
SmartModel Library User’s
Manual

February 2001

To search the entire manual
set, press this toolbar button.
For help, refