined into a
cell library for that family of devices.

Figure 11 illustrates the typical data flow for a SmartCircuit model; boldfaced items
indicate tools or files supplied by Synopsys.

Synopsys, Inc. February 2001

SmartModel Library User’s Manual

Chapter 6: SmartCircuit FPGA Models

Family cell library
(family.ccl)

Pin Map file
(design.pmp)

Model Command File

Sample
Single CPLD
device in a OE [— ’\[&
user’s design
BIN% = u | U3 > OUT
u2
CLK =
Design
Database

Netlist/ JEDEC
file

CCN file

(design.ccn)

(design.mcf)

load design.ccn

EDA Simulator

Third-Party netlist
generation tool

Generic cell library
(base.ccl)

SmartBrowser

Figure 11: SmartCircuit Model Data Flow

February 2001

Synopsys, Inc.

87

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

At the top of Figure 11, starting with asingle FPGA or CPLD device you have
instantiated in your design, you use the device manufacturer’s (third-party) compiler
tool to generate an FPGA design netlist or a JEDEC file for the model along with any
other required design-specific options. (Refer to the individual SmartCircuit model
datasheets for information about the design netlist or JEDEC file format required for a
specific mode!).

SmartCircuit models also obtain vendor-specific functions from a cell library (for
example atera.ccl) that is based on device families from semiconductor vendors such as
Actel, Altera, Vantis, Lucent, Cypress, Intel, Lattice, QuickLogic, and Xilinx.

The smartcen tool uses inputs from both of these sources to produce the complied
configuration netlist (CCN) file needed to configure a SmartCircuit model for
simulation. You can also use the smartccn tool to generate other files, such as pin-map
files (.pmp). For more information, refer to “smartccn Command Reference” on

page 122.

You can later extract information from the CCN file using the ccn_report tool, the
SmartBrowser, or the Visual SmartBrowser (VSB). For example, you can generate a
windows definition file, which allows you to monitor internal nets within your design.

Asillustrated at the bottom of Figure 11, the simulator oads the model, which
configures itself based on commands found in the MCF file.

User-Defined Timing for JEDEC-based Models

If you have created atiming file that contains timing specifications that are newer than
those shipped with the model, you can compile the netlist with the more recent timing
information. Note that the user-defined timing feature only works with JEDEC-based
SmartCircuit models.

To compile the new timing file into a model, invoke smartcen with the -u switch and
specify the name of the user-defined timing UDT file. The -u switch directs smartcen to
use the timing contained in the specified UDT file.

The following example causes smartccn to compile a new CCN file for the mach110
model using aUDT file called my_new_timing.tf.

%smartccn sanple.jed -u ny_new tining.tf -mnachl10

88 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

Debugging Tools Overview

SmartCircuit debugging tools work in conjunction with the models to help you verify
and validate your design at the back-end system level. After your design has been
flattened, mapped, and fitted—to the point where the original structure islost—
SmartCircuit models and debugging tools help you visualize and fix design issues.

The SmartCircuit debugging tools have four major components:

« Causal Tracing (described on page 91)—enables you to identify the source of
timing or functional problems for models of CPLD and FPGA devices. For
example, you can use causal tracing to locate the source of setup, hold, or pulse
width violations before running your simulation. Afterwards, you can trace adesign
error or aconstraint violation to its source and quickly determineif the error isinthe
system or in the programmable logic design.

« SmartCircuit Monitor (described on page 96)—Iets you view internal states and
signal elements inside your programmable logic design. You select probe sites of
interest and SmartCircuit Monitor reports back state and net information through the
transcript window of your simulator.

. SmartBrowser (described on page 106)—allows you to dissect the design netlist to
observe connectivity of elements and their properties.

. Visual SmartBrowser (VSB) (described in Visual SmartBrowser User’s Manual —
UNIX version or NT version)—provides al the capabilities of the command-line
SmartBrowser, while adding improved visual traversal and display of your
programmable logic design through an easy-to-use GUI interface.

SmartCircuit Monitor and Causal Tracing commands are placed in the model command
file (MCF), along with the standard MCF commands. At simulation startup, the
simulator reads the MCF for amodel and interprets the commandsit contains, including
debugging commands. The output from these commands is piped to the simulator
transcript window. Based on the information you gather with these tools, you can make
changes to your design or MCF and then rerun your simulation.

February 2001 Synopsys, Inc. 89

Chapter 6: SmartCircuit FPGA Models

Sample Circuit

SmartModel Library User’s Manual

To help you better understand how to use SmartCircuit models and the debugging tools,
use the sample circuit in Figure 12 as areference for the examples presented in this

chapter.

-

Al
A2+

CLK—

VCC

BUF1

BUF2

BUF3

BUF4

TSBUF1

N3
N4
O\ N7
L/ \
AND2
N5
PRN
b o N8]
N6 |
CLRN
DFF
N1 ﬁ)

TSBUF2

Figure 12: Sample SmartModel Circuit

SmartCircuit Model Pin Mapping

Place and route tools assign physical pin numbers to nodesin your design (schematic or
HDL). When connecting a SmartCircuit model symbol in a schematic (or netlist), you
must know which pins on the symbol correspond to the nodesin the design. Use the
model’s pin map file (.pmp) as a cross-reference between pin names and numbers.

The pin map file generated by using the -p switch with the ccn_report tool isaduplicate
of the pin map file generated by the smartccn compiler. Pin map files contain cross-
references between model port names, package pin numbers, and the design netlist.
Figure 13 illustrates this relationship.

90

Synopsys, Inc.

February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

Design Netlist Package Pins Model Ports
CLK » 28 » |0_MC28
Q > 18 > |O_MC13
Al > 4 » |O_MC1
I [|
| |
Vendor Place & Route Tools SmartCircuit Model Pin Mapping

Figure 13: SmartCircuit Pin-to-Port Mapping

I°5> Note
Pin naming conventions are detailed in the datasheets for individual
SmartCircuit models. For information on finding model datasheets using
the Browser tool, refer to “SmartModel Datasheets’ on page 25.

Tracing Events In Your Design

When you encounter problems with adesign during asimulation run, it is often helpful
to be able to trace events to see where the problem is occurring or to trace the causes of
aproblem to their roots. You can use the causal tracing capability to do just that.

Throughout this discussion of causal tracing, we often use the terms parent event and
child event. Parent events and child events have a cause-and-effect relationship; some
stimulus or circumstance on the parent event causes the child event to occur. An event
that was caused by a preceding event, and in turn causes another event, is both a parent
and achild at the same time.

Causal tracing consists of two commands:. set cause and report. These commands have
several forms you can use to define the scope of event tracing and produce reports
detailing the cause or effect of an event. Report output appears in the model message
transcript.

The signal values displayed within causal tracing are the same as those displayed by the
monitor command. These signal values are described in Table 8 on page 97.

February 2001 Synopsys, Inc. 91

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

Causal Tracing Command Descriptions

Following are summaries of the causal tracing commands that you can put in the
model’s MCF file. For causal reporting purposes, when events occur simultaneously at
acircuit element, only one event is determined to have caused any subsequent circuit
changes.

. report cause—produces alist of parent events of the triggering event on a net or
port that occur between start_time and stop_time.

. report effect (page 93)—produces alist of child events of the triggering event on a
net or port that occur between start_time and stop_time.

. Set cause (page 94)—determines what events are reported when a constraint
violation occurs or determines the general scope of causal reporting.

You can use the report cause and report effect commands to produce reports showing the
cause and effect of events that take place during your simulation. The following
sections provide detail s about each command.

report cause Command
report cause name start_time [stop_time]

Produces alist of parent events of the triggering event on a net or port that occur
between start_time and stop_time. If you don't specify a stop_time, the tool checks the
event only at the time specified by start_time.

The report cause command traces the cause of asignal event on anodein adesign. A
node can be any net or port defined within a design.

A cause report is simply the chronological history of signal events that lead up to the
trigger event. The report isin reverse chronological order—it starts at the trigger event
and traces backward until it reaches the causal signal event that is responsible for the
trigger event.

When used in conjunction with the set cause full command, the cause report includes the
history of all signal events, starting at the trigger event and working backwards to the
causal event.

92 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

When used in conjunction with the set cause nofull command, the cause report includes
only the causal event.

275> Note
The report cause command can trace only one causal event at atime. When
report cause encounters simultaneous signal events that have caused the
trigger event, it traces only one event. Which event gets traced depends on
the internal ordering of the model's causal history records.

report effect Command

The report effect command traces the effect of asignal event on anode within a design.
A node can be any net or port defined within adesign. The effect report isahistory of all
signal events, starting at the trigger event and working forward to all terminal events. A
signal event on adesign port is considered terminal, even though the port may be
bidirectional.

For example:
report effect name start_time [stop_time]

produces alist of child events of the triggering event on a net or port that occur between
start_time and stop_time. If you don't specify astop_time, the tool checksthe event only
at the time specified by start_time.

When the report effect command encounters simultaneous signal events at an internal
circuit element, one signal event is considered to have caused any subsequent signal
events. The report ends at the point where the event being traced does not cause any
subsequent events.

To produce an effect report for the sample circuit shown in Figure 12, your M CF would
need to contain these lines:

report effect CLK 150
report effect AL 200

Unlike cause reports, effect reports are not bounded. In a cause report, the start and end
times are known, and the report is bounded by these times. In effect reports, the end
time is unknown when the report begins, so effect reports may be interrupted by other
reports or by model messages.

T3> Note
You cannot change the scope of effect reports. The scope of effect reporting
isawaysfull.

February 2001 Synopsys, Inc. 93

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

set cause Command

The set cause command has two variations. one that determines the general scope of
cause reporting, and a second that determines the constraint violation scope of cause

reporting.
For example,
Set cause constraint | noconstraint

determines what events are reported when a constraint violation occurs. The default
setting is noconstraint. The constraint argument causes the analysis report to contain all
eventsinvolved in aconstraint violation. For instance, if thereis a setup or hold
violation, then the DATA and CLK paths that caused the event to occur are reported.
The noconstraint argument causes the model to produce areport listing only the errors,
with no tracing information, when a constraint violation occurs.

Whereas,
set cause full | nofull

determines the general scope of causal reporting. The default setting is full, which
produces an analysis report that contains all causal events, from the trigger through the
earliest parent event. The report produced when you use the nofull argument is
significantly shorter, and lists only the parent events.

275> Note
You must specify the full/nofull and constraint/noconstraint arguments using
Separate set cause commands.

To produce a cause report with the scope set to full for the sample circuit shown in
Figure 12, your MCF file would need to contain these lines:

set cause full
report cause Y 150 250
report cause Q 280

94 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

Viewing Internal Nodes During Simulation

There are two different waysto view events on internal nodes during simulation using
SmartCircuit models:

. “SmartModel Windows” on page 95
« “SmartCircuit Monitor” on page 96

Table 7 compares these different viewing methods so that you can choose which oneis
best for your needs.

Table 7: Windows and Monitors Tool Comparison

Read the Sate of Writeto the Sate of
Viewing Tool Internal Nodes? Internal Nodes? Output Appearsin ...
SmartModel Windows Yes Yes (1) Simulator waveform
viewer
SmartCircuit Monitor Yes No Simulator transcript
window

(1) Not al SmartModel Window elements are set up for write permission. For information on the
read/write status of window elements, refer to the individual model datasheets.

Although the SmartBrowser tool (described on page 106) does not allow you to read or
write to internal nodes, it does provide the complementary capability to view overall
design topology and properties.

SmartModel Windows

SmartModel Windows is afeature that allows you to access internal net and state
information during simulations. SmartModel Windows is especially useful with
SmartCircuit models because it enables you to monitor and change design element
values.

With SmartModel Windows, you can create windows for two types of design elements:
states and nets. When you force awindow element to some value, it remains at that
value until anormal event occurs that changes the state of that element or until you
apply anew forced value.

You define windows by placing statements in the MCF file. You can also place these
statements in a separate file that is referred to by a“do” command in the MCF file.

February 2001 Synopsys, Inc. 95

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

Creating Buses and Windows

Sometimesit is useful to combine a number of design elements into a bus and then
window the bus. You can also create a bus to rename a single design element. In some
simulators, such as Cadence Verilog-X L, you need to use the bus command to alias a net
or state name, because the net or state name containsillegal characters.

For example, you cannot window the net name /Block1/Netl in the Verilog-XL
environment becauseit containstheillegal character /. One solution to thislimitationis
to create abus for each of the elements that containsillegal characters, and then create a
window for the bus, as shown in the following example.

bus Statel /DFF STATE
wi ndow St at el

Use the SmartBrowser interactive utility or the Visual SmartBrowser (V SB) to identify
which nets and states are available to be windowed. These tools both let you view a
CCN file, browse the design, and list al nets, states, and instances along with their
connections. For more information on the SmartBrowser tool, refer to “Browsing Your
Design Using SmartBrowser” on page 106 of thismanual. The VSB tool is
documented in a separate manual entitled Visual SmartBrowser User’s Manual (UNIX
version or NT version).

You can use the AutoWindows feature of the ccn_report tool to automatically generate a
windows definition file. Then, usethe“do” command to include the windows definition
filein your MCF file. For more information on creating AutoWindows, refer to
“AutoWindows’ on page 128.

SmartCircuit Monitor

The SmartCircuit Monitor enables you to observe any element in your design and
receive messages in the simulator transcript window about any changes that occur on
that element. The specified elements can be any nets or buses in your design.

T3> Note
The number of monitors that can be active at one time is determined by the

maximum length of a message string allowed by your simulator. Some
simulators might allow as few as 256 characters in a message string, thus
limiting the number of monitor statements you can use.

Let'stake alook at an example based on the sample circuit shown in Figure 12. To
monitor an element, you include amonitor command statement inthe model’s M CFfile.
For example, if you want to monitor input nets OE, A1, A2, and CLK; internal nets
N3 - N8; and output nets Y and Q, the command in your MCF would look like this:

monitor CE AL A2 AKN3 N N6 N6 N7 N8BY Q

96 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

When you start your simulation and load the M CF file, monitors are assigned to the
elements specified on the command line.

To make the report easier to read, place alabel at the beginning of each line of the
report. Use the set label command, from within the MCF file, to specify the string. For
example, to specify the label “SAMPLE>":

set | abel SAWPLE>
The complete MCF file for our example would look like this:

| oad -source sanpl e. edo
set | abel SAWPLE>
monitor CE AL A2 LK N3 N N6 N6 N7 N8 Y Q

You can also assign monitors using the Visual SmartBrowser or the SmartBrowser. For
information on using the Visual SmartBrowser, refer to the Visual SmartBrowser User’s
Manual (UNIX version or NT version). For information on using the SmartBrowser
tool, refer to “Browsing Your Design Using SmartBrowser” on page 106.

When you assign amonitor to an external 1/0O port or any net connected directly to an
external 1/0 port, the monitor is placed on the input side of the port. This enablesthe
monitor to report the value being driven into the model. To monitor the value driven out
of an external 1/0O port, you must access the external port value via the simulator
interface.

275> Note
Some models have special input pin attributes, such as pull-up resistors. In
such cases, the monitor command reports the resolved value of the
simulator's input and the model's input pin attribute.

SmartCircuit Monitor Signal Values

The output produced by SmartCircuit Monitor commandsincludes a set of signal values
(see Table 8). Each bit of amonitored signal is represented by a single character in the
output.

Table 8: Monitor Signal Values

Output Value Description
0 LogicO Signal strength strong
1 Logicl Signal strength strong
X Unknown Signal strength strong
Z High-impedance | High-impedance

February 2001 Synopsys, Inc. 97

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

Table 8: Monitor Signal Values (Continued)

Output Value Description
L LogicO Signal strength resistive
H Logicl Signal strength resistive
R Unknown Signal strength resistive
U Uninitialized Uninitialized

Using Unsupported Devices

If you need to use adevicetypethat is not currently supported within aparticular device
family or model, you can use smartccn to generate an interface file. You might need an
interface file in the following cases:

« When the device type specified by your netlist is not supported by any available
models (for example, a new vendor device type).

« When the device type specified by your netlist should map to an available model,
but is not recognized by that model (for example, the device designator is either
obsolete or new).

« For a JEDEC-based model, when the component name specified on the command
line is not recognized by that model (for example, when adding a new or a custom
timing version).

The smartcen tool uses interface filesto define the mapping between a device's pins and
amodel's ports. To use an unsupported device, follow these steps:

1. Select the correct model according to the following criteria

o If the device type specified within your netlist is not supported by any available
models, then select amodel from the same vendor family that has a pin count
equal to or greater than the pin count of the device you are using.

o If the device type specified within your netlist should map to an available
model, but does not, then select the model that it should map to.

o If you are using a JEDEC-based model with an unrecognized component name,
then select the model that component designates.

I35 Note
You can map an unsupported JEDEC-based device into an existing
JEDEC-based model only if the devices have identical fuse maps.

98 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

2. Create an interface file by running smartccn with the -g switch as shown in the
following example:

% smartccn -mnodel -g

The output fileis named model.inf.
3. Add your deviceto the interface file using an ASCI| text editor as follows:

a. Find the correct DEVICE specification section within the interface file. Note
that although most models generate an interface file with asingle DEVICE
specification section, some models support multiple packages (for example,
PGA and LCC). Such interface files contain a different DEV I CE section for
each unique package.

b. Modify the correct DEVICE specification section by either adding a new
DEVICE line containing your device name or replacing one of the existing
DEVICE lines with you device name.

1. If you are mapping a new vendor device into an existing model, modify the
device-to-model mapping using an ASCII text editor asfollows. In the device
specification section, modify the package pin number value within the pin records
until you have one “corrected” PIN record for each of the user-configurable pinson
the new device. You can rearrange the order of pin statements and freely map any
user-configurable pin on the new device into any user-configurable pinin the
existing model, but do not edit pin names and do not map a user-configurable pin to
anon-configurable pin. Excess pins that are not mapped to the new device may
have any package pin number, aslong as they don’t collide with the new pin
numbers you are targeting. The excess pins are ignored during simulation.

Some models have special non-configurable pins (for example, the PROGRAM pin
in the Xilinx 4k family). You can identify these pins by examining the pin type
designator within apin record. To avoid simulation problems, these pins need to be
mapped correctly. Do not map a user-configurable pin to a non-configurable pin
(ideally, these pins should be mapped directly between devices).

T3> Note
Do not change pin names. Also, do not add or delete PIN statements from a
device declaration. Changes like these can make the model nonfunctional.

2. Generate anew CCN file by running smartcen with the -i switch, which forces the
compiler to read its device-to-model mapping information from the specified
interface file.

February 2001 Synopsys, Inc. 99

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

Example

The following example causes smartcen to generate a new CCN file for the mach110
model based on device-to-model mapping information in the specified interface file.

% snmartccn -mnmachl10 -i nmachl10. i nf

Interface File Format

Interface files contain one or more device declarations for one or more models. Each
device declaration conforms to the format shown below. Any interface files you create
must also conform to this format.

Begi n device declaration
DEVI CE : <devi ce_name>[, ...]
MODEL <nodel nane>
LI BRARY <l i brary nane>
PI' N <pi n_nane> <package pin nunber>[{ C| O| | | B}]
END
End devi ce decl arati on
Keywords (DEVICE, MODEL, etc.) and pin names must appear in uppercase, while the
model name and library name must be lowercase. Device hames are case-insensitive.

¢ Hint
To create anew device declaration block, you will probably find it easiest to
copy and modify an existing block that you know is properly formatted

If you include multiple device declarationsin an interfacefile, each declaration must use
unique device names. Ordering of pin declarationsis not significant. A pound sign (#)
at the beginning of aline signifies acomment, which the compiler ignores.

You can determine the pin type by looking in the interface file for the declaration of a
device with the same type.

Following are descriptions of the SmartCircuit interface (.inf) file keywords.

DEVICE : device name
Specifies the name of the device asit appears in the netlist file (for example,
3020PG84 or 2064pc68).

END
Signifiesthe end of a device declaration (required).

MODEL model _name
Specifies the name of the model.

100 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

LIBRARY vendor_cell_library
Specifies the name of the device model library.

PIN pin_name package pin_number [C|O|I1|B]

pin_name
The name that Synopsys assigns to each model pin (required).

package pin_number
The physical pin number for the specified pin (required).

[CIO[I[B]
Pin type designator (optional); one of the following:
C Designates auser-configurable pin or apin that is used by the configurable
portion of the device.
Designates a non-configurable output pin.
Designates a non-configurable input pin.
Designates a non-configurable input/output pin.

w—O0

Using Unsupported Devices Example

Let’s say you have a 240-pin FPGA model, but need to simulate with a 208-pin model
from the same device vendor. If a208-pin model is not available, you can create your
own by modifying the interface file of the similar 240-pin model that you already have
inthelibrary. First, create an interface file (.inf) by running the smartccn tool on the
existing 240-pin model as described in “Using Unsupported Devices’ on page 98. The
following interface file example was created by running smartccn on the xcs30_240
model from Xilinx.

Next, edit thisinterface file to make it work for the 208-pin device. For details on the
Inf file syntax and editing rules, refer to “Interface File Format” on page 100. Inthis
example, you need to add a DEVICE line to match the device you are targeting:

DEVI CE XCS30- 3PQ40C s30xI pg208- 4

Then assign the extra pins that you don’t need to pin numbers that don’t exist. Don't
comment out unneeded pins, because the smartccn netlist compiler requires the number
of pinsto match the model specification (240 in this case). Here, we assigned the
unneeded pinsto false pin numbers of 900 and above, as shown in the following edited
version of theinterface file. (Note that the ordering of pinsis not significant.) The user
editsto the original .inf file in the following example are highlighted.

Edited inf file

DEVI CE XCS30- 3PQ40C s30x| pg208- 4

MCDEL xcs30_240

LI BRARY xi | i nx

LI BRARY si npri ns

PI'N <synbol _pi nName> <package_pi nNunber > <pi nType>

February 2001 Synopsys, Inc. 101

Chapter 6: SmartCircuit FPGA Models

102

SmartModel Library User’s Manual

where pinType is either [I]nput, [Qutput, [B]idirectional,
[Gonfigurable

PIN CCOLK 155 C

DIN 153 C

DONE 104 C

ERRINT 77 C

PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PIN
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N

HOC 5
LDC 6
MCDE

PAC2

PAD3

PADA

PADb

PADG

PAD7

PADB

PACO

PAD10
PADL1
PAD12
PADL3
PADL4
PAD15
PAD16
PADL7
PAD18
PADL19
PAD20
PAD21
PAD22
PAD23
PADR4
PAD25
PAD26
PAD27
PAD28
PAD29
PAD30
PADG1
PADB2
PAD33
PAD34
PAD35
PADB6
PADB7
PADG8
PAD39
PADAO
PADA41

6 C
0C
52 1
206
205
204
203
202
201
200
199
198
197
196
194
193
900
901
191
190
189
188
187
186
185
184
181
180
179
178
177
176
175
174
902
903
172
171
169
168
167
166
904

00000000000000000000000000000000°00000000

Synopsys, Inc. February 2001

SmartModel Library User’s Manual

PIN PAD42
PIN PAD43
PI N PAD44
PI N PADAS
PI N PADA6
PI N PAD48
PI N PAD1
PI'N PAD52
PI' N PAD53
PI N PAD64
PI' N PAD55
Pl N PAD56
PI N PADG7
Pl N PAD58
PI' N PAD59
PI' N PADG60
PI'N PADG1
PI' N PADG2
Pl N PADG3
PI N PADG4
PI' N PAD65
PI' N PAD66
PI N PAD67
Pl N PADG8
Pl N PADG9
PI'N PAD70
PI' N PAD71
PI N PAD72
PI' N PAD73
PI N PAD/4
PI N PAD/5
PI' N PAD76
PI N PAD77
PI' N PAD78
PI'N PAD79
Pl N PADBO
PI'N PADB1
PI'N PAD82
PI'N PAD83
PI N PADB4
Pl N PADB5
Pl N PADB6
PI' N PADB7
PI' N PAD88
PI' N PAD8B9
PI'N PADO0O
PI'N PAD91
PI'N PAD92
Pl N PAD93

February 2001

165
164
163
162
161
159
152
151
150
149
148
147
146
145
144
905
906
907
142
141
139
138
137
136
135
134
133
132
129
128
127
126
125
124
123
122
120
119
908
909
117
116
115
114
113
112
111
910
110

OO000O0

Synopsys, Inc.

Chapter 6: SmartCircuit FPGA Models

103

Chapter 6: SmartCircuit FPGA Models

104

PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PIN
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N

PAD94 109
PADO6 107
PADO8 101
PAD99 100

PAD100
PAD101
PAD102
PAD103
PAD104
PAD105
PAD106
PADLO7
PAD108
PAD109
PAD110
PAD111
PAD112
PAD113
PAD114
PAD115
PAD116
PADL17
PAD118
PAD119
PAD120
PAD122
PAD123
PAD124
PAD125
PAD126
PADL27
PAD128
PAD129
PAD130
PAD131
PAD132
PAD133
PAD134
PAD135
PAD136
PADL37
PAD138
PAD140
PAD141
PAD142
PAD146
PADL47
PAD148
PAD149

99
98
97
96
95

O00000000000

O0000000000O0

Synopsys, Inc.

SmartModel Library User’s Manual

February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

PI'N PAD150 44
PI'N PAD151 43
PIN PAD152 42
PIN PAD153 41
PIN PAD154 40
PI'N PAD155 39
PIN PAD156 917 C
PIN PAD157 37 C
PIN PAD158 36 C
PIN PAD159 35 C
PIN PAD160 34 C
PIN PAD161 918 C
PIN PAD162 919 C
PIN PAD163 32
PIN PAD164 31
PIN PAD165 30
PIN PAD166 29
PIN PAD167 28
PIN PAD168 27
PI'N PAD169 24
PIN PAD170 23
PIN PAD171 22
PIN PAD172 21
PIN PAD173 20
PIN PAD174 19
PIN PAD175 920 C
PIN PAD176 921 C
PIN PAD177 17 C
PIN PAD179 15 C
PIN PAD180 14 C
PIN PAD181 922 C
PIN PAD182 12 C
PIN PAD183 11 C
PIN PAD184 10 C
PIN PAD185 9 C
PIN PAD186 8 C
PIN PAD189 5 C

4 C

3C

O0O0000

PI N PADL90
PI N PAD191
PIN PGCK1 2 C
PIN PGK2 55
PIN PGX3 108 C
PIN PGX4 160 C

PI N PROGRAM 106 |
PIN SGX1 207 C
PIN SGK2 49 C

PIN SGX3 102 C
PIN SGOK4_DOJT 54 C
PINTCXK 7 C

@]

February 2001 Synopsys, Inc. 105

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

PINTD 6 C

PIN TDO 157 O
PIN TM5 16 C
END

With this edited version of the interface file, you can now use the smartcen tool to
generate a new compiled configuration netlist file to use to simulate the 208-pin model,
as explained in “Using Unsupported Devices Example” on page 101.

Browsing Your Design Using SmartBrowser

There are two different tools that you can use to browse your programmable logic
design:

 Visual SmartBrowser (VSB)—a GUI tool that is documented in the Visual
SmartBrowser User’s Manual (UNIX version or NT version).

« SmartBrowser—a command-line tool that is documented in the following sections
of this manual.

You can use either tool to read a compiled configuration netlist (.ccn) file and:
« Follow connectivity between all circuit objects
. Listcircuit objects
« Examine specific circuit objects
. Modify and save circuit properties
« Create window and monitor definitions
« Mapillegal charactersto valid strings
« Run command files and save log files

You might choose to use one tool or the other based on your preference for command-
line tools like the SmartBrowser that can be used in batch mode with shell scripts or
GUI toolslike V SB that provide amore intuitive interface and superior visual display of
design netlist information. You might also opt to issue SmartBrowser commands
Interactively in your simulator session, as described next, rather than using one of the
browsing tools in a separate window.

106 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

Issuing SmartBrowser Commands Interactively

Most SmartBrowser commands can be issued through the SWIFT command channel.
The command channel is a handy way to issue SmartBrowser commands interactively
during your simulator session to any SmartCircuit model instance in your design. When
you use the command channel you don’t have to open a separate window and search for
your design netlist before returning to your main task of probing and verifying a design
inasimulator session. The ability to interact directly with any SmartCircuit model in
your design isthe primary reason to use the command channel rather than running
SmartBrowser commands in a separate shell session. For general information on the
command channel, refer to the Smulator Configuration Guide for Synopsys Models.
The SmartBrowser commands, themselves, are documented in “SmartBrowser
Command Reference” on page 111.

T3> Note
Not all SmartBrowser commands can be issued through the command
channel. For details on which commands are available for use with the
command channel, refer to “ SmartBrowser Command Reference” on
page 111.

Using the SmartBrowser Tool in Standalone Mode

To invoke the SmartBrowser tool you need to specify the CCN file for the model that
you want to examine. In addition, you can specify several other command switches that
allow you to save alog file, run acommand or log file in either interactive or batch
mode, or view the SmartBrowser help file.

When you invoke the SmartBrowser tool, it looks in your home directory for an
initialization file called .smartbrowse rc and executes any commands in that file before
doing anything else. Theinitialization fileisan ASCII file that you create containing
any SmartBrowser commands that you want to run. Initialization files are not required,
but they are useful for tasks that you want performed each time you invoke the tool,
such as defining command aliases.

For NT, invoke the SmartBrowser tool using the console command line. For more
information, refer to “Running Console Applications on NT Platforms’ on page 44.
Syntax

smartbrowse ccn_filename [-b] [-| log_file] [-m model_name] [-r run_file]
[-relog_file] [-help]

February 2001 Synopsys, Inc. 107

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

T3> Note

The ccn_filename must be the first argument on the command line, but
switches can appear in any order.

Argument
cen_filename

Switches
b

-l log_file

-m model_name

-r run_file
-relog_file
108

Use this required argument to specify the name of the
compiled configuration netlist (.ccn) for the model.

Starts the SmartBrowser tool in batch mode. Usethis
switch in conjunction with the -1, -r, and -re switches.
When you invoke the SmartBrowser tool in batch
mode, thetool runssilently and never entersinteractive
mode. Batch mode enables you to use the
SmartBrowser tool in shell scripts.

Causes the SmartBrowser tool to write out a transcript
of the SmartBrowser session to afile with the name
specified by thelog_file argument. You can also
generate alog file by using the interactive log
command.

Specifies the name of the model; required if the CCN
fileisin an old format, or if the SmartBrowser tool is
invoked without the ccn_filename argument.

Causes the SmartBrowser tool to run the specified file
before entering interactive mode. If you usethisswitch
with the -b switch, the SmartBrowser tool will not enter
interactive mode. All SmartBrowser interactive
commands are legal in thisfile. Commandsrunin
silent mode and are not echoed on the screen. To echo
the commands, use the interactive run command.

Executes alog file before the tool enters interactive
mode. Aswith the -r switch, if you also use the -b
switch, the SmartBrowser tool will not enter interactive
mode. All SmartBrowser interactive commands are

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

legal inthisfile. Commandsrunin silent mode and are
not echoed on the screen. To echo the commands, use
the interactive rerun command.

A log file differs from arun file, which you use with
the -r switch, in that the log file contains output results
in addition to commands and comments; arun file
contains only commands and comments. In the log
file, the executable commands are placed in square
brackets (for example, [list nets]). When you run the
log file using the -re switch only the commandsin
brackets are executed.

-help Displays a help message for the SmartBrowser tool.
You can also specify just -h, -he, or -hel and get the
same output.

Using the SmartBrowser Tool to Create a Windows
Definition File

One way to create a windows definition file is to use the interactive SmartBrowser
commands “assign window” and “save mcf”.

Aswhen manually creating the windows definition file, you use the SmartBrowser list
command to find the names of the elements you want windowed. Assign windows to

the selected items, then use the “save mcf” command to save your definitionsto afile.
Thisfileis subsequently referred to by a*“do” command in the MCF file.

This section summarizes the SmartBrowser interactive commands that you can use for
developing awindows definition file.
Regular assignments:

assign wi ndow nane(s) [= bus_nane]
assign window > bus_name
assi gn w ndow i nst ance

For Autowindows:

set bus bitCQder big | little
set bus delimter [postfix_ char]
assign window auto # Find all window elenments for current scope

Listing and saving all defined windows:

list ncf # List all defined wi ndows, nonitors, and buses
set saveMcf nod obber | append | overwite
save ntf # Save all window, nonitor, and bus definitions

February 2001 Synopsys, Inc. 109

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

The following SmartBrowser command creates three net windows definitions, one for
each of the specified nets.

assign wi ndow net Nd N6 N8

Alternatively, you could use the following “assign window” command to bus the three
nets together into awindow element called foobus.

assign wi ndow net N N6 N8 = foobus

The next command illustrates how to create a bus and assign awindow to a net that has
aname containing illegal characters.

assi gn w ndow state /DFF/ STATE = fooState

Another way to create busesis to use the AutoWindows feature, as shown in the
following example.

set bus bitCQder little # Set bus to little endi an
set bus delimter [] # Bus nunbering is between []s
assi gn wi ndow net data[0] > databus

This set of commands finds al nets of the form data[#] (with data]0] as the most
significant) and buses them together to form a window element called databus.

Using SmartBrowser Commands

The SmartBrowser tool recognizes a large set of commands, all of which are described
in“ SmartBrowser Command Reference” on page 111. To make the command set easier
to work with, the SmartBrowser tool supports abbreviation, aliasing, and automatic
completion of interactive commands.

Scope of Commands

The output produced by many of the SmartBrowser commands depends on the amount
of your design that is visible to the command; thisview isreferred to as the scope. Your
current location is the current scope. Asyou traverse through adesign, your current
scope changes, as does the information that is displayed by commands.

At thetop level of adesign, the scope encompasses the entire design. Asyou travel
deeper into the design, the scope becomes more and more focused. Some commands
can traverse a design and produce reports that contain information outside the current
scope, while other commands are limited to seeing only what isin the current scope.

Abbreviating Interactive Commands

You can abbreviate any interactive command, using the shortest string that uniquely
Identifies the command. In most cases that equals the first two characters of the
command. For example, you can abbreviate the command “ set scope” to “se sc”.

110 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

T3> Note
When using the SWIFT command channel to issue a SmartBrowser trace
command, you must abbreviate the command to “tr”.

Command Aliasing

The SmartBrowser tool supports command aliasing, which is similar to the command
aliasing capability in UNIX. Aliasing enables you to provide shortcut names for
SmartBrowser commands, combine multiple commandsinto a single alias name, define
switch names for command keywords, and rename commands so that they are easier to
remember.

Command Completion

Many of the SmartBrowser interactive commands require that you supply one or more
keywords with the command, as well as an argument that identifies the element you
want to work with. If you do not supply all the necessary keywords, or the argument,
the SmartBrowser tool prompts you for the missing information. If you want to clear
the command, press the Return key until you get the SmartBrowser command prompt
back.

Command completion is particularly helpful if you cannot remember a command's
syntax or if you type the command incorrectly. Note that command completion is
disabled when using the SWIFT command channel.

SmartBrowser Command Reference

The following lists provide brief descriptions of the SmartBrowser commands. These
commands enable you to:

« Obtain lists of design elements

. View, examine, and analyze designs, hierarchies, or cells
« Establish environment settings

. Savedesigns

« Perform other tasks related to your design

February 2001 Synopsys, Inc. 111

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

Although the SmartBrowser tool supports more than 60 commands, many of them are
variations on asingle command. For that reason, and to make the command set easier to
understand, the command descriptions are divided into the following groups:

« “Anayze Commands’ on page 112

. “Assign Commands’ on page 112

. “Examine Commands’ on page 113

. “List Commands’ on page 114

« “Set and Show Commands’ on page 115
. “Trace Commands’ on page 116

. “Genera Commands’ on page 118

Most of the SmartBrowser commands can also be issued through the SWIFT command
channel, as noted on the following pages.

Analyze Commands

The following analyze commands can also be issued through the SWIFT command
channel.

analyze cell cell_class
Analyzes the specified cell for circuit errors.

analyze design
Traverses adesign hierarchy and performs an analyze cell function on every
user-defined cell.

analyze hierarchy [max_level]
Displays the instance hierarchy of the current instance scope and down. The
max_level parameter specifies how many levels of hierarchy to trace.

Assign Commands

The following assign commands can also be used issued through the SWIFT command
channel, except the assign timing command

assign monitor instance name
Assigns amonitor to all nets attached to the specified instance.

assign monitor net namel . . . nameN [= bus_name |
Defines amonitor definition for the specified net. The optional = bus_name
parameter lets you bus the specified elements together.

112 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

assign monitor net name > bus_name
Defines amonitor for the specified net, looks for all elements related to the
specified net, and buses the found elements together.

assign monitor statenamel . .. nameN [= bus_name]
Defines amonitor definition for the specified state. The optional = bus_name
parameter lets you bus the specified elements together.

assign monitor state name > bus_name
Defines amonitor for the specified state, looks for all elements related to the
specified state, and buses the found elements together.

assign timing timing_label [port_name] min_val [typ_val max val]
Modifies the min, typ, and max values of the specified timing label. If thetiming
label is port specific, you must specify the port name. If only the min_val is
specified, then all values are set to min_val. Note that this command cannot be
issued through the SWIFT command channel.

assign window auto
Automatically windows al netsin the current scope and all SCV states.

assign window instance name
Assigns awindow to all nets attached to the specified instance.

assign window net namel . . . nameN [= bus_name]
Defines awindow definition for the specified net. The optional = bus _name
parameter lets you bus the specified elements together.

assign window net name > bus_name
Defines awindow for the specified net, looks for al related elements that could be
buses to the specified net, and buses the found elements together.

assign window statenamel . . . nameN [= bus_name]
Defines awindow definition for the specified net. The optional = bus_name
parameter lets you bus the specified elements together.

assign window state name > bus_name
Defines awindow for the specified net, looks for al related elements that could be
buses to the specified net, and buses the found elements together.

Examine Commands

The following examine commands can also be issued through the SWIFT command
channel.

examine instance instance_name
Displays detailed information about the specified instance and all instance-specific
data.

February 2001 Synopsys, Inc. 113

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

examine net net_name
Displays detail s about the specified net.

examine port port_name
Displays details about the specified port attached to the current cell scope.

examine state state_name
Displays details about the specified state attached to the current cell scope.

examine timing timing_label [port_name]
Displays detail s about the specified timing label. If thetiming label is port-
specific, you must also include the port name.

List Commands

The following list commands can also be issued through the SWIFT command channel.

list all
Listsal instance, net, port, and state names and timing labels in the current cell
scope.

list cells scvCells | userCells
Listsall vendor or user cell class namesin adesign.

list instances [match_string |
Lists al instance names defined in the current cell scope. Thelist can be
constrained to only those instance names that match the match_string.

list mcf
Lists all monitors and windows defined during the current interactive session.

list nets [match_string |
Lists al net names defined in the current cell scope. The list can be constrained to
only those net names that match the match_string.

list pinlnterface
Lists all package pins and describes how those pins connect to the symbol pins and
design ports.

list ports[match_string |
Listsal port names attached to the current cell scope. The list can be constrained
to only those port names that match the match_string.

list states[match_string]
Listsall state namesin an SCV cell of an instance hierarchy in the current cell
scope and below. The list can be constrained to only those state names that match
the match_string.

114 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

list timing
Listsall timing labels defined in the current cell scope.

Set and Show Commands

The following set and show commands can al so be issued through the SWIFT command
channel, except as noted.

set busbitOrder big | little
Sets autoWindows bit order to big endian or little endian. The default islittle
endian.

show busbitOrder
Displays the current bus bit ordering.

set bus delimiter prefix [postfix |
Defines the autowindows bus index delimiter. The default delimiter is square
brackets ([and]).

show busdelimiter
Displays the current bus delimiter.

set help completion on | off
Toggles the interactive help completion capability. The default ison. (Cannot be
issued through the SWIFT command channel.)

show help completion
Displays the current help completion setting. (Cannot be issued through the
SWIFT command channel.)

set illegalchar s character
Allows you to specify characters that may beillegal in their ssimulation
environment. Replacesillegal characters with underscore characters ().

show illegalchars
Displays the current illegal character settings.

show saveM cf
Displays the current setting for the “save mcf” file writing mode.

set listAll
Configures the default list command to list all elements.

set saveM cf noClobber | append | overwrite
Sets the writing mode for the “ save mcf” command. The default modeis
noClobber, which prevents an existing M CF file from being overwritten.
Overwrite mode will create anew file, replacing an existing one by the same name.
Append mode adds lines to the end of an existing MCF file.

February 2001 Synopsys, Inc. 115

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

set scope instance_scope_name
Enters the specified cell instance scope. The instance scope name argument may
be either an absolute or arelative scope path. Use double dots (..) to enter the
parent instance scope. The default scope isthe top level of your design.

show scope
Displays the current instance scope level and path. Also displays information
about the number of nets, ports, and instances.

set timing range min | typ | max
Establishes the timing range used for viewing instance-specific timing values. The
default timing rangeis “min”. (Cannot be issued through the SWIFT command
channel.)

show timing range
Displays the current timing range setting. (Cannot be issued through the SWIFT
command channel.)

set timing unit ps|ns|us|ms
Establishes the unit value used when viewing or modifying timing values. The
default unit valuesis ps (picoseconds).

show timing unit
Displays the current value of the timing unit setting.

show doc
Displays all documentation for the current cell scope.

show version
Displays the version of the SmartBrowser tool.

Trace Commands

The following trace commands can also be issued through the SWIFT command
channel. When used this way, SmartBrowser trace commands must be shortened to “tr”
to prevent them from being misinterpreted as standard SmartModel command channel
trace commands.

116 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

trace fin instance_name [max_level |
Traces and displays a connection tree of all inputs to the specified instance cell
scope. The max_level parameter specifies how many levels of logic to trace.
Here's an annotated example for atrace fin command issued for the TSBUF2
instance shown in Figure 12.

#1n this exanple. the input port “IN of TSBUF2 is connected to net “Ng".
TSBUF2 (TRI) in: INnet: N3

The previous net “N8” is connected to the output “Q of the DFF instance
which is driven by the “D’ input. The “D’ input is connected to the net “N5".

This notation (| <) indicates that the signal is connected to the net on the
previous | evel of hierarchy.

<- DFF (DFF) out: Qin: Dnet: No

| <- BUF3 (ANDLl) out: &l in: & net: A2
| | << <A2>

- DFF (DFF) out: Qin: LK net: N6

| <- BUF4 (ANDL) out: &1l in: & net: CLK
| | << <CLK>

- DFF (DFF) out: Qin: CLRN net: VCC

AN

I
I
I
I
I
|
| DFF (DFF) out: Qin: PRN net: VOC TSBUF2 (TR) in: CE net: N3
| BUF1 (ANDL) out: &1 in: & net: CE
| | << <CE>
trace fout instance_name [max_level]
Traces and displays a connection tree of all outputs from the specified instance cell
scope. The max_level parameter specifies how many levels of logic to trace.

traceinstances instance | net | port name
Reports all instances attached to the specified instance, net, or port.

trace nets instance | net | port name
Reports all nets attached to the specified instance, net, or port.

trace objs name
Traces all objects connected to the specified element, which may be an instance,
net, or port.

trace pkgPin package pin_name
Traces the package pin_name to the related symbol in design port names.

trace ports instance | net | port name
Reports all ports attached to the specified instance, net, or port.

February 2001 Synopsys, Inc. 117

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

trace scvlnstances instance | net | port name
Traces through the instance hierarchy until encountering an SCV cell, ultimately
reporting all SCV cell instances connected to the specified element.

trace symbolPin symbol _pin_name
Traces the symbol_pin_name to the related package pin name and design port
names.

tracetopNet instance | net | port name
Finds the highest scope level net attached to the specified element.

General Commands

The following general commands can also be issued through the SWIFT command
channel, except as noted.

aliasalias_name commandl . . . commandN
Defines the specified alias_name for acommand or list of commands,

unalias alias_name
Undefines the specified alias_name.

log log_file
Creates the specified log file. If another log file is open, the command closes that
log file and then creates the new log file.

quit
Exits the SmartBrowser tool. (Cannot be issued through the SWIFT command
channel.)

rerun log_file
Runs the specified log_file asthough it is a command file, executing only
statements within brackets (for example, [command).

run run_file
Runs the specified SmartBrowser run_file.

save design file_name
Saves the current design, using the specified file_name. (Cannot be issued through
the SWIFT command channel.)

save mcf file_name
Saves al monitors, windows, and buses defined during the current interactive
session, using the specified file_ name. You can use he “set saveMcf” command to
configure the writing mode when saving to afile that already exists.

118 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

Model Command File (MCF) Reference

The primary function of an MCF fileisto specify that the model load a compiled
configuration netlist (CCN) or compile a source netlist. You can also use MCF filesto
include other command files, define bus names, and specify timing ranges. Filesthat
you might want to include in the MCF are ones that perform basic tasks. For example,
you can use an MCF file to include a standard setup file that creates monitors and
windows for a specific family of devices. You can also use the MCF to maintain
window element definitions either directly or by calling external files using the “do”
command.

Additional MCF commands are available with the analysis tools; these commands
report event causes and effects, monitor design elements, and define monitor report
labels. A minimum MCF for a SmartCircuit model contains aload command, as shown
below:

| oad -source fil enane

where filename is the name of the CCN file to be generated by smartcen.

The value of the SWIFT SCFFile parameter in your model instantiation determines the
MCEF file that amodel reads at startup. To ensure that the model reads the correct MCF
file, you can either edit the value of the SCFFile parameter to point to the appropriate
MCEF filefor thismodel, or name the M CF file to match the current value of the SCFFile
parameter.

¢ Hint
" When you use multiple configurable devicesin adesign, it is best to use
MCEF file names that are keyed to the model instance names. For example,
the file name xc3030_u21.mcf uses both the model name and an instance
specifier.

MCF Command Descriptions
Following are descriptions of the commands that you can use in an MCF file.

bus Command
bus bus_name namel [name2 . . namen]

Defines abus aias for specified nets, states, external ports, or previously defined buses.
Useful only with SmartModel Windows, SmartCircuit Monitors, and Causal Tracing
reports.

February 2001 Synopsys, Inc. 119

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

bus name
The name of the bus dlias.

namel
The name of anet, state, external port, or previously defined busthat isto be
mapped to the bus name alias. You must provide at least one name.

name2 .. namen
Optional additional names to be mapped to the bus name alias.

The bus command must appear in the MCF file after the load command. In addition,
you must define a bus name before you can use that bus name in another command.

do Command
do filename

Executes the file specified by filename. A do command can appear anywherein an
MCF file.

filename
The name of ascript file to be executed by the model.

echo Command
echo string

Echoes the specified string to the simulation session transcript. An echo command can
appear anywherein an MCF file.

string
The string to be echoed to the simulation transcript window.
help Command
help
Displays a help message for the MCF file.

load Command
load [-source] filename [-nocheck] [-scale factor] [smartcnn switches]

L oads either a compiled configuration netlist (CCN) file (if the -source switch is not
used) or adesign sourcefile (if the -source switch isused). The load command must
appear in the MCF file after the set range command. You can specify the -source, the
-nocheck, and the -scale switches on the same command line.

120 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

-source
Indicates that the model isto invoke smartcen to compile the design sourcefile
specified by filename and generate a CCN file, if necessary. The load command
supplies the smartccn compiler with the necessary model component and instance
information. If a CCN file of the specified name aready exists, the load -source
command compares the date/time stamps of the source files against the date/time
stamp of the CCN. The load -source command automatically recompiles the CCN
for the model if one of the component files is newer than the existing CCN. No
CCN compilation occursif al files are up to date.

filename
Specifies the name of the CCN file to be loaded; or, if load isinvoked with the
-source switch, the name of the design source file to be compiled. The specified
filename can include either an absolute or arelative path, though your simulator
environment may restrict or limit the use of relative path names.

-nocheck
Disables reporting of timing constraint violations.

XJ° Hint
Compiling large JEDEC-based CPLD models can take along time. |f
simulation initialization performance is important, compile the model
separately, before simulating. Then use the load design.ccn command in
your MCF file to picked up the compiled netlist.

-scale factor
Indicates that all timing values loaded from the CCN are to be multiplied by factor,
which must be a positive, nonzero number. The -scale switch must follow -source
and filename.

smartcen switches
Various smartccn compiler switches. The [smartcen switches] option allowsyou to
specify command switches for the smartccn compiler.

set range Command
set range min | typ | max

Specifies the timing range (min, typ, or max) to be used from the CCN. The default
valueis set by the SWIFT DelayRange parameter from the model instantiation in the
simulator environment. The set range command must appear in an MCF file before the
load command. Using this command overrides the value set with DelayRange
parameter.

February 2001 Synopsys, Inc. 121

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

window Command
window namel [name2 . . . namen]
Defines SmartModel Windows for specified nets, states, or bus aliases.

namel
The name of anet, state, or bus alias for which awindow is to be created.
You must provide at least one name.

name2 . . . namen

Optional additional nets, states, or bus aliases for which windows are to be
created.

You can define windows for a design element from within the MCF file, either by
placing the window command directly in the MCF (in which case it must be placed after
the load command) or by creating a windows definition file and using the “do”
command to include the file in your MCF.

275> Note
When you assign awindow to an external 1/0 port, or to any net connected
directly to an external 1/0 port, the window is placed on the input side of the
port so that it can report the value being driven into the model. You cannot
window the value driven out of an external 1/O port.

On input or /O ports that have special attributes (for example, pull-up resistors), the
window command reports the resolved value of the simulator's input and the model's
Input pin attribute.

smartccn Command Reference

Before you can use a SmartCircuit model in asimulation, you must have a compiled
configuration netlist (CCN). You can generate a CCN in two different ways:

« Usetheload -source command in the model command file (MCF). This causes the
model to automatically generate the CCN as needed.

« Run the SmartCircuit netlist compiler (smartccn) and then load the CCN using the
load command in the MCF.

In most cases you should generate a CCN using the M CF rather than explicitly
executing smartcen.

122 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

275> Note
Refer to the model datasheets for detailed information on configuring
individual SmartCircuit models. For information on finding model
datasheets using the sl_browser tool, refer to “ SmartModel Datasheets’ on

page 25.

The smartcen tool translates a design netlist or JEDEC file, which describes the model's
configuration, into a binary format that the SmartCircuit model understands.

During the compilation process, smartccn searchesfor the filesit needsto create a CCN.
The compiler also checksto see if a CCN already exists. If you invoke smartccn with
the load -source command in the MCF, or if you invoke the tool in standalone mode
with the -t switch, it compares the date and time stamps of the component files against
the date and time stamp of the CCN. If one of the component filesis newer than the
existing CCN, smartccn automatically recompiles the CCN.

Like the models, some SmartModel tools can exist in the library in multiple versions.
One such tool is smartcen. The correct version of smartcen to use is controlled by the
model. You select only the model version. The version of smartcen is automatically
determined based on the model version in effect when you invoke the tool. For
information on selecting amodel version, refer to “ Selecting Modelsin $LMC_HOME”
on page 44.

Syntax

Run the smartcen tool from the command line as shown in the following example. Be
sure to enter the command, the required arguments, and any optional switcheson a
singleline.

% smartccn -m nodel _name source_file [-switches]

Arguments

model_name Specifies the model name for which you are compiling
anetlist or JEDEC file.

source file Specifies the name of the netlist or JEDEC sourcefile

that smartccn isto read. Device manufacturers and
some third-party vendors supply tools to produce
netlists that are back-annotated for pin-package and
timing information. Refer to the model datasheets to
determine the source file formats required by
individual SmartCircuit models.

February 2001 Synopsys, Inc. 123

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

Switches
-m model _name

-C comp_hame

-h

-i interface file

-n instance_name

-0 output_file

P

-utiming_file

124

Specifies the name of the model to be used to simulate
the netlist. The model must correspond to the targeted
devicein the netlist or, for JEDEC models, the device
identified using the -c option.

This switch is required for JEDEC models but has no
effect for other model types. Usethis switch to specify
the name of the component to be used.

Use this switch if you want the tool to generate an
interface file named model.inf. You use an interface
file to map new devicesinto an existing model.

Specify this switch for help using the smartccn tool.

Use this switch if you want smartcen to extract
netlist-to-model mapping information from the
specified interface file, rather than directly from the
model.

Thisswitch can be used for JEDEC modelsonly. It has
no effect for other model types. You use this switch to
specify that the .td timing data file for that model
instance_name has been modified for use when
compiling JEDEC files.

Causes smartcen to produce a CCN file named
output_file rather than one named source file.ccn.

Causes smartcen to suppress generation of a CCN file
and just create a pin map cross-reference file named
source_file.pmp.

Causes smartcen to suppress the generation of
informational messages (but not warnings and errors).

Causes smartcen to examine the time and date stamps
of all component files and recompile the design if the
existing CCN fileis older.

This switch can be used only for JEDEC models. It has
no effect on other model types. You use this switch to
specify use of an alternate .tf timing file.

Returns the version of smartccn.

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

CCN OQutput Files

During the trandlation process, smartccn produces a compiled configuration netlist
(CCN) file. By default, the CCN file has the same name as the netlist or JEDEC file that

smartcen reads, but with the extension .ccn.

When you use the default file name extensions for your netlist or JEDEC file, smartcen
replaces the extension with .ccn; but, when you use file name extensions other than the
default, smartcen appends .ccn to the name you specified. The compiler places the
output CCN filein the same directory as the netlist sourcefile.

You can use the -0 switch to specify an output CCN file name other than the default
(file.ccn). This can be useful when you want to use a netlist or JEDEC filewith a
nondefault file name extension, but you want the CCN file to use the standard naming
convention. The following example shows how to use the -0 switch to produce a CCN
filewith a different name:

% smartccn sanpl e. edo - m nmodel _nane - o sanpl e2. ccn

ccn_report Command Reference

You can use the ccn_report tool to generate model reports based on information in the
model’s CCN file. To generate areport on aparticular model, enter the model file name
on the command line after the ccn_report invocation. You can optionally specify
different switches depending on the information you need. Hereisthe syntax for using
the ccn_report tool.

February 2001 Synopsys, Inc. 125

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

Syntax

ccn_report cen_filename { -Al w ndow fil enane
| -A2 wi ndow fil enare

-A3 wi ndow fil enane

- A4 wi ndow fil enane

I
I
I
| -i illegal_chars
| -m nodel _nane
| -nr
| -p pinmap_fil ename
| -r replacenent _char
| -v
[-n]
[-m nodul e_nane]
[-0 verilog_fil enane]
[-w wi ndow fil enang]
[-y verilog_path]
| -vl
[-n]

[-o synbol _filenane] } output_fil enane

Argument

The ccn_report tool takes one required argument, as follows.

cen_filename Specifies the name of the CCN file to be used to
generate the report.

output_filename Specifies the name of the output file for the report.

Switches

There are many switches that you can optionally specify, as follows.

-A1 window_file Uses the AutoWindows feature to generate a windows
definition file with the specified name, using square
brackets ([]) asthe busindex delimiters.

-A2 window_file Uses the AutoWindows feature to generate a windows
definition file with the specified name, using angle
brackets (<>) asthe busindex delimiters.

-A3 window_file Uses the AutoWindows feature to generate a windows
definition file with the specified name, using
parentheses (()) as the bus index delimiters.

126 Synopsys, Inc. February 2001

SmartModel Library User’s Manual

-A4 window file

-h
-i illegal_chars

-m model_name

-nr

-p pinmap_file

-r replacement_char

-V

-N

-mn module_name

-0 verilog_filename

-w window_filename

-y verilog_path

February 2001

Chapter 6: SmartCircuit FPGA Models

Uses the AutoWindows feature to generate a windows
definition file with the specified name, using trailing
numbers as the bus index delimiters.

Invokes the ccn_report help message.

Defines the set of charactersto be replaced during
AutoWindows generation. Thedefault illegal character
isthe dash (/).

Specifies the name of the model. Thisisrequired if the
CCN fileisinanold format, or if ccn_report isinvoked
without the ccn_filename argument.

Directs ccn_report to not replace any illegal characters.
Overrides the -i switch.

Directs ccn_report to produce a pin map file with the
specified name.

Specifies a character to be used to replaceillegal
characters. The default isthe underscore ().

Directs ccn_report to create a Verilog-XL modulefile.

Renames the default port names to the design port
names. This switch isused only with the -v and -vl
switches.

Renamesthe generated Verilog-XL module nameto the
specified name. This switch is used only with the -v
switch.

Renames the ccn_report output file to the specified
name. Thisswitch isused only with the -v switch.

Directs ccn_report to generate a modified model.v file
that contains the AutoWindows definitions. This
switch is used only with the -v switch.

The path name to the model.v file. Allowed values are
$LMC_HOME/specia/cds/verilog/historic and
$LMC_HOME/special/cdsg/verilog/swift (the default).
This switch is used only with the -v switch.

Directs ccn_report to create a ViewL ogic symbol file.

Renames the default port names to the design port
names. This switch isused only with the -v and -vI
switches.

Synopsys, Inc. 127

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

-0 symbol _filename Renames the ccn_report output file to the specified
name. Thisswitch isused only with the -v and -vi
switches.

AutoWindows

Using afeature known as AutoWindows, ccn_report can automatically generate a
SmartModel Windows definition file. You use AutoWindows by specifying one of the
ccn_report options (-A 1 through -A4). You can then include the resulting definition file
inamodel command file (MCF) using the “do” MCF command. An AutoWindows
report lists all nets and states found in the design and then buses together any signalsthat
follow the busindex delimiter rule selected by one of the -A1 through -A4 options.

When you recompile your design using your vendor tools, you must ensure that your
windows definitions correspond to the elements in your new compiled configuration
netlist (CCN file).

I Note
Windowing al of your design elements using AutoWindows significantly
degrades simulator performance. For information on more efficient waysto
monitor individual design elements, refer to “Viewing Internal Nodes
During Simulation” on page 95.

128 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

7

Processor Models

Configuring Processor Models

There are two basic types of processor models. full-functional and bus-functional.
Full-functional models (FFMs) execute instructions loaded in the memory models
within the design being simulated. Bus-functional models (BFMs) execute commands
from an external source. A further distinction isthat there are two different technologies
used to develop BFMs. One is Hardware Verification (HV) models, which you control
using an external program written in Processor Control Language (PCL). The other is
FlexModels, which you can control using VHDL, Verilog, or C. BFMsrepresent device
behavior by simulating bus cycles, rather than by executing assembly language
instructions. Figure 14 illustrates the data flow for configuring FFM and HV processor
models. For information on using FlexModels, refer to the FlexModel User’s Manual.

T
HV Model PCL
Command Program
PCL
Compiler

FFM HV

Processor
Model

Processor
Model

PCL
Compiler Output

Figure 14: Data Flow for Processor Models

February 2001 Synopsys, Inc. 129

Chapter 7: Processor Models SmartModel Library User’s Manual

FFMsread programs stored in memory models, whereas HV models read compiled PCL
files. Both types of processor models are useful for devel oping, debugging, and
optimizing digital systems at different stages of the development cycle. During early
development phases, when change is frequent and turnaround time critical, HV models
are particularly useful because they are easy to use and run faster in ssimulation. An HV
model’s ability to verify proper handling of any combination of bus cyclesis especially
convenient. Towards the end of a design cycle, when a hardware design is more stable
or the software must be verified, FFMs (or a hardware modeler) are essential. Table 9
compares the features of FFM and HV models.

Table 9: Comparison of HV and Full-Functional Processor Models

Hardware
Model Feature Verification | Full-Functional
Correct timing Yes Yes
Functionally correct pin Yes Yes
behavior
Functionally correct bus Yes Yes
behavior
Correct simulation of Yes Yes
response to external
interrupts
Full bus functionality Yes Yes
(requests and grants)
High-level commands Yes No
read from PCL file and
executed
Machinecodeinstructions No Yes
fetched and executed

Simulating with HV Models

HV models are easy to use when debugging a hardware design. For example, if you
wanted to run a simulation to verify a processor/memory interface with a Motorola
MC68020 using an HV model, you would follow these steps:

1. Refer to the SmartModel datasheet for details about the PCL commands supported
by the mc68020 model and write a PCL program to exercise the model functions
that you want to verify in your design.

130 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

Verifying the basic interface requires only a couple of MC68020 bus cycles to
indicate any obvious errors in the microprocessor/memory logic interface. To test
this functionality, you could write asimple PCL program that looks like this:

/* check nmenory infc */

#i ncl ude “nc68020. cmd”

main ()

{
wite (5,0x620, 4, OXFFFF) ;
read (5,0x624,4);

}

2. Use the compile_pcl command to compile the PCL program and create the PCL
code the microprocessor model will load.

3. Run the ssmulation.

XJ° Hint
" Of course, you can make your PCL program as extensive as you want,
depending on your verification requirements. Check the individual model
datasheet for a PCL program sample that exercises the model’s basic
functions, including an interrupt handler. You can cut-and-paste the program
from the datasheet and then modify as needed.

PCL File Checks

When you initialize an HV model for logic simulation, the model looks for the compiled
PCL program file specified by the SWIFT PCLFile parameter for that model instance. If
the HV model cannot find the necessary PCL file, it issues awarning message.
Similarly, if you use amemory model to store a program to drive a full-functional
processor model, the memory model looks for the memory image file specified by the
SWIFT MemoryFile parameter for that model instance. After successful initialization,
the model generates a message that looks like the following example:

NOTE: Loadi ng the PCL programfromfile “pclfile”.
@80386_hv/ 1: TESTMODEL(#189) [180386-12], at 0 ns

February 2001 Synopsys, Inc. 131

Chapter 7: Processor Models SmartModel Library User’s Manual

Processor Control Language (PCL)

HV models represent system behavior by simulating external bus cycles directly rather
than simulating the internal processing that leads to the assembly language instructions.
You control the actions of an HV model by writing a PCL program that specifies how
you want the model to respond to input stimulus, including interrupts. Each HV model
supports its own set of model-specific PCL commands that implement the specific
capabilities of the modeled device. HV model datasheets provide comprehensive
information on the how to use the specific PCL commands supported by a particular
model. In addition, the code definitions for all model-specific PCL commands and
some handy defines are contained in the model's command header file (.cmd). Thisfile
must be included in your PCL source file using the #include preprocessor statement.

In form and structure, PCL looks very much like the C programming language, but
despite the obvious similarities there are important differences. Do not assume that a

PCL program will work just like a comparable C program. PCL includes the following
features:

« A preprocessor with alimited set of directives that allows for the definition of
constants and macros, aswell astheinclusion of files

. Variables and constants (data types are limited to integers, arrays of integers, and
pointers to integers)

« User-defined functions
. Program control statements, including loops and conditional logic
« Arithmetic and logical operators

Using PCL to Configure HV Models

The following procedure describes the basic steps required to configure an HV model
for logic simulation:

1. Write aPCL program that directs the HV model to perform the desired set of
operations.

2. Usethe #include statement in the PCL program's Declarations section to specify the
model's command header file (model.cmd).

3. Compile your PCL source code using the compile _pcl utility.

4. Configure your model instance to use the compiled PCL program viathe SWIFT
PCLfile parameter or symbol property.

132 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

PCL Program Structure

All PCL programs have a basic structure in common. In addition, some HV models
require specific additions to this basic structure. In these cases, the HV model’s
datasheet provides detailed information about these additional structural requirements.

This section provides information about the basic PCL program structure that is
common to al HV models.

Every PCL program must contain afunction named “main”. Program execution begins
with the first statement in the main function.

February 2001 Synopsys, Inc. 133

Chapter 7: Processor Models SmartModel Library User’s Manual

PCL Program Structure for Single-Process Models
Figure 15 shows the basic parts of a PCL program:

/* NS32532_hv PCL*/ / Include Statement
| #i ncl ude <ns32532. cnd> |

|int i, nob, addr, tenp;

94— Global Variables

mai n() {

trace_on();

set _trace_level (1); . .

i nt _vectored(): -— Main Function

nob = 1;

addr = 0x89abcd00;

for(i = 0; i <= 4; i++) {
tenmp = read(nob, addr);
wite(nob, addr, tenp);
nob++;
addr = addr + 0x11111111;

}
}

i nterrupt(vector)
int vector;

switch (vector) { Interrupt Handler
case 0xO: Function
subroutine_bus_error();
br eak;
case Ox1:
subroutine_bus fault();
br eak;

}

}

subroutine_bus_error()

'{dl (10)
| e)
} / Subroutine Functions

subroutine_bus_fault()

{
i dl e(20);
}

Figure 15: PCL Program Format Example

134 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

PCL Program Structure for Multiprocess Models

Some HV models use multiple process streams that execute concurrently. PCL
programs for multiprocess models are very similar to those for single-process models.
In addition to a“main” function, multiprocess models require two or more functions
named processN (where N isthe process number). Whereas single-process models have
one interrupt handler, multiprocess models may have a separate handler for each
process.

In single-process PCL programs the main function usually does the work of generating
bus cycles, while in multiprocess PCL programs, the main function is reserved for
initializing the model and handling variables. In multiprocess PCL programs the
process functions generate bus cycles.

Interrupts and Exceptions

HV models do not have built-in interrupt or exception handlers. You must write an
interrupt handler in your PCL program if you want your HV model to respond to
interrupts in simulation.

The interrupt handler function must be named either interrupt or exception. In PCL
these two function names are synonymous—one function will suffice to handle both
types of events. When an HV model detects an interrupt, it generates a vector number.
The PCL interpreter calls your interrupt handler function and passes the vector number
asthe only argument.

A typical interrupt handler function consists of a switch statement that evaluates the
vector number and passes control to an appropriate case-labeled statement block, as
shown in the following example:

except i on(whi ch)

i nt which;
{ swi t ch(whi ch)
{ case 1 : printf(“Executing exception routine #1");
br eak;
case 2 : /* next exception handler routine */
'ca.se. n: /* last exception handler routine */
defaul t: br eak;
}

February 2001 Synopsys, Inc. 135

Chapter 7: Processor Models SmartModel Library User’s Manual

At the end of the exception handler function, control resumes at the interrupted
statement. Unless the model datasheet specifies otherwise, interrupt handlers may
themselves be interrupted.

The Command Header File

Each HV model suppliesits own set of PCL commands to simulate the operations or
capabilities of adevice. For example, most models have commands to generate various
types of bus cycles and set the amount of trace information the model displays. These
predefined commands are documented in the model's datasheet, and are also contained
in the model's command header file.

Synopsys provides acommand header file (aso referredto asa*“.cmdfile”), model .cmd,
which contains preprocessor definitions and predefined PCL commands for the model.
You must include the command header file in your PCL program using the #include
preprocessor directive; this must be the first statement in the PCL program. Thisallows
the program to access the model's predefined commands and preprocessor definitions

The following syntax includes the command header file and causes the PCL program to
obtain the specified file from its default location, the SLMC_HOME/model sy/model

directory.

#i ncl ude <i 80386. cnd>
The following syntax includes the command header file and causes the PCL program to
search for thefilefirst in the local directory and then in the default location.

#i ncl ude “i 80386. crd”

I°5> Note
If you want to define additional commands not in the command header file,
you can create your own includefile. The #include statement for thisfile
can appear anywhere in the PCL program.

Returned Values

Some model-specific PCL commands (for example, “read”) return one or more values
to the PCL program. You can use commands that return a single value in the same way
you use afunction that returns an integer. You can also access asinglereturned value as
the first element of the predefined retval array. However, when a command returns
multiple values, you must access the values from the retval array.

136 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

Thefirst value returned by a PCL command is placed in retval[Q], the second in
retval[1], and so on. To save returned values for later use, you must assign them to
variables, because the retval[] array is overwritten by the next PCL command that
returns values to the program.

Accessing the First Returned Value

When a command returns one or more values, PCL uses the first returned value as the
command's exit value. Consequently, you can access the first returned value from a
command in either of two ways:

read d (0x03, 0x12341100, WIRD);
read value = retval [O];

Or, you can use the following:
read value = read _d (0x03, 0x12341100, WIRD);

Either method is appropriate to obtain the first value. All other returned values must be
accessed through the retval[] array.

Unknown Values

In many simulation environments, an “X” or some similar character in place of a
numerical value signifies that one or more bits of the digit are unknown. PCL cannot
interpret unknown values, and so converts them to zeros without issuing any warnings
or messages. If an HV model returns an unknown value to its PCL program, errors may
occur.

Theimpact of this conversion of unknownsto zeros depends on the representation of the
returned integer and on a given simulator's mechanisms for handling unknowns. Inthe
following example, the ninth bit of areturned binary value is unknown. If thisis
trandlated into hexadecimal by the simulator, the hexadecimal digit containing the
unknown becomes unknown, as follows:

0000 0000 0000 0000 0000 100X 0000 0001 Bi nary
0 0 0 0 0 X 0 1 Hexadeci mal
0 0 0 0 0 0 0 1 PCL conversi on

The PCL program converts the hexadecimal value of X to 0, so the number in
hexadecimal becomes 0x001. Similarly, if the simulation environment represents this
valuein octal, the octal digit containing the unknown becomes unknown, as follows:

00 000 000 000 000 000 000 100 X00 000 001 Bi nary
O 0O 0 0 O O o 1 X O 1 Cct al
0 O 0 0 0 0 0 1 0 0 1 PA conversion

The PCL program converts the octal value of X to 0, so the number in octal becomes
04001.

February 2001 Synopsys, Inc. 137

Chapter 7: Processor Models

PCL Constructs

PCL syntactical constructs include the following:

Identifiers
Datatypes
Variables

Constants
Comments
Operators
Expressions
Statements
Function definitions

SmartModel Library User’s Manual

Following are details on how to use each of these constructsin PCL programs.

Identifiers

In PCL, the names that reference variables, named constants, macros, and functions are
called identifiers. Anidentifier can be any sequence of alphanumeric characters and
underscores, but must begin with an alphabetic character. The PCL compiler is
case-sensitive; the identifiers“ABC” and “abc” are distinct.

Keywords are reserved by the PCL compiler for statements, data types, and other
elements of the language. Using a keyword as an identifier causes a syntax error;
however, note that the PCL keywords are defined to be in lower case. Table 10 liststhe

PCL keywords.
Table 10: PCL Keywords
br eak case conti nue
def aul t do el se
for i f i nt
return swi tch whil e
138 Synopsys, Inc.

February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

Data Types

The only valid datatypesin PCL are integers, arrays of integers, and pointersto
integers. All integer values are 32-bit signed numbers.

Variables

A variable is anamed value that can be changed within a program. Variables must be
declared before they can be used. The general form of avariable declaration is:

int variable |list;

The three different data types (integers, integer arrays, pointers to integers) are
distinguished by the way the variable identifier is specified. A variablelistisalist of
identifiers, separated by commas (,). A variable declaration statement must end with a
semicolon (;).

The following example shows how to declare three different integer variables.
i nt varnanel, varname2, varnane3;

PCL supports only one-dimensional arrays. You can declare an array by specifying a
variable identifier, followed by the size of the array in brackets ([]). The array size must
be an integer literal. All array indexes range from O to n-1, where n is the number of
elements. You cannot initialize array variables in the declaration. The following
example shows a variable declaration for array variables.

int arrayl[100], array2[10];

You can declare a pointer variable by putting an asterisk (*) before the identifier in the
declaration, as shown in the following example:

int *ptri,;

Constants

A constant is afixed value that cannot be changed by the program. Because of its
limited data types, PCL supports only literal constants and not named constants.
However, you can still create a named constant by using the #define directive.

You can specify aliteral constant in decimal, octal, or hexadecimal format. Octal
numbers begin with a“0” while hexadecimal numbers begin with “0x” or “0X.”

The following example code shows various literal constants used in a fragment of PCL
code:

if (varl == 10)

var2 = 0x64; /* hex for 100 deci mal */
el se
var3 = 0144; /* octal for 100 deci mal */

February 2001 Synopsys, Inc. 139

Chapter 7: Processor Models

Comments

SmartModel Library User’s Manual

Comments in PCL begin with the string /* and end with */. Spaces are not allowed
between the asterisk and slash in either of these strings. The compiler ignores any
characters between the /* and */ strings.

Comments can be placed anywhere within a program, aslong as they do not break a
keyword or identifier. Nested comments (a comment containing another comment) are

not allowed.

Operators

PCL supports the integer and logical operators shown in Table 11. Logical valuesin
PCL are represented by integers, and so are treated as integer values by the compiler.

Table 11: PCL Operators

Operator Description
! Logi cal NOT
~ Bi tw se conpl enent
+ Addi tion
- Subtraction, negation
* Mil tiplication, indirection
/ D vi si on
% Rerai nder
<< Left shift
>> R ght shift
< Less than
<= Less than or equal to
> Qeater than
>= QGeater than or equal to
== Equal
= Not equal
& Bitwi se AND, address of
| Bitw se inclusive (R

140

Synopsys, Inc.

February 2001

SmartModel Library User’s Manual

Table 11: PCL Operators (Continued)

Chapter 7: Processor Models

Operator Description
A Bi tw se exclusive (R
&& Logi cal AND
| Logi cal CR
‘ Sequenti al eval uation
?: Condi ti onal
++ I ncr enent
-- Decr enent
= Assi gnmrent
+= Addi ti on assi gnnent
-= Subt racti on assi gnment
*= Mul tiplication assignment
/= D vi si on assi gnnent
% Renai nder assi gnnent
>>= R ght shift assignnent
<<= Left shift assi gnnent
&= Bi twi se AND assi gnnent
| = Bitw se inclusive (R
assi gnnent
A= Bi twi se exclusive (R
assi gnnent

February 2001

Synopsys, Inc.

141

Chapter 7: Processor Models

Operator Precedence and Associativity

SmartModel Library User’s Manual

Operators nearer the top of Table 12 have precedence over those placed lower in the
table. Operators that share the same precedence are placed on the same row.

Table 12: PCL Operator Precedence and Associativity

PCL Operators Associativity
0 Left to right
e R Right to left
* [0 Left to right
+ - Left to right
<< >> Left to right
< >>= <= Left to right
== I= Left to right
& Left to right
A Left to right
| Left to right
&& Left to right
I L eft to right
2 Right to left
=+=-=*= [= Y= &= |=N=>=<= Right to left
, L eft to right

T3> Note

Operators are evaluated from left to right, except for those in the 2", 131

and 14" rows.

142

Synopsys, Inc.

February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

Expressions

An expression in PCL is any syntactically correct combination of operators, constants,
variables, and function calls. Anexpression must alwaysevaluateto avalue. Because a
constant or avariable evaluates to a value, an expression can be as simple asasingle
constant.

The PCL compiler does not support the Boolean datatype. In PCL logical expressions,
avalue of zero equates to FAL SE and any nonzero value equates to TRUE.

Typically, an expression is used as one or more elementsin a PCL statement.
Expressions are most often used in assignment statements and in program control
statements to determine entry and exit conditions.

Functions
Function definitions must conform to the following syntax:

[return_type] function_name ([parameters])
parameter declarations

{

local variable declarations
function_code

}

You can define functions before or after they are called. The only valid return typeis
int, which is also the default. Any other return type specified (for example, void, int *,
char, char *) causes the PCL compiler to generate an error message.

Parameters are optional, but the pair of parentheses following the function nameis
required. Parameters are assumed to be of typeint.

The printf() Function

The PCL compiler supports the built-in printf() function. The syntax is asfollows:
printf (format [, data_args]);

The printf() function formats the data arguments according to the format specifications
and writes the result to the simulator as a“note” message. The function supports a
maximum of nine data arguments. PCL automatically handles declarations for this
built-in function, so there is no printf() header file to include in your PCL program.

February 2001 Synopsys, Inc. 143

Chapter 7: Processor Models SmartModel Library User’s Manual

The format argument can contain plain characters, which printf() copies to the stream,
and conversion specifications. Each conversion specification starts with a % character
and ends with an alphabetic character determining the type of conversion. Between the
% and terminating character, you can use the two modifiers shown in Table 13.

Table 13: Conversion Specification Modifiers

Modifier Definition

- L eft-justify the argument to be converted

N Pad the field to thiswidth (N characters)

The printf() function recognizes the argument conversion types shown in Table 14.
Table 14: Argument Conversion Types

Modifier Definition
d Decimal integer
0 Unsigned octal number
X Unsigned hexadecimal number
% Print a % (no conversion)

Each conversion specification (excluding %%) must have a corresponding argument.

Because the following example has no conversion specification, the quoted string prints
directly to the output.

printf (“Print this string”);

In the next example, the value of the exit_value variable prints as a decimal integer at
the specified point in the error message:

printf (“BError % has occurred”, exit_val ue);

144 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

Preprocessor Directives

The PCL compiler includes a preprocessor, which recognizes these directives:

#def i ne
#el se
#endi f
#if
#i f def
#i f ndef
#i ncl ude
#undef

A preprocessor directive must be the first item on aline.

The #define and #undef Directives

The #define directive lets you define named constants and macros. Macro hames can
a so include arguments to be passed into the macro body and operated on. The syntax is
asfollows:

#define macro_nanme (argunent [, argunent]) nacro_body

Hereis an example of the #define directive used for string substitution in the
180960sx_hv hardware verification model.

#defi ne ONE_BYTE 1

The definition lets you specify the string “ONE_BYTE” for data transfer, rather than
specifying its numerical value for the cycle type.

After amacro is defined, it retains its meaning until the end of the source file or until
you explicitly undefine it with the #undef directive. You must undefine a macro before
you can redefineit. Undefine the macro by placing an #undef directive between the two
#define directives.

The syntax for the #undef directiveis asfollows:

#undef nacro_name

The #include Directive

The #include directive lets you include the contents of other source filesinto the current
sourcefile. By using the #include directive you can place frequently used constants or
functions into smaller, more easily maintained source files and include them in your
main PCL program file only when necessary.

When used to include the command header (.cmd) file, the #include directive must be
thefirst statement in a PCL program. Other #include statements can be anywherein the
file.

February 2001 Synopsys, Inc. 145

Chapter 7: Processor Models SmartModel Library User’s Manual

The #include directive syntax has two possible forms. To instruct the preprocessor to
search for the specified file in the directory that is appropriate for your system, enclose
the file name in angle brackets (<>), as follows:

#i ncl ude <fil enane>

To instruct the preprocessor to search for the file in the directory where the PCL source
file resides, enclose the file name in double quotes (“), asfollows:

#i ncl ude “fil enane”

You must use either angle brackets or double quotes.

PCL Statement Types

In PCL, astatement is adiscrete unit of programming code that conformsto the
syntactical rulesfor the language. A PCL statement can be one of the following types:

« Null statement

« Assignment statement

« Compound statement

« Nested statement

« Program control statement

In addition, PCL uses a special type of statement called a predefined model command
(also referred to as a model-specific command). Predefined model commands are
specific to aparticular model; that is, they implement the specific capabilities of the
modeled device. For general information, see the command header file. For
information about specific predefined model commands, refer to the model's online
datasheet.

Null Statements

A null statement is an empty statement that contains no instruction or command to
execute. A null statement has no effect other than to introduce an unknown amount of
delay. You specify anull statement with a semicolon (;).

The following example shows the use of anull statement.

if (a<=0b)
/* null statenment */
el se
c =a* 10;

146 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

Assignment Statements

An assignment statement assigns avalue to avariable. The syntax for an assignment
statement is as follows:

variable_identifier = expression;

Compound Statements

PCL allows the use of compound statements, which let you use ablock of statements
where asingle statement is expected. You can declare local variables at the beginning of
a compound statement. The syntax for a compound statement is as follows:

{

[optional |ocal variable declarations]
[statenents]

}

Nested Statements

PCL allowsthe use of nested statements. Nesting statements is useful for controlling
program execution flow. Anywhere the syntax indicates the use of a statement, you can
insert any valid PCL statement.

One common example is anested if statement:

if (x == 0){
if (y ==0)
statenent;}
Nested statements can get complex. The basic rule is that execution of a statement's
syntax must complete before moving to the next statement. Therefore, if you write a
nested if statement such as that shown below, the el se clause belongsto the innermost if
statement, not to the outermost one.

if (x == 0){
if (y ==0)
st at enent ;
el se
statenent;}

Note that if you want to isolate the second if statement and have the else clause apply to
thefirst if statement, you have to treat the second if statement as a compound statement,
surrounding it with braces.

Although this discussion focuses on nesting if statements, nesting of other types of
statementsisjust as valid and just as necessary to accomplish certain programming
tasks. Basically, PCL follows the conventions of the C programming language for
nesting statements.

February 2001 Synopsys, Inc. 147

Chapter 7: Processor Models SmartModel Library User’s Manual

PCL Program Control Statements

PCL program control statements specify or determine the next statement in the program
to evaluate. The program control statements available in PCL are:

o break

. continue
. do

. for

. if

o return
« Switch

. while

The break Statement

The break statement terminates execution of the most recent enclosing while, do, for, or
switch statement. Control passes to the first statement following the terminated while,
do, for, or switch statement.

br eak;

The continue Statement
The continue statement passes control to the next iteration of a do, for, or while loop.
conti nue;

The remaining statements in the current iteration of the loop body are not executed.

The do Statement

The do statement is aloop that executes the associated statements once, and then
evaluates an expression to determine whether to continue or exit the loop. The syntax
IS

do
statenents
whi | e (expression);
If the expression evaluates to true (a nonzero value), the loop statements are executed
again; otherwise, program flow continuesto the next statement following the loop. Note
that the statements inside the body of a do loop execute at least once.

148 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

The for Statement

A for loop executes its associated statement the number of times specified by the entry
expressions. The syntax is:

for (init_expr; cond_expr; | oop_expr)
st at ement s;

Theinit_expr isgenerally used to set aninitial value for the loop control variable. The
cond_expr isarelationa expression that determines how many timestheloop is
executed. Theloop expr defines how the loop control variable changes each time the
loop is repeated.

The following example shows afor loop used to initialize array element values:
for (i=0; i<=9; i++)
sanple_array[i] = 0;
The if Statement

Theif statement allows you to execute ablock of code based on acondition. The syntax
IS

if (expression) statementl [el se statenent2];

If the expression evaluates to true (a nonzero value), then statement1 executes. The
optional else clause can be used to specify a default action; that is, if the expression is
false (equal to zero), then execute statement2 rather than statement1.

The return Statement
The return statement terminates the execution of a function.
return [expression];

If specified, the value of expression isreturned to the calling function. If expressionis
omitted, the return value is undefined.

February 2001 Synopsys, Inc. 149

Chapter 7: Processor Models SmartModel Library User’s Manual

The switch Statement
The switch statement is a multiple-branch decision statement. The syntax is:

swi tch (expression)

{

case constant1:
statenents
br eak;

case const ant 2:
st at enent s
br eak;

default: statements
H
Thevalue of expression is successively checked against alist of case constants. Program
flow istransferred to the statement sequence whose case constant matches the value of
the switch expression. If no case constant is equal to the value of the switch expression,
the default statements are executed. If there is no default case, then none of the
statements in the switch body are executed.

Execution begins at the selected statement and continues until a break statement is
executed or the end of the compound statement is reached. If you do not end a case
block with a break statement, program control “falls through” to any following
statements.

There are two important rules to remember about switch statements:
« A switch statement can only test the expression for equality.

« NoO two case constants in the same switch statement can have identical values. You
can, however, nest switch statements.

To associate a statement sequence with more than one case constant, omit the break
statements between the case constants. The following example shows that case
constants 1 through 3 are associated with the statement sequence that immediately
follows them. Case constant 4 is associated with the statement sequence that
immediately followsit. The syntax is:

150 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

swi tch (expression)

{

case constant 1:
case constant 2:
case constant 3:
statenents
br eak;
case const ant 4:
statenments
br eak;
defaul t:
st atenent s

1

The while Statement

A while loop executes its associated statements zero or more times, based on the value
of the entry expression. The syntax is:
whi | e (expression)
st at enent ;
If the entry expression istrue (evaluates to anonzero value), the loop is executed. If the
entry expression is false (evaluates to zero), the loop is skipped and program control
passes to the next statement following the while loop.

Debugging Designs with Trace Messages

HV models generate trace messages to help you debug PCL programs and troubleshoot
your circuit designs. Some HV models feature an adjustable detail level for trace
messages, which lets you control the number and kind of messages generated by the
model. Refer to theindividual model datasheets for information on controlling message
verbosity.

Here are some sample trace messages:

Trace: PCL Omd: trace_on().
(n=u9) (conp=Q010) (loc=?) (Ilai=TMB3700010), at t=10001 (1000.1 ns).

Trace: PCL O: enable_intr_|evel (0).
Level 1 and 2 interrupts now enabl ed.
(n=u9) (conp=Q010) (loc=?) (Ilai=TMB3700010), at t=10001 (1000.1 ns).

Trace: PCL Ond: set_trace_| evel (3).
Trace level is nowset to 3 (SPI + general messages).
(n=u9) (conp=Q010) (loc=?) (Ilai=TMB3700010), at t=10001 (1000.1 ns).

Trace: PCL Qmd: | oad_reg(0x1030, Ox09).

February 2001 Synopsys, Inc. 151

Chapter 7: Processor Models

(n=u9) (conp=@010) (loc=?) (Ilai=TM53700010),

Trace: PCL Qmd: | oad_reg(0x1031, &x0Q7).
(n=u9) (conp=Q010) (loc=?) (Ilai=TMS3700Q010),

Trace: PCL Ow: |oad_reg(0x1037, x00) .
SPIBUF is read only, command i gnored.
(n=u9) (conp=0010) (loc=?) (Ilai=TM53700010),

Trace: PCL Qmd: | oad_reg(0x1039, OxAD).
(n=u9) (conp=Q010) (loc=?) (Ilai=TME3700Q010),

Trace: PCL O: |oad_reg(0x103D, x02) .
(n=u9) (conp=0010) (loc=?) (Ilai=TM53700010),

Trace: PCL Qmd: | oad_reg(0x103E, (x22).
(n=u9) (conp=Q010) (loc=?) (Ilai=TMS3700Q010),

Trace: PCL Ow: |oad_reg(0x103F, Ox40).
(n=u9) (conp=@010) (loc=?) (Ilai=TM53700010),

Trace: End of main PCL program
(n=u9) (conp=Q010) (loc=?) (Ilai=TM53700Q010),

Running the PCL Compiler

In addition to compiling a PCL source file into a PCL program, the PCL compiler
checksfor errors and issues error messages specifying the location and nature of any
errorsit detects. You invoke the PCL compiler using compile pcl.

SmartModel Library User’s Manual

at t=10001 (1000.1 ns).

at

at

at

t =10001 (1000.

t=10001 (1000.

t =10001 (1000.

t=10001 (1000.

t =10001 (1000.

t=10001 (1000.

t =10001 (1000.

ns).

ns).

ns).

ns).

ns).

ns).

ns).

For NT, invoke the compile_pcl program using the console command line. For more
information, refer to “Running Console Applications on NT Platforms’ on page 44.

Specify the name of the PCL source file that you want

to compile. If *-', the compiler reads the source file

compiler writes the object fileto STDOUT.

Syntax
% conpi | e_pcl source_file new program [switches]
Arguments
source file
from STDIN.
new_program
152 Synopsys, Inc.

February 2001

Specify the name for compiled program. If -, the

SmartModel Library User’s Manual Chapter 7: Processor Models

Switches

-C Write source file comments to output.

-D= Define a symbol with the given (optional) value.
-H Display a help message and exit.

-l Add adirectory to the #include search list.

-M Specify the name of the model being compiled.
-N Do not predefine target-specific names.

-Stext Specify sizes for #if sizeof.

-Usymbol Undefine symbol.

-Xvalue Set internal debug flag.

Example

The following example compiles the MySrc.pl program into object code and puts the
output in the MyObj.pcl output file.

% conpi | e_pcl M/Src. pcl MyQoj . pcl

275> Note
Note that compile_pcl is a model-versioned tool, meaning that the model
itself determineswhich version of thetool isused when you invoke thetool.
You only need to select the model version.

Example PCL Program

This section shows a sample PCL program written for the Intel 80186 HV model. The
program begins with the include statement that instructs the PCL compiler to include the
model's command header (.cmd) file. The command header file contains the processor
command definitions and #define directives. The program then defines a constant
called error_addr and declares the variables addr and data_out as integers.

The main function declares an integer variable named data_in and then writes to and
reads from successive memory locations. |If the returned values do not equal the written
values, the program displays an error message.

The last section of code defines the interrupt routines, one maskable and one
nonmaskable.

#i ncl ude “i 80186. crd”
#define error_addr Oxffff

February 2001 Synopsys, Inc. 153

Chapter 7: Processor Models SmartModel Library User’s Manual

154

#define NM 0x02
#defi ne DMAO Ox0A
#defi ne TI MER2 0x13

int addr, data_out;

main ()

{

yox

int data_ in;
addr= 0;
data out = 1;

whi l e (addr < 0x1000)

{
wite menory(4, addr, data out);
data_in = read_nenory(4, addr);
if (data_in != data out)
wite io(4,error_addr,data_in);
data_out = data out << 1;
if (data out == 0)
data out = 1;
addr += 4;
}

End of Main */

interrupt (vector)
int vector;

{
{

swi tch (vector)

case NM: /* NM service */
wite menory(2, 0x20Q08, 0xBBX4); /* push to stack */
wite menory(2, 0x20Q0A, 0x58DE);
wite_io(2, 0x00204, 0x20);

br eak;
case DVAO: /* DNVA channel O interrupt service */
read_menory(2, 0x20Q08); /* read fromstack */

wite _menory(2, 0x20QA, 0x0070);
read_i o(2, 0x00204);
br eak;

case TI MER2: /[* timer 2 interrupt service */
wite_menory(2, 0x20Q08, 0xBBX); /* push to stack */
wite _menory(2, 0x20QA, 0x58DE);
wite io(2, 0x00204, 0x20);
wite_register(0x2A, 0x0006);
/* wite Priority Mask Register; */

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 7: Processor Models

break; /* timer will be masked through priority */

defaul t:
br eak;
}

February 2001 Synopsys, Inc. 155

Chapter 7: Processor Models SmartModel Library User’s Manual

156 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

8

User-Defined Timing

Introduction

The SmartModel Library includes standard, component-based timing files that have
identical functionality, but different timing characteristics. (For example, the timing
characteristics of the 74L SO0 component differ from those of the 74F00 component.) In
addition to these standard timing files, you can create custom, component-based timing
filesthrough user-defined timing (UDT). UDT is possible because amodel'stiming file
isloaded at simulation startup. You can use UDT to:

« Create new timing versions that are not yet available in the SmartModel Library

« Develop a custom timing model using specifications from several possible
manufacturers

« Represent your own custom timing or a special binding

« Scale timing to accommodate different design requirements
. Modify modelsto turn off their timing checks

« Modify memory models to turn off the access delay feature

You can aso use UDT for instance-based timing; that is, you can specify timing
characteristics for asingle specific instance of amodel. For example, you could use
Instance-based timing to back-annotate interconnect delays into a simulation or to
specify adifferent interconnect delay for amodel instance that is on the critical path.

T3> Note
FlexModels support component-based UDT, but not instance-based UDT.
For more information on FlexM odéls, refer to the FlexModel User’s
Manual.

February 2001 Synopsys, Inc. 157

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

Timing Files

The SmartModel Library contains both source and compiled timing files. When you
want custom timing for models, you can either edit the source files supplied with the
SmartModel Library or create your own. In either case you should create your own
timing directory to keep your custom timing filesin; otherwise, your work will be lost
when you update your SmartModel Library.

You can store your custom timing filesin any arrangement of directories that suits your
needs. However, the models must know where to look for your custom timing files.
The search rules for locating timing files are explained in the next section.

If you create new timing versions, you must support these files as you would any other
library of ssmulation models. In particular, if the timing file format changes with time,
you might receive an error message about the format of your file. In that case, you
would need to rerun compile_timing.

Instance-Based Timing

I nstance-based timing allows you to refine timing characteristics that might affect only a
particular instance of amodel. For example, you could use instance-based timing to
back-annotate interconnect delays into a simulation.

As an example, consider adesign that contains multiple ECL 10H101 gates, each with a
typical propagation delay of 2 ns. The interconnect delay (printed circuit board trace
length) may be 1.5 ns for instance U101 and 3.0 nsfor instance U135. With
Instance-based timing, you could add the interconnect delay into your simulation by
defining a U101 instance-based timing of 3.5 ns (2.0 ns from the gate, 1.5 nsfrom the
Interconnect) typical propagation delay, and a U135 instance-based timing of 5.0 ns
delay.

Timing File Search Rules

Each model instance gets its timing information from atiming datafile. Because you
can have many timing data files, models follow prescribed search rules for locating a
timing version. Therulesaresimple: alist of directoriesis searched until amatchis
found. That is, timing datafilesin the first listed directory are searched before timing
datafilesin the second listed directory, and so on.

158 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

Thetiming information in any timing data file can be specified by component name and
by instance name (both can exist in the samefile). Thisis specified by the case selector
in the timing data file (keyword is either COMP or INST). Timing datafilesare
searched first for instance name, then for component name. |If you use instance-based
timing (case INST of), the value of the model's InstanceName parameter is compared
with the strings in the timing datafile. Alternately, if you use component-based timing
(case COMP of), the value of the model's TimingVersion parameter is compared with
the stringsin the timing datafile.

Each model instance searches for a matching value in the timing data file independently
of all other model instances, and stops searching at the first match. Therefore, different
instances of the same model can get their timing version information from different
timing data files.

The timing data file search path can be set with the LMC_PATH environment variable.
This alows each user to define their own timing file search path.

To define your timing file search path, set the LM C_PATH environment variable in your
startup file. The syntax used to set this environment variable is the same as for the path
variable; that is, you set LMC_PATH to alist of directories, where each directory listing
Is separated from others by acolon. For example, assuming you are using C shell:

% setenv LMC PATH *“/usr/home/dirl:
[usr/ home/ dir2:
[usr/ home/ di r 2/ subdi r 1”

You must explicitly specify each directory (and subdirectory) containing custom timing
files (the search is not recursive). For NT you must separate multiple entries for the
LMC_PATH environment variable using a semicolon-separated list, not a colon-
separated list asin UNIX.

Note that if you want to verify or diagnose where a model instance is getting its timing
data from, you can use the TraceTimeFile command (issued through the SWIFT
command channel). This command causes each model to display information about the
timing data files it has searched, and which file produced a match.

For information on how to set environment variables and how to use the console
application on the NT platform, refer to “ Setting Environment Variableson NT
Platforms’ on page 43 and “Running Console Applicationson NT Platforms’ on page
44,

February 2001 Synopsys, Inc. 159

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

Creating New Timing Versions

To customize amodel's timing, copy the supplied ASCII timing data file to your own
timing directory using the Browser’s Copy Timing File function. For instructions, refer
to “ Creating Custom Timing Versions’ on page 164. After you copy thefile, you can
edit and compileit. Compiling the file builds the timing file the model usesin
simulation. Figure 16 illustrates this process.

e ——
model.td file \

User-Defined
Timing Data

Model

Timing Data OR

e
Model Model
- Timing P - ,
Timing Template . Timing File
Compiler

e B ——
model.tf files

model.tt files

Figure 16: User-Defined Timing Process

A model timing file is created with atiming datafile, atiming template, and the
SmartModel Library timing compiler. You can use the timing data included with the
library, or you can use your own model timing. In any case, atiming fileisonly
generated once, and then (depending on the search rules) is available to the model in
every simulation.

160 Synopsys, Inc. February 2001

SmartModel Library User’s Manual

T3> Note

Before you make significant changes to the timing data, you should be

familiar with both the format and grammar of timing datafiles. For details,

refer to “Timing Data File Format” on page 165 and “Timing Data File
Grammar” on page 174.

User-Defined Timing Examples

Two examples of creating new timing are described here. In thefirst case, atiming
version is added to reflect a new component that was not included in the standard

Chapter 8: User-Defined Timing

timings for the model. In the second example, aworst-case timing version is generated

from all the existing versions.

Example Timing Data File

Both examples are based on the timing data file for the an29520 model. Here is what
the timing data file for this model looks like before any modifications have been made.

February 2001

Timng data file generated by Synopsys Logi ¢ Mddeling, |nc.
for use with the Synopsys Logi ¢ Mddeling conpile_tinmng tool.
@#) File generated: 8/19/93

@#) Tool versions: [1.1, 3]

Ti m ng descriptions:

th | GAKIh -- Hold tine for |(instruction) to CLK(high)
th DAKIh -- Hold time for D(inputs) to CLK(high)

ts_ | CGAKIh -- Setup tine for I(instruction) to CLK(high)
ts DCAKIh -- Setup tine for D(inputs) to CLK(high)

HHHHHH

Range: M n/ Typ/ Max
nodel AVR9520
case conp
of “AMR9520-COM: # AMD, Bipolar M croprocessor Logic &
#l nterface, AWVR9000. ..

Timng Label : M n Typ Max # Vendor Label
g
pwm n_CLK : 10.0 VH tpw
th 1 _AKlh 3.0 ;# th
th_ D AKlh 3.0 ;# th
ts | AKlh : 10.0 (H#Hts
ts DAKIh : 10.0 (H#Hts
tpd S Y ;o {2.4}, 12.0, 20. 0; # t pdsel
tpd_CLK | h_Y(I h) o {2.4}, 12.0, 21.0;# tpd
tpd_CLK | h_Y(hl) o {2.4}, 12.0, 22.0;# tpd

Synopsys, Inc.

161

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

t pd_CE Y(hz) {1. 0}, 5.0, 13.0;# tdis
tpd_CE Y(I 2) o {1.2}, 6.0, 15.0;# tdis
t pd_CE Y(zh) o {2.4}, 12.0, 20.0;# tena
tpd _CE Y(zl) {2.6}, 13.0, 21.0;# tena

of “L29C520M 1": # Logi c Devices, Fast OMOS Data Book (1989)

Timng Label : Mn Typ Max # Vendor Label

=
pwm n_CLK . 10.0 (H# ot pw
th_|_QKlh 3.0 # th
th_ D QK lh 3.0 # th
ts_ | _AKlh : 10.0 JH tsS
ts_ D AKlh : 10.0 JH LS
tpd_S Y o {2.9}, {14.7}, 22.0;# tpdsel
tpd_CLK I h_Y(Ih) : {3.2}, {16.0}, 24.0;# tpd
tpd_CLK I h_Y(hl) : {3.2}, {16.0}, 24.0;# tpd
t pd_CE Y(hz) o {2.1}, {10.7}, 16.0;# tdis
tpd_CE Y(I 2) : {2.1}, {10.7}, 16.0;# tdis
t pd_CE Y(zh) o {2.9}, {14.7}, 22.0;# tena
tpd_CE Y(zl) o {2.9}, {14.7}, 22.0;# tena

end case;
end nodel ;

Adding a New Timing Version

In this example, you create a new timing version of amodel. The modeled deviceisan
Integrated Device Technology part whose component name is IDT29FCT520A-COM.
To add a new timing version, follow these steps:

1. Create your own timing data directory. Do not store your modified timing filesin
the SmartModel Library directory structure.

2. Copy the original timing data file into your own timing data directory using the
Browser. For instructions, refer to “ Creating Custom Timing Versions’ on page 164.

3. Usean ASCII editor to open the new file and duplicate one of the existing case
statements. Edit the duplicated statement to make the new timing version you need,
then delete all other case statements. In this example, the first case statement in the
file was copied and edited to make the required Integrated Device Technology
version.

4. Document your modifications by citing the specification’s source in a comment
following the component name.

162 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

5. Compile your new timing datafile so it can be used by the model. The timing
compiler creates an executable version of the timing file and checks your new file
against the timing template, as described in “Using the Timing Compiler” on page
178. The compiler catches any typographical errors you might have made. Usethe
following command to invoke the timing compiler:

% conpi | e_timng anR9520.td

This command creates atiming file named am29520.tf. Move your new file to your
user-defined timing directory. Now any “am29520” model in your design
automatically finds the correct timing file at simulation startup.

6. Change the value of the SWIFT TimingVersion parameter in your model
instantiating to the name you are using for your new timing version.

Example Timing Data File with New Timing Version

Thefollowing example shows atiming datafile for the am29520 model that includesthe
new timing version.
Timng data file generated by Synopsys Logi ¢ Mdeling, Inc.

for use with the Synopsys Logi c Mbdeling conpile tinmng tool.
@#) File generated: 8/19/93

@#) Tool versions: [1.1, 3]
added a conponent to support |DI -Bob/R ch, 8/19/93
Timng descriptions:
-
#th |l AQKIh -- Hold time for I(instruction) to CLK(hi gh)
#th DAKIh -- Hold time for D(inputs) to CLK(high)
#ts | AKIh -- Setup tine for I(instruction) to CLK(hi gh)
#ts DAKIh -- Setup tine for Dinputs) to CLK(high)
Range: M n/ Typ/ Max
nodel AMVR9520
case conp

of “I DI29FCT520A- OOV : # | DT, H gh Perfornance OMXS
#Dat a Book (1988)

Timng Label . Mn Typ Max # Vendor Label
U
pwm n_CQLK . 7.0 JH#H tpw
th DN QK Ih 1.0 ;# th
th 1l _CKlIh 1.0 ;# th
tpd_CLK I h_Y(Ih) o {2. 4}, 12. 0, 21.0;# tpd
tpd_CLK I h_Y(hl) o {2. 4}, 12.0, 22.0;# tpd
t pd_CE _Y(hz) o {2.4}, 6.0, 12.0;# tdis
tpd_CE Y(I 2) {2. 4}, 6.0, 12.0;# tdis
t pd_CE Y(zh) {2. 4}, 9.0 15.0;# tena
tpd _CE Y(zl) . {2.6}, 9.0, 15.0; tena
tpd S Y . {24}, 7.0, 13.0; # t pdsel

February 2001 Synopsys, Inc. 163

Chapter 8: User-Defined Timing

Creating Custom Timing Versions

ts_DIN CLK | h
ts_|_CLK |h

end case;
end nodel

oo
oo

SmartModel Library User’s Manual

In this example, a custom timing version of a model is created and placed in its own
timing datafile. Thisnew file removes al specific component cases, replacing them
with asingle set of values. These values represent the minimums and maximums for all
“commercial” timing in thetiming datafile created in the preceding example (that is, the

original timing plus the Integrated Device Technology timing).

The timing component case in thisfile is named “29520” to differentiate it from any
specific manufacturer’s values. As before, the processis. copy thefileto the
user-defined timing directory, edit it, compileit, and placeit in adirectory for use by the
“am29520” model at simulation time. The directory where you place the file must be in
the timing file search path.

Example Timing Data File with Custom Component

The following example shows atiming data file for the am29520 model that includes a
custom component.

164

Timng data file generated by Synopsys Logi ¢ Model i ng,

I nc.

for use with the Synopsys Logi c Mbdeling conpile tining tool.
@#) File generated: 8/19/93

@#) Tool versions:
nodified 8/19/93 to create customm n-of -mn and nmax- of - max

cnpnt - Bob.
nodel AMR9520

case conp

of

“29520":

[1.1, 3]

Timng Label

end case;
end nodel ;

pwm n_CLK

th_ DN QK Ih
th 1 _CKIh
tpd_CLK I h_Y(Ih)
tpd_CLK I h_Y(hl)
t pd_CE _Y(hz)
tpd_CE Y(I2)

t pd_CE _Y(zh)
tpd_CE Y(zl)
tpd_ S Y

ts_ DN QK Ih
ts_|_CLK Ih

Synopsys, Inc.

Qust om m n- of - m n/ max- of - max conponent

: M nTypNMax# Vendor Label

el

WwhhdNMEPERERENDWWN
cCcokrorNMNOMMOOO

11. 3,
11. 3,
13.
11.
11.
11.
11.

oo
FHE W E R

tpd
tpd
tdis
tdis
tena
tena
t pdsel

February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

Timing Data File Format

Timing datafilesarein ASCII format. The timing data files that come with the
SmartModel Library are named model.td. You can access these timing data files using
the Browser tool. Timing datafiles normally consist of comments and a model block,
as shown in Figure 17.

Timng data file generated by Logic Mddeling, Inc.
for use with Logic Mddeling’s conpile_timng tool.
@#) File generated: 10/19/90
@#) Tool versions: [1.1, 0]

Range: M n/ Typ/ Max Comments
nodel tns320c15_hv Model Block
case conp

of "TMB320C15”, #Tl, First CGeneration TMS320 User’s Qui de
#(SPRUO13A, Apr 88)
"TMS320E15”": #Tl, First Generation TMS320 User’'s Cuide
#(SPRUD13A, Apr 88)
Tim ng Label : Mn Max # Vendor Label

permax_X2_| h : 150.0; # tcnc

of "TMS320C15-25": #Tl, First Ceneration TMS320 User’'s Guide
#(SPRUO13A, Apr 88)

Tim ng Label M n Max # Vendor Label

He o e m m e ao-
permax_X2 | h : 150.0; # tcnc

end' case;

case inst

of "U101": #TI, First Generation TMS320 User’s Qui de

#(SPRUD13A, Apr 88)

Tim ng Label M n Max # Vendor Label

permax_X2 | h : 150.0; # tcnc

Figure 17: Timing Data File Elements

February 2001 Synopsys, Inc. 165

Chapter 8: User-Defined Timing

Assumed Propagation Delays

SmartModel Library User’s Manual

All modelsin the SmartModel Library support arange of timing delays, but

manufacturers often supply only asingle value for device delay parameters. Memories,
for example, are often specified with only maximum delay values. In such cases, Logic
Modeling duplicates the MAX delay value for the MIN and TY P fields of the timing

datafile. Inthisway, if you change the delay mode of your simulation, the delay value
remains true to the manufacturer’s specifications. Figure 18 showswhat the timing data

file for such amodel would look like.

ts_A E hl
ts_ AElh :
acc_tpd Whl_DQ :
t pd_W hl _DQ :
tpd_W.I h_DQ :
acc_tpd_E hl _DQ :
tpd_E_hl _DQ :
acc_tpd E I h_DQ :
tpd_E | h_DQ :
acc_tpd_A DQ
tpd_A DQ

; # tAVEL
. # t AVEH

ooooooocoopo

20.

45.

20.

40.

LCooLoooeee

20.

45.

20.

40.

LR eee

#tWQZ
#tWQZ

The minimum,
typical, and
maximum

propagation delays

t WHOQX
t ELQX
tELQV
t EHQZ
t EHQZ
t AXQX
t AVQV

You can change any of the delay values by creating a custom timing version of the

model.

Figure 18: Assumed Propagation Delays

Models With Vendor-Supplied Delay Ranges

When an IC manufacturer specifies adelay range for apart, the datais always model ed.
Occasionally a manufacturer does not supply all three delay values for every parameter,
in which case, the model uses derived values as shown in Table 15. If a manufacturer

specifies a single propagation delay, then the specification is entered for al three values

in the model.
Table 15: Derived Propagation Delay Values
Given MIN TYP MAX
ALL M N TYP MAX
MN & TYP MN TYP 3/2 TYP
TYP & NAX 1/5 TYP TYP VAX
166 Synopsys, Inc.

February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

Table 15: Derived Propagation Delay Values (Continued)

Given MIN TYP MAX
MN & MAX MN 2/ 3 NMAX MAX

TYP 1/5 TYP TYP 3/2 TYP

MAX 1/5 TYP 2/ 3 NAX MAX

I35 Note
A deviceis never specified with just aMIN spec, so that case does not
appear in thetable.

Calculated Propagation Delays

Occasionally, device manufacturers do not supply all three propagation delay values for
every delay parameter. In such cases, Logic Modeling calculates the missing values.
Figure 19 shows that calculated values are used for the TY P propagation delay (denoted
by the braces).

Timng Label : Mn Typ Max # Vendor Label

e
tpd 12 OL(hl) : 1.8, |{4.9},| 7.3;
tpd_12_ O1(1h) : 1.8, |{4.9},| 7.3
tpd_11_O1(hl) : 1.8, |{4.9},| 7.3
tpd 11 O1(lh) : 1.8, |{4.9},| 7.3;

The braces denote

that the timing
end case; values are
end nodel ;

calculated and did
not come from the
manufacturer’s
specifications.

Figure 19: Calculated Propagation Delays

You can change any of the delay values by creating a custom timing version of the
model.

February 2001 Synopsys, Inc. 167

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

Timing Data File Comments

Figure 20 illustrates the different types of comments that can appear in the timing data
file header.

Tim ng data file generated by Logic Mdeling, Inc.
for use with Logic Mddeling’s conpile_tinng tool.
@#) File generated: 5/1/90 A
@#) Tool versions: [1.0, 0]

- Comments

Ti m ng descriptions:
permax_X2_| h -- Maxi mum on master clock(X2) cycle tine
permin_X2_|lh -- Mnimmon master clock(x2) cycle tine

SR HHH| | HHHH

Timing Descriptions

Ti m ng expressions:

_ - (permn_X2_lh * pwrin_X2)

pwrax_X2 -- (permax_X2_|lh * pwrax_X2)

tpd_RS hl _VE -- ((0.5 * perm n_CLKOUT_| h) + tpd_RS_hl _\VE)

HHHHH
E
=}
x
N

Timing Expressions

Range: M n/ Typ/ Max -¢—— Range Comments

Figure 20: Timing Data File Comments

General Comments
General comments note the date the file was generated and the tool versions used.

Timing Description Comments

Timing descriptions provide information about the labels used in timing statements. If a
label does not clearly describe the particular timing statement, acomment isincluded at
the top of the timing data file that further describesit. The following example shows
how comments are used to distinguish between timing descriptions that appear nearly
identical.

Timng descriptions:

#tpd X2 |h VE 1 -- WE(Ih) delay time fromx2(1h) with RS(hl)
#tpd X2 |h_VE 2 -- Delay time X2(1h) to W (CLKQUT(hl) to VE(hI))

168 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

Timing Expression Comments

Timing expressions list the timing statement values that are calculated by substituting
timing data numbersin an expression. These expressions are included as comments at
the top of the timing datafile. The following isan example of adelay that is half the
period of aclock plus some constant:

Timng expressions:

#tpd RShl WE -- ((0.5 * permin OALKQUT |h) + tpd RS hl W)

This means that the delay from RS(hl) to WE is calculated by substituting the timing
data numbersinto the expression. For example, you can supply the following numbers:

permi n_CLKCQUT | h: 200. 0;
tpd_RS hl _WE 50.0;

As aresult, the actual number for the delay is:
((0.5* 200.0) + 50.0) = 150.0

Do not change the text in atiming expression comment. Timing expression comments
serve only to document how calculations are performed.

There are several predefined functions that can appear in timing expressions:

M N(val uel, value2)
Ret urns the mni num of val uel and val ue2.

MAX(val uel, value2)
Ret urns the maxi mum of val uel and val ue2.

ACTUAL(tim ng-name)
Eval uat ed during simlation.

The ACTUAL() expression is used to supply avalue that is based on the actual clock
period being used during the simulation. Before the simulation runs and the clock
period can be used, the expression is evaluated to be equal to the value of timing-name.

Internal Pin Comments

Some manufacturers specify timing with respect to internal pins. Thisis often true for
PLDs. All timing names dealing with internal pins are highlighted as comments at the
top of the associated timing datafile. The following exampleisfor aPLD that has
internal feedback pins:

Timng with internal pins:

tpd_CLK | h_FB

February 2001 Synopsys, Inc. 169

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

Range Comments

Range comments describe the propagation delays used in the model: Min/Typ/Max.

Timing Data File Model Block

Figure 21 shows an annotated example of amodel block in atiming datafile.

Timng data file generated by Logi c Mdeling, Inc.

Model name (must not be changed)

rodel Component name (identifies timing)

case conp
of |"74AC00-FAI": | #|Fairchild, FACT Fairchild Advanced CMOS Technol ogy
Logi ¢ Data Book (605003 25M Cctober 1985)

Timng Label : Mn Typ Mx # Vendor Label

Bhe o e e e e e e e e e e e e eeemeaaa-
tpd_12_OL(hl) : 1.0, 4.0, 7.5; Component source
tpd_I2_O1(lh) : 1.0, 5.0, 8.5; information
tpd 11_OL(hl) : 1.0, 4.0, 7.5;
tpd 11_OL(1h) : 1.0, 5.0, 8.5;

/ Case selector

|of " CD74AC00" : | # Harris/RCA, Advanced CMOS Logic Integrated
Circuits (SSD 283A, 1988)

Timng Label : Mn Typ Max # Vendor Label
oo o o o C o oo oo C oo oo oo oo
. .
Ltpd 2 Olhl) : 1.9, {4.4), 6.6 | Timing statement
tpd 12 Oi(1h) : 1.9, {4 4}, 6.6,
tpd 11 Ol(hl) : 1.9, {4.4}, 6.6;
tpd_I1_OL(I h) IM
Timing statement label

of " CD74AC00- EXT": # Harri s/ RCA, Advanced CMOS Logic | ntegrated
Circuits (SSD 283A, 1988)

Timng Label : Mn Typ Max # Vendor Label
o
tpd_l2_o1f(hl) 1.8, [{4.9},| 7.3
:pg Ifﬁﬁ'm“i i g %j- gi i;\ Braces denotes that the
tgd 11 otl(1 h) 18 |{a0.| 73 timing data is calculated, and

did not come from the
manufacturer’s
specifications

Edge qualifier

(selects the output
end case; edge for the
end model ; specification)

Figure 21: Annotated Timing Data File Model Block

170 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

Timing Statement Format

Timing statements usually appear one to aline. When the same timing values apply to
severa timing labels, alist format can be used. There are two types of labels. delay
labels and timing check labels. Both types are described bel ow.

Delay Label Format
Delay labels have the following syntax:
Label = Type_FronPi n[_FroniEdge] _ToPi n[_ToEdge] [_I nt eger]

Delay Label Syntax Elements
Delay labels have the following syntax elements:

Type
One of the following values:

o tpd—Specifies adelay.

o acc_tpd—Specifies an access delay, meaning that the output goes to unknown
after the delay.

o trigger—Specifies that the output makes the ToEdge transition after the delay.

FromPin
Specifies the input pin or bus that causes the delay.

FromEdge
Optional element whose value can be either Ih (low-to-high) or hl (high-to-low). If
you include a FromEdge value, the delay only occurs when the FromPin has the
specified edge.

ToPin
Specifies the output pin or bus that changes as aresult of the delay.

ToEdge
Optional element only used for triggers. The value of this e ement can be either al
(any-to-low), ah (any-to-high), or az (any-to-Z).

I nteger
Determinesthe correct timing parameter based on theinternal state condition of the
model. For example, transitions from high-to-Z may have different timings than
transitions from high-to-low. Using this element you can differentiate between the
timing values.

February 2001 Synopsys, Inc. 171

Chapter 8: User-Defined Timing

SmartModel Library User’s Manual

Timing Check Label Format

Labels for timing checks have the following syntax:
| abel = Type Pinl] Edge] [_Pin2][_Edge] [_I nteger]

Timing Check Label Syntax Elements
Timing check labels have the following syntax elements:

Type
Specifies one of the following types of timing checks:

172

O

ts—Setup check, where Pinl before Pin2 must be greater than or equal to the
specified value.

recovery—Same as ts, but the error message is different.

th—Hold, where Pinl after Pin2 must be greater than or equal to the specified
value.

skewmin—Minimum skew, where Pinl must come before Pin2

skewmax—Maximum skew. Thisisthe same asts, but the error message is
different.

pwmin—Minimum pulse width, where Pinl pulse width high or low must be
greater than or equal to the specified value.

pwImin—Minimum pulse width low, where Pinl pulse width low must be
greater than or equal to the specified value.

pwhmin—Minimum pulse width high, where Pinl pulse width high must be
greater than or equal to the specified value.

pwmax—M aximum pulse width, where Pinl pulse width high or low must be
less than the specified value.

pwlmax—M aximum pulse width low, where Pinl pulse width low must be less
than the specified value.

pwhmax—M aximum pulse width high, where Pinl pulse width high must be
less than the specified value.

fmin—Minimum frequency, where Pinl frequency must be greater than or
equal to the specified value.

fmax—M aximum frequency, where Pinl frequency must be less than the
specified value.

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

o permin—Minimum period, where Pinl period must be greater than or equal to
the specified value.

o permax—Maximum period, where Pinl period must be less than the specified
value.

Pinl
Specifies the input pin or bus.

Edge
Optional element whose value can be either 1h (low-to-high) or hl (high-to-low).
The timing check occurs only if the pin makes the specified transition.

Pin2
Same as Pinl, except that it is used only for timing checks involving two pins.

I nteger
Determinesthe correct timing parameter based on theinternal state condition of the
model. For example, transitions from high-to-Z may have different timing than
transitions from high-to-low. Using this element allows you to differentiate
between the timing values.

Timing Statement Format

Timing statements can appear one to aline, or when the same timing values apply to
several timing labels, you can use alist to combine them, as shown in the following
example. For the 74AC00-FAI component of the ttl00 model, a comma and new line
separate the two timing labels from their mutual timing values. For the CD74AC00
component, all the timing labels use the same values, so they are listed with acomma
and new line separating the four labels.

nmodel ttl 00
case conp
of “74AC00-FAl ":
Fairchild, FACT Fairchild Advanced OMOS Technol ogy

Timng Label : M nTypNMax# Vendor Label
g

tpd_I 2 _QL(hl) :

tpd_I1_QL(hl) :1.0,4.0,7.5;

tpd_I 2_QOL(I h) ,

tpd_I 1_QL(I h) :1.0,5.0,8.5;
of “CDr4AC00": # Harri s/ RCA, Advanced

CM35 Logi ¢ Integrated
drcuits

Timng Label : M nTypMax Vendor Label

February 2001 Synopsys, Inc. 173

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

tpd_I 2 _QL(hl) ,
tpd_I 2_QL(I h) ,
tpd_ 11 QL(hl) ,
tpd_ 11 QOL(I h) :1.9,{4.4},6.6;
end case;
end nodel ;

Timing Data File Grammar

The information in timing data files conforms to aformal grammar that is documented
in this section. In the descriptions below, terminals and reserved words are shown in
roman type, non-terminalsin italic type. The:= symbol can beread as*“is defined as.”
The vertical bar | delimitsitemsin alist from which one item must be chosen. Square
brackets [] enclose optional items. Braces enclose constructions that appear zero or
moretimes. Left and right parentheses must enclose edge identifiers.

udt-data-file
udt-data-file : = nodel - bl ock

model-block

nodel - bl ock : = nodel nodel - nane
case- st at enent
{ case-statenent }
end nodel ;

There can be one or more case statements within the model block. Case statements
cannot be nested.

model-name
nodel -narme : = identifier
The model nameis an identifier; it must match the name of the model that is using the
timing data.
identifier
identifier :=letter { letter | digit | _}
letter :=a-z | AZ
digit :=0-9

Timing datafiles are not case-sensitive; either uppercase or lowercase letters can be
used.

174 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

case-statement

case-statenent := case case-sel ector
of
case-tag { , case-tag } : timng-statemrent ;
{ timng-statenent ; }
end case ;
case-selector

case-sel ector := conp | inst

The value comp allows grouping of timing statements by manufacturer, speed version,
and technology. The valueinst identifies a specific instance of amodel.

case-tag
case-tag := string-identifier

A case-tag is atext string identifying a specific value of the case selector.

string-identifier
string-identifier : =" { letter | digit | general _synbols } *
All strings are quoted. Nonprintable characters (such as new line) are not allowed.
@ $| %] M| & *| ~|
| |

general _synbol s 1= |
> o] -]+

_ 1t #
P A |

| # |
\ <
timing-statement

timng-statement :=tining-label { , timng-label } : timng-values
If an output edge is used—and they are permitted only on delays—it must be surrounded
by parentheses.

timing-label
timng-label :=identifier [(output-edge{ output-edge})]

The timing-label isarequired name used to identify the timing statement. Itsvalueis
fixed by the model and must be used.

output-edge
output-edge := |

February 2001 Synopsys, Inc. 175

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

The output-edge format requires parentheses. More than one edge can be specified.
Use a space between elements of the list, as shown below:

of “CDr4AQ00": # Harri s/ RCA, Advanced CM5 Logic Integrated Grcuits

Timng Label : M n Typ Max # Vendor Label
i
tpd_12_QL(hl 1h) 1.9, {4.4}, 6.6;
1.9, {4.4}, 6.6;

tpd_I1_OL(hl 1h)

The output-edge is an optional identifier used to further qualify timing variationsin
propagation delays by denoting the output edge transition. If no edgeis specified, then
the timing values apply to all possible transitions on the output pin for the particular
delay. Table 16 provides definitionsfor all of the possible output-edge values.

Table 16: Output-edge Values

Output-edge Value Definition
Ih | owt o- hi gh
(4 | owt o- hi gh i npedance
hi hi gh-t o-1 ow
hz hi gh-t o- hi gh i npedance
zl hi gh i npedance-t o-| ow
zh hi gh i npedance-t o- hi gh
la lowto-any (Ih, |2z)
nl any-to-not low (Ih, 1z, hz, zh)
ha hi gh-to-any (hl, hz)
nh any-to-not high (hl, hz, 1z, zl)
za hi gh i npedance-to-any (zl, zh)
nz any-to-not high inpedance (Ih, hl,
zl, zh)
al any-to-low (hl, zl)
ah any-to-high (1h, zh)
az any-to- hi gh i npedance (lz, hz)
aa any-to-any (lh, 1z, hl, hz, zl, zh)

176 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

Table 16: Output-edge Values (Continued)

Output-edge Value Definition
av any-to-not high inpedance (Ih, hl,
zl, zh)
vV not hi gh i npedance-to-not high
i npedance (1h, hl)

timing-values

timng-values := tining-value [, timng-value , tining-value]

[timng-unit] | MNULL

Timing-valuesisalist of one or threetiming values, or theidentifier NULL. Thevalues
represent timing for the minimum (min), typical (typ), and maximum (max) operating
ranges. If asinglevalueisused, it isassumed that it represents al three (min, typ, and
max). If three values are specified, they represent min, typ, and max in that order. You
can use the NULL identifier to disable timing checks and access delays.

timing-value
timng-val ue : = nureri c-val ue

Thetiming-valueis either anumber representing the delay or atiming check, depending
on the statement.

numeric-value
nuneric-value :=[{][-] integer | real [}]

The numeric-value can be a positive or negative integer or real. The value can also be
scaled, using an optional timing-unit. The default unit for frequency timing statements
ismhz, and nsis the default for al other timing statements. The minus sign denotes
negative values. The braces used here are only found in files generated by Logic
Modeling—they signify that the specifications were derived (not found on the
manufacturer's datasheet).

real := integer.integer
integer :=digit { digit }
timing-unit
timng-unit :=fs | ps| ns| us| ns | khz | nhz | ghz

February 2001 Synopsys, Inc. 177

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

Table 17 provides definitions for all possible timing unit values.
Table 17: Timing Unit Values

Timing Unit Definition
fs f ent oseconds
ps pi coseconds
ns nanoseconds
us m cr oseconds
ns m || i seconds
khz ki | ohertz
nhz nmegahert z
ghz gi gahertz

comments
comrents := { # | @} [comrent_text]

Comments begin with # or @ and continue to the end of theline.

Using the Timing Compiler

You use the timing compiler to compile timing data files for models. The timing
compiler produces atiming file named model .tf in the current working directory. The
tool also looks for the specified timing data file in the current directory. If the timing
datafile that you want to compile is not in the current working directory you must
specify afull path name to thefile.

In addition to producing a model.tf file that amodel reads at simulator startup, the
timing compiler also performs a series of checks on your timing data file.

Timing Compiler Checks
The timing compiler performs the following checks on the specified input sourcefile:

. Source Grammar Checks. Verifiesthat the source fileiswritten correctly.
Ensures sensible source organization. For example, nested cases are not allowed.

178 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

. Complete Source Checks. Verifiesthat the timing source for agiven model is
completely specified. Partial timing specifications are not allowed. The timing
statements in the source file must exactly match the template.

. Global Value Checks. Checkstiming source values. While negative values are
allowed in the timing source, they are not manageable in the model. Because
negative propagation delays are not supported, they are identified as errors.
Negative timing checks are not supported in the model runtime environment. They
are identified and mapped to “0”.

. Valid Edge Checks. Usesthe timing template to verify correct output edge
assignment in the timing source. |f the model's output pin cannot be put into a
high-impedance state, no Z-related edges are allowed in timing associated with that
pin.

. Tool and File Version Checks. Checkstool versions and file format versions.

Running the Timing Compiler

The compile_timing tool takes an input timing data (.td) file asits only required
argument and generates a compiled timing (.tf) file in the current working directory.
You can optionally specify several switches, as shown in the following syntax
description.

For NT, invoke the compile_timing program using the console command line. For more
information, refer to “Running Console Applications on NT Platforms’ on page 44.

Syntax

compile_timing [-Help] [-Messages] [-TTemplate template-path] model.td

Argument

model .td Name of the input timing datafile.

Switches

-H[elp] Specify this switch for help using the compile_timing
tool.

-M[essages] Turn on user-defined timing messages in the model.

-TT[emplate] template path Used to specify afull path to atiming template input
file. Do not usethis switch. The tool automatically
determinesthe correct version of the timing template to
use.

February 2001 Synopsys, Inc. 179

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

Example

The following example invocation of compile_timing causes the tool to read atiming
datafile for the ttl00 model and generate a compiled timing file:

%conpile timng ttl00.td

You can use the -Messages switch to aid debugging efforts. When you compile atiming
file specifying this switch, you enable generation of runtime messages. At simulation
startup, each model compiled with messages enabled issues a message indicating the
model.tf file being read and the instance or component being used.

180 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

9

Back-Annotating Timing Files

What is Backanno?

Different simulators back-annotate timing values from Standard Delay Format (SDF)
filesin different ways. To solve this problem for model users the Backanno tool extracts
the relevant timing components from an SDF file and annotates SmartModel binary
timing files with that information to normalize the model’s behavior with different
simulators.

This chapter describes how to use the Backanno tool to extract back-annotation timing
datafrom SDF files and annotate them to a SmartModel format that the model can read.
As part of this process, the Backanno tool crestes:

. New SDF filesthat have the extracted timing commented out so that the delays are
not back-annotated twice.

« Compiled timefiles (.tf) that contains the delays for the model.
The Backanno tool is controlled by a configuration file which:

. ldentifiesall the SmartModel instances to be back-annotated.

. Maps ports and delays.

. ldentifiesthe SDF files and the hierarchical scope to which the data should be
applied.

February 2001 Synopsys, Inc. 181

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

Process Overview
Figure 22 illustrates the process of back-annotating SmartModel timing files (.tf).

Creating a Configuration File

Setting Environment Variables

4

Running Backanno

Copying the Resulting Timing Files (.tf)

Replacing the Original SDF Files

Figure 22: SmartModel Back-Annotation Process

Creating a Configuration File

You can create a configuration file to control the back-annotation process so that it is
compatible with your simulator.

File Format

The configuration file format is similar in principle to Standard Delay Format. It allows
C++ style comments and has the following general format:

{MODEL Section}* // 0 or more MODEL Sections
{ANNOTATE Section} * /I 0 or more ANNOTATE Sections
{LMC_PATH Section} // Optional LMC_PATH Section

Both Verilog- and VHDL-style hierarchy syntax are supported. For example, both
“top.inst” and “/top/inst” are valid.

182 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

Both Verilog- and VHDL-style identifier syntax are supported. By default, the
identifiers in the configuration file are treated as case-sensitive. However, the “-i”
command line option causes the backanno tool to treat the identifiers as case-insensitive.
Also, escape identifiers are allowed in both Verilog format — such as
“\MY_MODULE,” and VHDL format —such as“\MY_MODULE\".

Sample Configuration File

Thefollowing is an example of a configuration file. To see how the sectionsin thefile
tie together, you can refer back to this example as you read further.

Thisfileisfor asimulation session containing two SmartModel instances (1$1, 1$4) of
the ttl08. The model was generated from compiled Verilog with a vector input IN split
into scalar ports 11 and 12.

(MODEL TTLOS
(PORTMAP (11 IN1])
(121N2]))
(INSTLIST (1$1 CD74AQ08)
(1$4 SN74LS08)))

(LMC_PATH ./runl6)

(ANNOTATE new. sdf Top_Level

(DELAYSCALE MMM 1.0, 1.0, 1.0)
(DELAYRANGE MIM)

(1| NTEROONNECT ROVR NMAX)

(LOEFILE sdf.log))

February 2001 Synopsys, Inc. 183

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

MODEL Section

The Model section consists of one or more model entries. There must be amodel entry
for each model in the design that is to be back-annotated. Each model entry can define
optional port mapping and must declare one or more model instances.

Syntax
(MODEL modelName [port_map] instance list)

Arguments

model Name
The SWIFT model name.

port_map
Consists of one or more port name mapping statements. It maps SWIFT port names
to port names in the SDF file. The syntax for aport_mapis:

(PORTMAP { (SMFTName DesignName)})

SMFTName
The model’s SWIFT port name.

DesignName

The port name used by the delay cal culator to generate the SDF. Unspecified ports
are assumed to have identical names. In the case of duplicate entries, the last entry
IS used.

The DesignName is used when the model’s port name doesn’t match the SDF
generated by the |C vendor’s delay calculator. This can occur when:

o HDL compiler technology is used to generate a model.
o Thedesign’s port name is changed to create an HDL -independent model.
o The delay calculator has not been updated.

instance list
Enumerates each model instance to have timing annotated and consists of one or
more entries. The syntax is:

(INSTLIST {(Instance Component)})

184 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

Instance
The full hierarchical instance name of the model instance in the circuit.

Component
The SWIFT “TimingVersion” attribute; selects the base (unannotated) timing
values shipped with the model.

ANNOTATE Section

The Annotate section consists of one or moreindividual SDF annotator entries. Thereis
an SDF annotator entry for each SDF filethat is to be parsed and applied to the timing of
the ssmulation.

Verilog HDL implements this operation as $sdf _annotate task, while at least one VHDL
implementation uses command line arguments. It appears that VHDL isless
configurable and is a subset of the Verilog implementation. Most Verilog and VHDL
capabilities are addressed.

Syntax
(ANNOTATE SDFFile InstScope custom_parameters)

Arguments

DFFile
The complete path to the SDFFile.

InstScope
The hierarchical reference specifying the module instance (Verilog) or design
region (VHDL) scope for application of the SDF file.

custom_parameters
Optional settings that customize the handling of timing valuesin the SDF file.
These are:

o delay_scaling
o delay selection
delay application

O

process_reporting

O

February 2001 Synopsys, Inc. 185

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

The SDF format can contain either one or three (minimum, typical, and maximum)
values. The model’s compiled time files contain min, typ, and max values. Models can
be configured by the simulator to use either min, typ, max, or acombination version
(MTM) during ssmulation. As shown in Figure 23, delay scaling is applied to the SDF
delay values prior to their usage. The scaled delay selection is applied to create the
model’s compiled time file. The model’s DelayRange parameter sel ects the model’s use
of minimum, typical, or maximum timing delays during simulation.

Three-SDFE-value case

Selected Compiled
SDF Source SDF Time File

min mMin - MinFactor— MiN I
typ typ FTypFactor-B typ ——%» m

max MaX MaxFactor-e MaX /k'

/‘ k& Selected by
Specified by Specified by Simulator at

Delay scaling Delay scaling Model Init

Single-SDE-value case

Compiled
Time File

min
MinFactor ™| I
[o= e = uous
MaxFactor®s max /<
Selected by

Simulator at
Model Init

SDF Source

Figure 23: Delay Scaling Example

Delay scaling

Delay scaling allows a scale factor to be applied to the SDF value prior to itsusage. The
basic algorithm is:

Any value that is mapped to a“min” scaled delay is multiplied by MinFactor, “typ”
by TypFactor, and “max” by MaxFactor.

A separate scale factor is specified for each individual SDF delay range value. You
must separate MIN, TYP, and MAX values with commas.

Syntax
(DELAYSCALE{MIN, |TYR,|MAX |MTM } MinFactor TypFactor MaxFactor)

186 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

Arguments

MinFactor
Floating point multiplier applied to minimum values.

TypFactor
Floating point multiplier applied to typical values.

MaxFactor
Floating point multiplier applied to maximum values.

All three delay scale factors must be specified. If the entire delay_scaling is unspecified,
then the following is assumed:

(DELAYSCALEMTM 1.0,1.0,1.0)

The application of the scale factors works such that the{MIN | TYP| MAX | MTM }
construct specifies the selected SDF source and the scale factor triplet specifies the
scaling that occurs for each SDF destination.

The mapping of SDF source to selected SDF in Figure 23 is controlled by the MIN,
TYPRP, MAX, and MTM arguments as shown below.

MIN MAX MTM

© f g ot

| nter connect Statement

The Interconnect statement specifies where to place the SDF interconnect delay on the
model. From the model’s perspective, there are three possibilities: interconnect delays
can be placed on model inputs, model outputs, or can be ignored.

Syntax
(INTERCONNECT { RCVR |DRVR[MIN | MAX])

Arguments

RCVR |DRVR
Specifies whether the interconnect delay is placed on the receiving (RCVR) or
driving (DRVR) port.

RCVR MIN
Use the shortest path to any recelver, adding the delay to all receiving input ports.

RCVR MAX
Use the longest path to any receiver, adding the delay to all receiving input ports.

February 2001 Synopsys, Inc. 187

Chapter 9: Back-Annotating Timing Files

DRVR MIN

SmartModel Library User’s Manual

Use the shortest path from any driver, adding the delay to all driving output ports.

DRVR MAX

Use the longest path from any driver, adding the delay to all driving output ports.

If you omit the Interconnect statement, all interconnect delays will be ignored. Thisis
the setting that is used when the simulator is configured to accurately simulate all

Interconnect delays.

For example, Figure 24 illustrates where InstC and InstD are SmartModels.

dll
InstA O /\
A i ¢ss
InstC O
d21 d34
InstB o —]
(@)
Kﬁ* | InstD d43
dag L

InstE

Figure 24: Interconnect Example

InstF

RCVR MIN. Places the shortest delay of d11 and d21 on InstC.1 port and the shortest

delay of d12 and d22 on InstD.I.

RCVR MAX. Places the longest delay of d11 and d21 on InstC.| port and the longest

delay of d12 and d22 on InstD.I.

DRVR MIN. Places the shortest delay of d33 and d34 on InstC.O port and the shortest

delay of d34 and d44 on InstD.O.

DRVR MAX. Places the longest delay of d33 and d34 on InstC.O port and the longest

delay of d43 and d44 on InstD.O.

Process Output

Error Message Log

As delay values are annotated onto the model’s timing, alog containing error messages
from the annotator is written to afile you specify. By default, the log file is named
Jbalog. If morethan one SDF file is used the messages are concatenated. The statement

syntax is:
(LOGFILE FileName)

188 Synopsys, Inc.

February 2001

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

Model Time Files Location

As each model’s timing is processed, compiled model time files are created. By default
these files are placed in the current directory. You can specify a different destination
directory with the following statement:

Setting Environment Variables

Set the SLMC_HOME environment variable to point to the directory that is the root of
the SmartModel Library installation. You can use the SLMC_PATH variable to
reference alternate locations to search for .td and .tt files for the compilation of
SmartModel timing files (.tf).

Backanno Command Syntax

The syntax for the backanno command is as follows:
$LMC_HOME/bin/backanno config_file -ow -i
The following are the various sets of arguments for the backanno command:

-OwW
Overwrites SDF filesin the current directory when creating new SDF files.

Causes case insensitivity. By default, backanno treats identifiers as case-sensitive,
just like Verilog syntax, but the -i switch causes them to be case-insensitive, just
like VHDL.

Running Backanno

Run the Backanno tool as shown in the following example:
% $LMC_HQOWE/ bi n/ backanno configFile
Backanno creates the following files in the current working directory:
« The BAMODELS.LST filelists the back-annotated models.

« One .tf filefor each model. Note that if you set the SLMC_PATH construct in the
configuration file, the .tf files are written instead to the specified directory.

« An SDFFILES.LST file that maps the original SDF file name to the new SDF file
name. Note that the new SDF file may have certain SDF constructs commented out
to account for timing data that was extracted and back-annotated to the .tf files.

February 2001 Synopsys, Inc. 189

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

. SDF filesthat have the extracted timing values commented out.

Copying the Resulting Timing Files (.tf)

You can copy the new .tf files to the appropriate model directories or change your
$LMC_PATH environment variable so that the correct .tf files are picked up by the
simulator.

I°5> Note
If you copy back-annotated .tf filesinto the model directories, all users of
the models will be using the back-annotated .tf files, whether that is their
intent or not. If instead you place your back-annotated .tf filesinto a
directory that you then reference with $LMC_PATH, only you are affected.

Replacing the Original SDF Files

To run your simulation with the back-annotated .tf files, replace the original SDF filesin
your design with the new SDF files (listed in the SDFFILES.LST).

If you use Verilog-XL HDL you can use Verilog-XL preprocessor directives to switch
between your original SDF file and the new SDF file as follows:
“ifdef USE BA
$sdf _annot at e(“ nySdf . sdf . new') ;
‘el se
$sdf _annot at e(“ nySdf . sdf) ;
“endi f
When you want the new “mySdf.sdf.new” to be active, add the following to your
original simulation command line;

+def i ne+USE_BA

190 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 10: Library Tools

10

Library Tools

Introduction

Many users will find that the only tools they need to make effective use of the
SmartModel Library arethes_admin and sl_browser tools, both available in
$LMC_HOME/bin. Together, the Admin and Browser tools constitute the primary user
interface to the SmartModel Library. That said, there remain some tasks that can only be
accomplished using the command-line tools that are also provided with the library in the
$LMC_HOME/bin directory. This chapter describes some of the command-line tools,
what they are good for, and how to use them. Other command-line tools such as
compile_timing are discussed in the context of broader discussions. For example, you
can find more information about the compile_timing tool in the chapter about
“User-Defined Timing” on page 157. Here's a preview of the miscellaneous tool topics
that are covered in this chapter:

« Creating PortMap Files

« Copying Customizable Fileswith sl_copy

. Trandating Memory Image Files

« Adding Back-Annotation

« Checking SmartModel Installation Integrity

For more information on the Admin tool, refer to the SmartModel Library
Administrator’s Manual. Detailed information about the Browser tool is provided in
“Browser Tool” on page43. Refer to “Browsing Your Design Using SmartBrowser” on
page 106 for information on using the SmartBrowser command-line tool.

For information on setting environment variables and running command-line tools on
NT, refer to “ Setting Environment Variableson NT Platforms’ on page 43 and “Running
Console Applicationson NT Platforms’ on page 44.

February 2001 Synopsys, Inc. 191

Chapter 10: Library Tools SmartModel Library User’s Manual

Creating PortMap Files

A PortMap isan ASCII file that describes a SmartModel’s interface requirements (for
example, the pin porting between a symbol and the model it represents). PortMap files
simplify the task of interfacing SmartModels with custom symbols. They are structured
for easy parsing, thus providing a convenient source of information you can usein
scripts or programs to create or verify custom symbols for use with SmartModels.

You can generate PortMap files using the ptm_make tool that comes with the
SmartModel Library in LMC_HOME/bin. Before running ptm_make, however,
please note the following limitations. PortMap files generated from Synopsys data:

. Do not contain all of the datarequired to produce a high-quality visual symbol
representation—they are not useful as a symbol generation database.

« Include only the pinsthat are used to define the functional description of the model.

« Do not contain printed circuit board (PCB) interface information such as data to
drive aphysical design system.

175> Note
The ptm_make tool is not supported for FlexModels.

Using the ptm_make Tool

The ptm_make tool generates PortMap files based on ModelMap data contained in the
individual model directories. The tool usesthe SLMC_HOME environment variable to
locate the models. Models are user-versioned. The ptm_make tool selects model
versions based on information in the default or custom .Imc file.

Syntax

PortMap files generated by the ptm_make tool are named model.ptm. Run ptm_make
from the command line using the following syntax:

% ptmnake [nmodel, ...] [-d , path_name] [-h]
Arguments
model Use this optional argument to specify one or more

model names. If you do not specify any model names,
ptm_make generates PortMap files for all installed
models.

192 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 10: Library Tools

Switches

-h[elp] Specify this switch for help using the ptm_make tool.

-d[ir] Use this switch to specify adestination directory for the
generated PortMap file. If you do not use this switch,
ptm_make puts the PortMap file output in the current
working directory.

Examples

The following example generates a PortMap file for all modelsin the library:
% pt m nake

The following example generates specific PortMap files for the ttl00 and tt1821 models:
% ptmnake tt100 ttl 821

The following example places the generated PortMap files in the existing directory
/user/drj/portmaps.

Y% ptmnake tt100 ttl 821 -d /user/drj/ portmaps

PortMap File Format

A PortMap file contains a cross-reference of manufacturer pin-to-model signal names
for all supported package types, and other data needed for a model to function with a
custom symbol. You can usethisdatato provide the data link between a custom symbol
and the corresponding SmartModel. 1n some environments you might use this data as
an interface between a custom symbol and the model, or you could merge the data with
your own symbol datato create new symbols.

PortMap files provide data in a format that can be parsed with UNIX tools such as awk
and grep if you need to systematically extract information. File namesfor PortMap files
consist of the model name and a.ptm extension. For example, the PortMap file of the
tt12151 model has the name ttl2151.ptm.

A PortMap file consists of a set of records that contain keywords and one or more value
fields. Keywords and value fields are separated by vertical bars (|). Legal valuesfor
value fields depend on the keyword.

February 2001 Synopsys, Inc. 193

Chapter 10: Library Tools SmartModel Library User’s Manual

Thefollowing illustration shows the general format of a PortMap file. Bracketsindicate
that the enclosed item is optional; ellipses indicate that the preceding item can be
repeated.

MODEL | nodel _nare

VERSI ON | version
FUNCTI CN | function
SUBFUNCTI CN | subf uncti on
RANCGE | range

MODELFI LE | type [| type]

PACKACE | package_t ype
PIN_GOUNT | pi n_count
DEVI CEH COWP | device | conp
MODEL PCRT | pin_narme | pin_type | pin_nunber [| pin_nunber]

The MODEL, VERSION, FUNCTION, SUBFUNCTION, RANGE, and MODELFILE
records can appear only once in a PortMap file. The PACKAGE, PIN_COUNT,
DEVICE/COMP, and MODEL _PORT records can appear multiple times depending on
how many packages are defined for the associated model. Note that the PIN_COUNT,
DEVICE/COMP, and MODEL _PORT records are indented to indicate that they are
subordinate to the PACKAGE record. Following are definitions for each of the PortMap
file records:

MODEL | model_name
Specifies the model to which the data corresponds. The model _name valueisthe
name of amodel (for example, ttl00).

VERSION | version
Specifies the version number for the PortMap file. Note that PortMap files
generated by the ptm_make utility do not have valid version records.

FUNCTION | function
Specifies the name of afunctional category for a model (for example, processor or
memory).

SUBFUNCTION | subfunction
Specifies the name of a subfunctional category for amodel (for example, dram or
sram).

RANGE |range
Specifies the default timing range. Valuesfor range can be MIN, TYR, MAX, or
blank (no value). However, the ptm_make tool only generates range values of
MAX.

194 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 10: Library Tools

MODELFILE | type[]| type] ...
Specifies the type of additional configuration information the associated model
requires. Models that require more than one type of configuration information are
listed with multiple type values. Accepted valuesinclude PLD (JEDECFile), HVM
(PCLFile), MEMORY (MemoryFile), and FPGA (SCFFile).

PACKAGE | package type
Specifies the definition of a package. Accepted valuesinclude DIP, SOP, LCC,
FLP, PGA, SMT, ZIP, RCC, SDP, and SOJ. The package type has a numeral
appended to it to distinguish multiple descriptions of the same basic package type.

PIN_COUNT | pin_count
Specifies the total number of physical pins (including VCC, GND, NC, and so on)
for the current PACK A GE description.

DEVICE/COMP | device | comp

device
Specifies the semiconductor vendor's device name (order number) as given in the
manufacturer's data book. The device field may contain a vendor-specific
extension if two or more vendors have identical ordering information.

comp
Specifies the timing version name. The value corresponds to one of the CASE
statement values in the model's timing file.

MODEL_PORT |pin_name| pin_type | pin_number [| pin_number] ...

pin_name
Specifies the pin name used by the model to communicate with the ssmulator about
the pin.

pin_type
Specifies the pin type. Accepted valuesinclude IN (input), OUT (output), IXO
(bidirectional), and I'Y O (an output pin that must be seen as bidirectional). If the
pin_typeislYO, it must be defined on the symbol asan 1XO pin. Note that the
ptm_make tool labelsall 1'YO pinsas |1 XO pins.

pin_number
Specifies the physical pin number for the current package type. Multiple
pin_number values indicate a gate description where the values represent the pin
numbers of each gate of the physical package.

February 2001 Synopsys, Inc. 195

Chapter 10: Library Tools SmartModel Library User’s Manual

Example PortMap File

The following sample shows part of a PortMap file generated by the ptm_make tool for
the pal22v10 model. Ellipses(...) indicate places where information has been removed
to conserve space. .

MODEL | pal 22v10

VERSI QN . ..

FUNCTI CN pr og_| ogi c_devi ces

SUBFUNCTI QN pal 24

RANGE| MAX

MCDELFI LE| PLD

PACKACGE] D PO

Pl N_COUNT| 24

DEVI CH COwWP| AMPAL22V10- 1500 APAL22V10- 15
DEVI CH/ COWP| AMPAL22V10- 15DCB| ATPAL22V10- 15

DEVI CE/ COVP| TI CPAL22VIOMIT| TI CPAL22V10M
DEVI CE/ COVP| TI CPAL22VIOMNT]| Tl CPAL22V10M
MCDEL_PORT| OCFBO| | XJ 23
MCDEL_PCRT| CCFBO| | XQ 22

MODEL_PCRT| | N8| I N| 10

MODEL_PORT| | N9| I N 11

PACKAGE| FLPO

Pl N_COUNT]| 24

DEVI CE/ COMP| AMPAL22V10- 20BKA| ATPAL22V10- 20

DEVI CE/ COVP| PALCE22V10H 30/ BKA| PALCE22V10H 30
MCDEL_PORT| GOFBO| | XO| 23

MCDEL_PORT| | N9| I N 11

PACKAGE| LOO0

PI N_COUNT| 28

DEVI CE/ COVP| AMPAL22V10- 15JC ATPAL22V10- 15

DEVI CE/ COMP| T1 BPAL22V10MFK| Tl BPAL22V10M
MCDEL_PORT| OCFBO| | Xg 27

MODEL_PORT| | N9| | N 13

196 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 10: Library Tools

Copying Customizable Files with sl _copy

You can use the Browser tool to copy customizable model source files such as model
timing data files one at atime and then modify them to suit your needs. This method is
explained in “Copy Customizable Files Dialog Box” on page 67. When you need to
copy multiple model sourcefiles, you can usethe d_copy tool to do the job. Ordinarily,
you could use a UNIX cp command to copy files and then modify them. But with the
SmartModel Library, more than one version of the same model can exist in the same
installed library (LMC_HOME). It istherefore easy to inadvertently pick up the wrong
version of amodel source file. To solve this problem, Synopsys provides the Copy
Customizable Files function with the Browser tool and the sl_copy tool for use on the
command line.

By default, the dl_copy tool copies model.td files that you can then edit to create custom
timing versions of models. For more information on creating custom timing versions,
refer to “User-Defined Timing” on page 157. You can also use sl _copy to copy
command header files (model.cmd) for Hardware Verification (HV) models. For more
information on HV models, refer to “Processor Models’ on page 129.

Syntax

You can run the sl_copy tool from the command line in two different ways, as shownin
the following examples:

% sl _copy [swi tches] nodel _name new file name

% sl _copy [swi tches] nodel name [nodel _name] directory nane

Arguments

model _name Specify amodel name whose source file you want to
copy. If you specify an output directory using the
directory _name argument, you can also specify
multiple model names on the same command line.

new_file_name Specify afull path and file name for the new file to be
created if you are copying the source file from just one
model.

directory_name Specify a directory name where you want the copied

source files from multiple models to be created if you
list more than one model. The directory must already
exist for thisto work.

February 2001 Synopsys, Inc. 197

Chapter 10: Library Tools SmartModel Library User’s Manual

Switches

-td Use this switch if you want to copy a model’s timing
data (.td) file. Thisisthefile that the tool copies by
default if you do not specify otherwise.

-cmd Use this switch if you want to copy a Hardware
Verification (HV) model’scommand header file (.cmd).

-V This switch puts the tool in verbose mode, causing it to
display the name of each copied fileasit isbeing
created.

-h Use this switch to get a help message about using the
tool.

Translating Memory Image Files

SmartModel Library memory models read memory image files (MIF) to configure
themselves at simulation startup. The MIF file format does not match other memory
image formats created by third parties; specifically, Intel Hex and Motorloa S-record
formats.

As a convenience, Synopsys supplies acommand-linetool called mi_trans (memory
Image translator) that you can use to convert Intel Hex and Motorola S-record memory
imagefilesinto the MIF format. Themi_transtool replaces an earlier trandlator that you
may have used in the past called mkmemimage. The mi_trans tool offers the following
enhancements:

. Intel Hex—For Intel Hex translations, mi_trans handles both extended segment
address records and extended linear address records.

« Motorola S-record—For Motorola S-record translations, mi_trans can process input
files containing mixed datalengthsin different records. Thetool recognizes SO, S5,
S7, S8, and S9 records anywhere in thefile.

Syntax

Run the mi_transtool from the command line as shown in the following example:
%m _trans input_file output_inage width [-be] [-single] [-h]

Arguments

input_file Specify asingle input file either in Intel Hex or

Motorola S-record format.

198 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 10: Library Tools

output_image width Specify the desired width of datain the output filein
terms of the number of nibbles, where each nibble
equals four bits. The output data width must be less
than or equal to the input data width.

Switches

-be Use this switch if you want your output to be
big-endian. If you do not set this switch, mi_trans
creates little-endian outpui.

-single Usethisswitch if you want to create asingle output file
with data in consecutive addresses. (Thisonly applies
to the Motorola S-record input format.)

-h Specify this switch for help using the mi_transtool.

The mi_trans tool generates one or more SmartModel MIF files named mem.1, mem.2,
mem3, and so on. Thefirst MIF file (mem.1) contains the most significant bits of the
data. If theinput file data width is not a multiple of the output data width, mi_trans
pads the M SB with zeros to make it fit.

Example #1—Input and output data widths match

I nput data width:

8 bits per address
Qut put data width:

8 bits per address (2 nibbles)
% m _trans input.data 2

In this case, the mem.1 output file data width corresponds exactly to the input data.

Example #2—Input data width a multiple of output data
width

I nput data width:
16 bits per address
Qut put data width:
4 bits per address (1 nibble)

% m _trans input.data 1

In this case, mi_trans generates four files (mem.1 through mem.4). For each memory
address, the tool writes out the most significant four bitsin mem.1 and the least
significant bitsin mem.4.

February 2001 Synopsys, Inc. 199

Chapter 10: Library Tools SmartModel Library User’s Manual

Example #3—Input data width not a multiple of output data
width

I nput data width:
18 bits per address
Qut put data width:
16 bits per address (4 nibbl es)

% m _trans input.data 4

In this case, mi_trans generates amem.1 file that holds the two M SBs padded with
zeros. The mem.2 file contains the lower 16 bits of data.

Adding Back-Annotation

You can extract back-annotation timing data from Standard Delay Format (SDF) files
using the Backanno tool and annotate them to the SmartModel timing data format. The
Backanno tool creates new user SDF files and compiled timing files (.tf).

Syntax
Run the backanno tool from the command line as shown in the following example:
% $LMC_HOWE bi n/ backanno configFil e

Argument

configFile Specifies the configuration file that controls the
back-annotation process.

For more information on using Backanno, including details about the configuration file
format, refer to “Back-Annotating Timing Files’ on page 181.

Checking SmartModel Installation Integrity

If you encounter unexplained problems while working with SmartModel Library
models, it could be that the underlying cause is afaulty installation. To help diagnose
such problems, Synopsys provides atool called swiftcheck. The swiftcheck tool can
identify many common installation problems by:

« Verifying that environment variables are properly set
« Checking that the SmartModel Library is properly installed
 Loading auser-specified model and exercising basic functionality

200 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Chapter 10: Library Tools

The swiftcheck tool reports the values of these environment variables:
« $LMC HOME (required)
. $LMC_PATH
.« $LMC_COMMAND
« $LM _LICENSE FILE
. $LD LIBRARY_PATH (SunOS only)

The swiftcheck tool verifies the values of these environment variables and produces an
error message if it cannot find any of them. In particular, you will get afatal error if the
required variable SLMC_HOME is not set.

To verify theinstallation of your SmartModel product, swiftcheck searches for the
necessary runtime utilities, using the SLMC_HOME environment variable for the path.

The swiftcheck tool enables you to specify amodel that it will load and attempt to
exercise. The swiftcheck tool loads all of the specified model’stiming filesand, if
specified, custom configuration file(s). By loading and initializing the model,
swiftcheck effectively tests the value of the 3LMC_PATH environment variable and
provides you with a simple way to test configuration files.

Because SmartModels do not require a configuration for initialization, swiftcheck loads
and exercises the selected model even if you do not specify a configuration file.
However, if swiftcheck cannot find the timing files for amodel, it will not load or
initialize that model.

The swiftcheck tool displays important messages (such as fatal errors) on your screen
when the errors occur. In addition, swiftcheck places all messages, regardless of
severity, in alog file named swiftcheck.out.

Syntax
Run the swiftcheck tool from the command line as shown in the following example:
% swi ft check nmodel [-switches]
Argument
model Specify the installed model that you want the tool to
load and exercise as atest of basic installation integrity.
Switches
-¢[rrorlog] filename Use this switch to a specify an output file for the error

log other than the default of swiftcheck.out.

February 2001 Synopsys, Inc. 201

Chapter 10: Library Tools

-hlelp]
-hh[elp]

-j[edecfilg] filename
-m[emoryfile] filename
-n[omodels]

-p[cifile] filename
-t timing_version

-u[sage]

Examples

SmartModel Library User’s Manual

Specify this switch for help using the swiftcheck tool.

Specify this switch to print a more detailed message
about using the swiftcheck tool.

L oad the specified configuration file for the JEDEC
model.

L oad the specified configuration file for the memory
model.

Usethisswitch if you want to run swiftcheck but do not
want the tool to load and exercise amodel.

L oad the specified configuration file for the HV model.

Load a particular timing version for the specified
model.

Another switch that you can specify for help using the
swiftcheck tool.

The following example invocations show how to invoke the swiftcheck tool in several
different ways. Thefirst example causes swiftcheck to load and exercise the tt100 model,
which does not require a configuration file:

% swi ftcheck ttl00

This next example causes swiftcheck to load and exercise the am2168 memory model
using the MIF file called my_memfile to configure the model:

% sw ftcheck -mny_menfil e an2168

The next example causes swiftcheck to load and exercise the mc68332_hv hardware
verification model using the MIF file called my_memfile and the PCL file called
my_pclfile to configure the model:

% swi ftcheck -mny_nenfile -p ny_pclfile nt68332_hv

202

Synopsys, Inc. February 2001

SmartModel Library User’s Manual Appendix A: Reporting Problems

A

Reporting Problems

Introduction

If you think a SmartModel is not working correctly, check with your System
Administrator to see if you are using the latest version. It is possible that a more recent
version of amodel has the fix you need. Significant model changes are documented in
the model history section at the end of each model’s datasheet.

First, verify the version number of the model using the Browser tool
(BLMC_HOME/bin/dl_browser) to access the model datasheet. Thetitle banner at the
top of al SmartModel datasheets lists the model’s MDL version number. Then compare
reported fixes for subsequent versions of that model by reading the model history
section at the end of the latest datasheet on the Model Directory:

http://www.synopsys.com/products/|m/model Dir.html

For more information on model history, refer to “Model History and Fixed Bugs” on
page 205.

If you cannot find a more recent model version that solves the problem, contact
Customer Support. For details on how to get in touch with Synopsys, refer to “ Getting
Help” on page 13.

Using Model Logging

Before you contact Technical Support, create a model logging file (mlog.cfg). Model
logging captures all of amodel’s activity during simulation (that is, stimulus and
response) in ASCII text format. Transmitting an mlog.cfg file to Technical Support will
help ensure accurate diagnosis of the problem. Only one instance of one model can be
logged at any one time and system performance degrades when you use model logging.

February 2001 Synopsys, Inc. 203

http://www.synopsys.com/products/lm/modelDir.html
mailto: sw_support@synopsys.com

Appendix A: Reporting Problems SmartModel Library User’s Manual

T3> Note
FlexModelswith anamethat endsin®_fx" use adifferent method for model

logging. For details, refer to the FlexModel User’'s Manual. For
FlexModelsthat end inan “_fz" extension and all other SmartModels, use
the procedures that follow.

To enable model logging, create afile called mlog.cfg in the directory where you run the
simulator. All modelslook for thisfileand, if it exists, read its contents to determine
which model to log. You can select amodel for model logging in any of the following

ways:

1. Create an empty mlog.cfg file. If you do not specify a particular model, the first
SmartModel loaded inacircuitislogged. Thisishandy if you have only one model
in the design.

2. Specify amodel by its model name. Put aline in the mlog.cfg file that follows this
case-sensitive convention:

%n nodel _nare
For example:
%n mc68030_hv

This causes the first model of that name to be logged. Thisisagood method to use
when the design has only one instance of a particular model type.

3. Specify amodel by itsinstance name. Put alinein the mlog.cfg file that follows
this case-sensitive convention:

% instance_hane
For example:
% ul00
The instance with instance name ul00 is logged.

During simulation, the specified model creates afile named mlog.log. Thisfile contains
all of the stimulus and response recorded at the model’s ports during simulation.

Logging Multiple Instances

If you need to log more than one instance of amodel in the design, reset the instance
name specified in the mlog.cfg file and rerun the simulator for each instance you want to
log. Remember to save the mlog.log output file to another location prior to running the
simulator.

204 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Appendix A: Reporting Problems

Transmitting the Log File

Before copying the log file, call the Synopsys Technical Support Center to make sure
you have an acceptable mediatype. When you contact the Technical Support Center
your request is assigned an issue number. If you need to contact Technical Support later,
please have this issue number available.

Other Diagnostic Information

Depending on the type of model, the following information may be required in addition
to the mlog.cfg file:

. Hardwareverification models. Send the PCL source program, and any other files
required for compilation.

« PLD models. Send the source JEDEC program files.
« Memory models. Send the memory image files.

. SmartCircuit models. Send the netlist description files necessary to create a CCN
file, and your MCF file. Also provide the version numbers of any third-party tools
you used, and the version number of smartccen.

Please use e-mail to send the test data described above for the type of model you are
using. Inal communicationsto the Synopsys Technical Support Center, please include
a phone number where we can reach you.

Model History and Fixed Bugs

At the end of each SmartModel datasheet isamodel history section detailing significant
model changes that occurred during the past year. |If the model has not changed
significantly in ayear, its datasheet does not contain any model history entries.
Significant changes cause the model to behave differently in smulation. Of course, this
includes all model bug fixes. For information about gaps in model version numbers,
refer to “MDL Version Numbers and Model History” on page 26.

Each change entry in the model history includes the:
« Reference number
« MDL version of the model after the change
. MDL date of the change
« Problem and resolution descriptions

February 2001 Synopsys, Inc. 205

Appendix A: Reporting Problems SmartModel Library User’s Manual

Model history entries look like the following example.

Ref erence: : 41087

MDL Version:: 01002
MOL Date:: 13-June-1996

SRC Version:: vl.1

Probl em : The m ni num hi gh/1 ow pul se width for GOLK in
synchronous peripheral nmode did not conformto revised
vendor specifications.

Resol ution:: Corrected the nodel.

Model History Entry Field Descriptions

The “Reference::” Field
The “Reference::” field contains the internal number assigned to the specific change.

The “MDL Version::” Field

The“MDL Version::” field contains the model version after the change. Not all MDL
version number changes are significant. Only changes such as bug fixes that affect
model behavior are considered significant and generate model history entries. That's
why the model MDL version number listed in the title banner on the first page of a
datasheet can be a higher number than the MDL version number listed in the latest
model history entry for amodel.

The “MDL Date::” Field

The“MDL Date::” field contains the publication date for the corresponding MDL
Version of amodel.

The “SRC Version::” Field

The“SRC Version::” field contains the internal model source code version after the
change. Because not al MDL Version changes for amodel involve changes to the
source code, the same SRC Version number can appear in multiple model history entries
for different MDL Version numbers.

The “Problem::” and “Resolution::” Fields

The “Problem::” and “Resolution::” fields briefly describe the user-visible symptoms of
the problem and, if appropriate, what was changed to correct it.

206 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Appendix B: Glossary

B

Glossary

Introduction

Following are definitions of some terms that have special meaning in the context of
using the SmartModel Library.

Configuration. A platform-specific set of SmartModel Library models and user-
versioned tools, with one version number specified for each.

Configuration (LMC) File. A file that contains a configuration; that is, a platform-
specific set of SmartModel Library models and user-versioned tools, with one version
number specified for each. Configuration files have .Imc extensions.

Custom Configuration. A user-specified, platform-specific set of SmartModel Library
models and user-versioned tools, with one version number specified for each.
Overrides model and tool versions specified in the default configuration.

Custom Configuration (LMC) File. A filethat contains a custom configuration; that
IS, a user-specified, platform-specific set of SmartModel Library models and user-
versioned tools, with one version number specified for each. Custom configuration files
have .Imc extensions.

Datasheet. A document that describes a model in the SmartModel Library, including
its sources, supported hardware components and devices, programming, use, timing
parameters, and any differences between the model and the corresponding hardware
part.

Default Configuration. A system-specified, platform-specific set of SmartModel
Library models and user-versioned tools, with one version number specified for each;
used if no other user-specified configuration exists.

February 2001 Synopsys, Inc. 207

Appendix B: Glossary SmartModel Library User’'s Manual

Default Configuration (LMC) File. Thefile that contains the default configuration;
that is, a system-specified, platform-specific set of SmartModel Library models and
user-versioned tools, with one version number specified for each. Supplied with the
SmartModel Library.

LD_LIBRARY_PATH . For Sun operating system only. An environment variable that
contains the path to Sun libraries that are to be executed.

LMC_COMMAND. Anenvironment variable that contains a semicolon-separated list
of session commands to be used during simulation.

LMC_CONFIG. An environment variable that contains a colon-separated list of paths
to user-specified configuration (LMC) files. For NT, path entries must be separated by
semicolons.

LMC_HOME. An environment variable that contains the path to the SmartModel
installation tree.

LMC_PATH. An environment variable that contains a colon-separated list of paths to
user-specified model timing files. For NT. path entries must be separated by
semicolons.

LM_LICENSE_FILE. An environment variable that contains the path to a FLEXIm
licensefile. For NT, path entries must be separated by semicolons.

LMC or .Imcfile. A configuration file. “LMC” standsfor “List of Model
Configurations’. An LMC file must have the .Imc extension.

Model. A behavioral software representation of a standard integrated circuit.

Model Name. A string of alphanumeric characters that identifies a specific model in
the SmartModel Library (for example, am2168, dflipflop, or i80c31).

Model Report. One of the three different reports that you can generate using the
Browser tool.

Model Version. A string of numbers that identifies a specific version of amodel in the
SmartModel Library (for example, 01000, 01003, or 01012).

Model-versioned Tool. A tool whose version number is specified by the model and
cannot be specified by the user. Examples of model-versioned tools include
compile_pcl and compile_timing.

Platform. The workstation on which the SmartModel Library isto beinstalled (for
example, hp700, sunSunOS, or pcnt).

Predefined Window Element. A window element created by Synopsys and supplied
with a specific model.

208 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Appendix B: Glossary

SmartModel Library. A collection of behavioral simulation models of standard
integrated circuits, designed to be used in EDA simulation environments that use the
SWIFT interface.

td file. A sourcetiming version file.
f file. A timing version file that has been compiled and is ready for simulation.
Timing File. A file that contains timing parameters for a SmartModel.

Timing Version. A SmartModel representation that specifiesmodel timing parameters.
Each timing version has a unique name.

User-defined Window Element. A window element created by a user.

User-versioned Tool. A tool whose version number can be specified by the user,
usually by placing it and its version number in acustom configuration file. Examples of
user-versioned tools include ptm_make, mi_trans, and swiftcheck.

Window. A view through which you can access one or more of amodel’s internal
registers.

Window Element. A window with a specific hame, created to monitor a specific
register or memory array.

February 2001 Synopsys, Inc. 209

Appendix B: Glossary SmartModel Library User’'s Manual

210 Synopsys, Inc. February 2001

SmartModel Library User’s Manual

Index

Index

Symbols

#define directive 145
#include directive 145, 146
#undef directive 145
%EXE command 49
%MOD command 49
%PLT command 48

Numerics
64-bit time 29

A

Address mapping

MIF files 75
alias command 118
Aliasing commands 111
Analyses

causal tracing 92
analyze cell command 112
analyze design command 112
analyze hierarchy command 112
Areas

status 66
assign monitor instance command 112
assign monitor net command 112
assign monitor state command 113
assigntiming 113
assign timing command 113
assign window auto command 113
assign window instance command 113
assign window net command 113
assign window state command 113
Assignment statements 147
Associativity

operators 142
Assumptions

modeling 34
AutoWindows 128

February 2001

B

backanno tool, running 189
Back-annotation

timing files 181
Back-annotation process

finishing 189
Blocks

model, timing datafile 170
Boundary scan

featuresin models 36
break statement 148
Browser

actions menu 62

docs menu 63

file menu 61

help menu 63

menu bar 61

SmartModé Library 43

starting 46

tool bar 64

tool, using 45

toolbar 64

user menu 63

view menu 62

window 59

window on NT 60
bus command 119

Buses
creating 96
C
Causal tracing
analysis reports 92
commands 92

ccn_report command 20, 45, 88, 90, 96
ccn_report tool 90
Checking
error 31
Checks 81
control, timing 33

Synopsys, Inc. 211

Index

format, MIF files 76
PCL file 131
read cycle 35
timing 32
timing compiler 178
timing, setup and hold 35
usage 31

Command
completion 111
header file 136

Commands 110, 113, 118
%EXE 49
%MOD 49
%PLT 48
alias 118
dliasing 111
analyze cell 112
analyze design 112
analyze hierarchy 112
assign monitor instance 112
assign monitor net 112
assign monitor state 113
assign window auto 113
assign window instance 113
assign window net 113
assign window state 113
bus 119
cen_report 20, 45, 88, 90, 96
compile pcl 131, 132, 152, 153

compile_timing 20, 45, 158, 161, 163,

165, 168, 179
do 120
echo 120
examine instance 113
examine net 114
examine port 114
examine state 114
examine timing 114
help 120
listal 114
list cells 114
list instances 114
list mef 114
list nets 114
list pin Interface 114

212 Synopsys, Inc.

SmartModel Library User’s Manual

list ports 114

list states 114

list timing 115

load 120

log 118

mi_trans 45, 48, 49, 75, 198

ptm_make 45, 48, 49, 192, 196

quit 118

report cause 92, 94

report effect 92, 93

rerun 118

run 118

save design 118

save mcf 118

set bus bitOrder 115

set bus delimiter 115

set cause 92, 94

set help completion 115

set illegalchars 115

set listAll 115

set range 121

set saveMcf 115

set scope 116

set timing range 116

set timing unit 116

show bus bitOrder 115

show bus delimiter 115

show doc 116

show help completion 115

show illegalchars 115

show saveMcf 115

show scope 116

show timing range 116

show timing unit 116

show version 116

sl _browser 46, 47, 63

s_copy 197

smartbrowse 107

smartbrowser 20, 45, 88, 90, 119, 121,
125, 205

smartcen 20, 45, 88, 90, 99, 119, 121,
123, 125, 205

swiftcheck 45, 48, 49, 57, 201

tracefin 117

trace fout 117

February 2001

SmartModel Library User’s Manual

trace instances 117

trace nets 117

trace objs 117

trace pkgPin 117

trace ports 117

trace scvinstances 118

trace symbolPin 118

unalias 118

vsb 45

window 122
Comments

general, in timing files 168

PCL 140

range 170

timing data files 168

timing description 168

timing expression 169
compile_pcl command 131, 132, 152, 153
compile_timing command 20, 45, 158,

161, 163, 165, 168, 179

Compiler

timing, checks 178

timing, running 179

timing, using 178
Compound statements 147
Configuration

files, custom 49

models 21
Configuration files

custom, loading 56

LMC 48

open, dialog box 69

syntax 48
Configurlaéit_?n files, ANNOTATE section
Configuration files, creating 182
Configuration files, file format 182
Configurlaéi7on files, Interconnect statement
Configuration files, MODEL section 184
Configuration files, sample 183
Configurations

memory, models 71

PLD models 79

February 2001

Index

Constants
PCL 139
Constraints
violations, scope 95
Constructs
PCL 138
continue statement 148
Control statements
PCL, program 148
Controls
timing check 33
Copying 197
Custom
model filters 51
timing versions 51
Custom files
configuration 49
configuration, loading 56
Custom menus
user, creating 46

D

Data
flow, SmartCircuit models 87
memory, dumping 77/
types, PCL 139
Datafiles
model blocks, timing 170
timing, comments 168
timing, format 165
Datasheets
model, displaying 53
model, getting 27
viaModel Directory 27
Debugging
design with trace messages 151
delay label 171
Delay label format 171
Delays
propagation 166
propagation, calculated 167
ranges 166
Designs

Synopsys, Inc. 213

Index

partial, processor modelsin 35
Details

model, dialog box 68
Devices

unsupported, using 98
Diagnostic information 205
Diaog boxes

configuration files, open 69

customizable file, copying 67

model detail 68

model filters 66

model reports 68

Save As 69
Directives

#define 145

#include 145, 146

#undef 145

preprocessor 145
do command 120
do statement 148

E

echo command 120
Elements

window, predefined 23

window, using 25
Environment

settings (LMC) 56
Environment variables

setting on NT 43
Error checking 31

timing 32

usage 31
Errors

repairing 58
examine instance command 113
examine net command 114
examine port command 114
examine state command 114
examine timing command 114
Exceptions 135
Expressions

PCL 143

214

SmartModel Library User’s Manual

F

Fault ssmulation 33
Features
boundary scan 36
model, implementation-specific 33
FF models
see also Moddls, full-functional 129
Files
checks, PCL 131
command header 136
configuration (LMC) 48
configuration, ANNOTATE section 185
configuration, creating 182
configuration, custom - loading 56
configuration, custom LMC 49
configuration, file format 182
confi ggga%ion, Interconnect statement
configuration, MODEL section 184
configuration, sample 183
configuration, syntax 48
customizable, dialog box 67
interface, format 100
interface, managing multiple 100
JEDEC, format checks 81
LMC, configuration 48
LMC, environment settings 56
log, transmitting 205
MCF, naming conventions 122
memory image (MIF) 72
MIF 72
MIF, address mapping /5
MIF, format 73
MIF, format checks 76
MIF, trandlating 198
open configuration, dialog box 69
PortMap, creating 192
PortMap, generated 193
SDF 190
SMTF (.tf) 190
timing 158
timing data, comments 168
timing data, example 161
timing data, format 165
timing data, model blocks 170

Synopsys, Inc. February 2001

SmartModel Library User’s Manual

timing, back-annotation 181
timing, disabling display 47
timing, user-defined, compiling 106
UDT, disabling display 47
WDF, creating with SmartBrowser 96
WDF, using 96
window definition 96

Filters
custom, models 51
model, dialog box 66
models, custom 51

FlexModels 21
datasheets 26
model logging 204
SmartModel Windows 22
user-defined timing 157

for statement 149

Format checks
JEDEC files 81
MIF files 76

format, JEDEC files 81

Formats 171
interface file 100
timing check label 172
timing statement 173

Functions
displaying models with same 55
PCL 143
printf() 143

G

GUI
Browser graphical user interface 59

H

Header files
command 136
help command 120
HV models
PCL, using to configure 132
see also Models, hardware verification

Index

|dentifiers
PCL 138
if statement 149
Initial state
resetting to 33
Installation
integrity, checking 200
Interface files
formats 100
Interfaces
Browser, graphical user 59
graphical user, Browser 59
SWIFT, connection for SmartModels 17
Interrupts 135

JEDEC files
format checks 81

JEDEC standard
fields, table of 80

K

Keywords
PCL 138

L

LD LIBRARY_PATH
for SunOS 208
on SunOS 201
Libraries
SmartModel, browser 43
list all command 114
list cells command 114
list instances command 114
list mef command 114
list nets command 114
list pin Interface command 114
list ports command 114
list states command 114

129 AV
list timing command 115
Lists
February 2001 Synopsys, Inc. 215

Index

model, locating in 53
LM_LICENSE FILE
checking with swiftcheck 201
glossary definition 208
setting on NT 208
LMC files
configuration 48
custom configuration 49
environment settings 56
LMC_COMMAND
checking with swiftcheck 201
glossary definition 208
setting message verbosity 57
LMC_CONFIG
defining configuration files 56
glossary definition 208
loading custom configuration files 56
multiple entrieson NT 50, 56
selecting model versions 44
setting on NT 208
using custom LMC files 50
LMC_HOME
checking with swiftcheck 201
glossary definition 208
installing modelson NT 44
locating CMD files 136
locating default LMC files 56
locating installation directory 45
model installation directory 18
path to model .v files 127
selecting model versions 44
with backanno 189
LMC_PATH
checking with swiftcheck 201
displaying user-defined timing files 47
glossary definition 208
locating custom timing files 65
selecting custom timing files 52
setting on NT 159, 208
timing file search path 159
with backanno 189, 190
load command 120
log command 118
Log files
transmitting 205

216 Synopsys, Inc.

SmartModel Library User’s Manual

Logging models 203
Logic values 30
table of 30
M
Mapping
address, MIF files 75
MCF files

command descriptions 119

naming conventions 122
MDL Version Numbers 26, 206
Memory

configuration, models 71

data, dumping 77

image files 72
Memory Address window 24
Memory Array window 24
Memory arrays

windows 23
Memory image files 72

format 73

seedso MIFfiles 72

trandating 198
Memory models 71

unprogrammed states 35
Memory Read/Write window 24
Memory windows 23

inVSS 198
Menus

actions 62

bar 61

custom user, creating 46

docs 63

file 61

help 63

user 63

view 62
Messages

trace, debugging with 151
mi_trans command 45, 48, 49, 75, 198
MIF files 72

address mapping 75

format 73

format checks 76

February 2001

SmartModel Library User’s Manual

record syntax 74
trandating 198
Model
history 205
history, descriptions 206
name, displayed in Browser at startup 47
Model Directory
getting model datasheets 27
Web site 17
Model types
FlexModd 21
full-functional 20, 129
hardware verification 20, 129
Model Versions
significant changes 26, 206
Model versions
determining most recent 52
Modeling
assumptions 34
changing states 40
timing relationships 34
uncertain 40
Models
behavioral 17
boundary scan features 36
configuration 21
custom, filters 51
datasheets, displaying 53
datasheets, getting 27
detail, dialog box 68
details, finding 55
features, implementation-specific 33
FF, see also Model, full-functional 129
filters, dialog box 66
full-functional 20, 129
functions, same - displaying 55
hardware verification 20, 129
history, for problem reports 205
HV, see d'so Models, hardware
verification 129
HV, using PCL to configure 132
list, locating model in 53
locating in model list 53
logging 203
memory 71

February 2001

Index

memory configuration 71
memory configuration, using 71
memory, unprogrammed states 35
PLD 79
PLD, programming 80
PLD, using 82
processor 71, 129
processor, in partial designs 35
reconfiguration 34
reports, dialog box 68
reports, repairing errors from 58
reports, saving 69
reset 33
SmartCircuit, pin mapping 90
SmartCircuit, using 84, 85
SmartModel behavioral simulation 17
status reports 30
timing relationships 34
vendor, displaying 54
versions, finding 55
versions, selecting 20

Monitors
SmartCircuit signal values 97

N

Names
conventions, MCF files 122
Nested statements 147
Netlists
compiling for SmartCircuit models 202
newlink Model Command File (MCF)
Reference 119
NT
browser help menu 63
browser navigation tools 70
invoking smartbrowser tool 107
running consol e applications 44
running programs from command line 44
running the PCL compiler 152
setting environment variables 43
setting LMC_CONFIG 50
setting LMC_PATH 159
Null statements 146

Synopsys, Inc. 217

Index

O

Operations
save and restore 33
Operators
associativity 142
PCL 140
precedence 142

Panes
selection 65
Partial designs
processor modelsin 35
PCL
comments 140
compiler 152
constants 139
constructs 138
data types 139
expressions 143
file checks 131
functions 143
HV models, using to configure 132
identifiers 138
keywords 138
operators 140
processor control language 132
program control statements 148
program example 153
program structure 133
statement types 146
variables 139
Pins

mapping for SmartCircuit models 90

names, deriving 91
PLD models 79
configuration 79
programming 80
using 82
PortMap files 193
Precedence
operators 142
Preprocessors
directives 145

218

Synopsys, Inc.

SmartModel Library User’s Manual

printf() function 143
Problem reports 203

Process, back-annotation -- finishing 189

Processor control language
seeadso PCL 132
Processor models 71, 129
FlexModels 129
simulating in partial designs 35
Program structure
PCL 133
Programmable logic devices
see PLD models 79
Propagation delays
assumed 166
calculated 167
selectable 33

ptm_make command 45, 48, 49, 192, 196

Q

quit command 118

Read cycle check
in SRAMs 35
Reconfiguration
model 34
report cause command 92, 94
report effect command 92, 93
Reports
causal tracing analysis 92
model, repairing errors from 58
models, dialog box 68
problem 203
saving, dialog box 69
status for models 30
rerun command 118
Reset
models 33
return statement 149
run command 118

February 2001

SmartModel Library User’s Manual

S

Save and restore operations 33
save design command 118
save mcf command 118
Scaling timing in SmartCircuit models 120
Scopes

constraint violation 95

SmartBrowser tool 110
SDF files 190
Selection pane 65
set bus bitOrder command 115
set bus delimiter command 115
set cause command 92, 94
set help completion command 115
set illegalchars command 115
set listAll command 115
set range command 121
set saveM cf command 115
set scope command 116
set timing range command 116
set timing unit command 116
Settings

environment (LMC) 56
Setup and hold

timing checks 35
show bus bitOrder command 115
show bus delimiter command 115
show doc command 116
show help completion command 115
show illegalchars command 115
show saveMcf command 115
show scope command 116
show timing range command 116
show timing unit command 116
show version command 116
Signals

values, SmartCircuit monitor 97
Simulations

fault 33

processor modelsin partial designs 35
Simulator timing resolution 29
s_browser command 46, 47, 63

February 2001

Index

s_copy tool 197
smartbrowse command 107
smartbrowser command 20, 45, 88, 90,
119, 121, 125, 205

SmartBrowser tool 110

creating WDFs 96

interactive 106

interactive commands 110

scope of commands 110
smartccn command 20, 45, 88, 90, 99,

119, 121, 123, 125, 205

SmartCircuit models

data flow 87

netlists, compiling 202

pin mapping 90

scaling timing 120

using 85

using unsupported devices 101
SmartCircuit monitor

signal values 97
SmartCircuit technology 86
SmartModel Library

browser 43

features 17

overview 17

SWIFT interface, connection through 17
SmartModel Library Browser 43

starting 46
SmartModels

browser 43

configuration 21

datasheets, displaying 53

installation integrity, checking 200

library features 17

listed in Model Directory Web site 17

types 20

windows 22, 33
SRAMs

read cycle check 35
Startup

displaying model name in Browser 47
Statements

assignment 147

break 148

Synopsys, Inc. 219

Index

compound 147
continue 148
do 148
for 149
if 149
nested 147
null 146
PCL, program control 148
PCL, types 146
return 149
switch 150
while 151
States
changing, diagram 41
changing, modeling 40
initial, resetting to 33
TAP, diagram of 37
uncertain, modeling 40
unprogrammed in memory models 35
Status area 66
Status reports
models 30
SWIFT interface
connection between SmartModels and
simulators 17

swiftcheck command 45, 48, 49, 57, 201

switch statement 150
Syntax
configuration file 48
MIF file record 74

T

TAP states
diagram of 37

Timing
changing states, diagram 41
check control 33
checks 32
checks, setup and hold 35
data files comments 168
datafiles, format 165
files 158
files, back-annotating 181
files, disabling display 47

SmartModel Library User’s Manual

instance-based 158
relationships, modeling 34
scaling SmartCircuit models 120
statement, format 171, 173
user-defined 32, 157
user-defined, examples 161
versions 21, 162
versions, custom 51
Timing check label format 172
Timing compiler
checks 178
running 179
using 178
Timing files 190
user-defined, compiling 106
Timing resolution 29
Timing scale
Changing in SmartCircuit models 120
Timing versions 21
adding new 162
creating new 160
custom 51
custom, creating 164
one model, displaying 53
Tools
backanno, running 189
Browser, GUI 59
Browser, using 45
ccn_report 20, 45, 88, 90, 96
compile pcl 131, 132, 152, 153
compile_timing 20, 45, 158, 161, 163,
165, 168, 179
interactive, SmartBrowser 106
mi_trans 45, 48, 49, 75, 198
ptm_make 45, 48, 49, 192, 196
sl _browser 46, 47, 63
s_copy 197
smartbrowse 107
SmartBrowser 20, 45, 88
SmartBrowser interactive 106
SmartBrowser, creating WDFs 96
smartcen 20, 45, 88, 90, 119, 121, 123,
125, 205
SmartModel browser 43
swiftcheck 45, 48, 49, 57, 200, 201

220 Synopsys, Inc. February 2001

SmartModel Library User’s Manual

versions, selecting 45
VSB (Virtual SmartBrowser) 45
VSB (Visual SmartBrowser) 88
trace fin command 117/
trace fout command 117
trace instances command 117/
Trace messages
debugging designs with 151
trace nets command 117
trace objs command 117
trace pkgPin command 117
trace ports command 117
trace scvlnstances command 118
trace symbolPin command 118
tracetopNet 118
trace topNet command 118
Tracing
causal, analysis reports 92
causal, commands 92
Types
SmartModels 20

U

uDT

see also User-defined timing files 47
unalias command 118
Unknowns 32

approaches for using 38
Unprogrammed states

in memory models 35
Unsupported devices

using 98
Usage

error checking 31
User-defined timing files

disabling display 47

V

Values
logic 30
returned 136
unknown 137

Index

Variables
PCL 139
Vendor models
displaying 54
Versions
MDL version numbers 26, 206
model, determining most recent 52
model, finding 55
model, selecting 20
timing 21
timing, adding new 162
timing, creating new 160
timing, custom 51
timing, displaying for one model 53
tool, selecting 45
Violations
constraints, scope 95
vsb command 45

wW

WDF
window definition files 96
while statement 151
window command 122
Windows
AutoWindows 128
Browser 59
Browser, displaying model name 47
creating 96
definition files 96
elements, using 25
memory 23
Memory Address 24
Memory Array 24
Memory Read/Write 24
memory, in VSS 198
predefined elements 23
SmartModdl 22, 33

February 2001 Synopsys, Inc. 221

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website
	Synopsys Common Licensing (SCL) Document Set

	Comments?

	1 SmartModel Library Features
	SmartModel Library Overview
	SmartModel Library Versioning
	Model Versions
	Tool Versions

	SmartModel Types
	Model Timing Versions
	Model Configuration
	SmartModel Windows
	Predefined Window Elements
	Memory Windows
	Using Window Elements

	SmartModel Datasheets
	Title Banner
	Supported Components and Devices
	Sources
	Model History
	Getting SmartModel Datasheets

	2 About the Models
	Introduction
	Features Common to Most Models
	64-Bit Time
	Logic Values

	Implementation-Specific Model Features
	Fault Simulation
	Save and Restore Operations
	Timing Check Control
	Model Reset
	Model Reconfiguration
	Modeling Certain Timing Relationships

	Modeling Assumptions
	Setup and Hold Timing Checks
	Unprogrammed States in Memory Models
	Read Cycle Checks in SRAMs
	Simulating Processor Models in Partial Designs
	Models with Boundary Scan Features
	Approaches for Using Unknowns

	Modeling Changing or Uncertain States

	3 Browser Tool
	Introduction
	Selecting Models in $LMC_HOME
	Selecting Tool Versions
	Default Configuration (LMC) File
	Using the Browser Tool
	Starting the Browser
	Creating a Custom User Menu
	Displaying by Model Name at Startup
	Disabling the Display of User-Defined Timing (UDT) Files

	Configuration (LMC) Files
	Configuration File Syntax

	Custom Configuration (LMC) Files
	Creating a Custom Configuration (LMC) File
	Creating a Custom Model Filter
	Creating a Custom Timing Version
	Determining the Most Recent Model Version
	Displaying Model Datasheets
	Displaying All Timing Versions of One Model
	Locating a Model in the Model List
	Displaying a Specific Vendor's Models
	Displaying All Models That Have the Same Function
	Finding Out More Details About a Model
	Finding Out What Model Version You Have
	Loading a Custom Configuration File
	Use Environment Settings (LMCs)
	Repairing Errors Reported by a Model Report

	Browser Tool GUI
	Browser Window
	Menu Bar
	File Menu
	View Menu
	Actions Menu
	User Menu
	Docs Menu
	Help Menu
	Toolbar
	Selection Pane
	Status Area
	Model Filters Dialog Box
	Copy Customizable Files Dialog Box
	Model Detail Dialog Box
	Model Report Dialog Box
	Save As... Dialog Box
	Open Configuration File Dialog Box

	4 Memory Models
	Configuring Memory Models
	Using Memory Models
	The Memory Image File (MIF)
	Creating a Memory Image File (MIF)
	Using a Memory Image File (MIF)
	Memory Image File (MIF) Format

	Memory Image File (MIF) Address Mapping
	Memory Image File (MIF) Format Checks
	Dumping Memory Data

	5 PLD Models
	Configuring PLD Models
	Programming PLD Models
	JEDEC File Format Checks
	Using PLD Models

	6 SmartCircuit FPGA Models
	Introduction
	Using SmartCircuit Models
	Quick Start for SmartCircuit Models

	SmartCircuit Technology Overview
	User-Defined Timing for JEDEC-based Models

	Debugging Tools Overview
	Sample Circuit
	SmartCircuit Model Pin Mapping

	Tracing Events In Your Design
	Causal Tracing Command Descriptions

	Viewing Internal Nodes During Simulation
	SmartModel Windows
	SmartCircuit Monitor
	Using Unsupported Devices

	Browsing Your Design Using SmartBrowser
	Issuing SmartBrowser Commands Interactively
	Using the SmartBrowser Tool in Standalone Mode
	Using the SmartBrowser Tool to Create a Windows Definition File
	Using SmartBrowser Commands

	SmartBrowser Command Reference
	Model Command File (MCF) Reference
	MCF Command Descriptions

	smartccn Command Reference
	CCN Output Files

	ccn_report Command Reference
	AutoWindows

	7 Processor Models
	Configuring Processor Models
	Simulating with HV Models
	PCL File Checks

	Processor Control Language (PCL)
	Using PCL to Configure HV Models
	PCL Program Structure
	Interrupts and Exceptions
	The Command Header File
	Returned Values
	Unknown Values
	PCL Constructs
	PCL Statement Types
	PCL Program Control Statements

	Debugging Designs with Trace Messages
	Running the PCL Compiler
	Example PCL Program

	8 User�Defined Timing
	Introduction
	Timing Files
	Instance�Based Timing
	Timing File Search Rules

	Creating New Timing Versions
	User�Defined Timing Examples
	Adding a New Timing Version
	Creating Custom Timing Versions

	Timing Data File Format
	Assumed Propagation Delays
	Models With Vendor�Supplied Delay Ranges
	Calculated Propagation Delays

	Timing Data File Comments
	General Comments
	Timing Description Comments
	Timing Expression Comments
	Internal Pin Comments
	Range Comments

	Timing Data File Model Block
	Timing Statement Format
	Timing Statement Format

	Timing Data File Grammar
	Using the Timing Compiler
	Timing Compiler Checks

	Running the Timing Compiler

	9 Back-Annotating Timing Files
	What is Backanno?
	Process Overview
	Creating a Configuration File
	File Format
	Sample Configuration File
	MODEL Section
	ANNOTATE Section
	Interconnect Statement

	Setting Environment Variables
	Backanno Command Syntax
	Running Backanno
	Copying the Resulting Timing Files (.tf)
	Replacing the Original SDF Files

	10 Library Tools
	Introduction
	Creating PortMap Files
	Using the ptm_make Tool
	PortMap File Format

	Copying Customizable Files with sl_copy
	Translating Memory Image Files
	Adding Back-Annotation
	Checking SmartModel Installation Integrity

	A Reporting Problems
	Introduction
	Using Model Logging
	Transmitting the Log File

	Other Diagnostic Information
	Model History and Fixed Bugs
	Model History Entry Field Descriptions

	B Glossary
	Introduction

	Index

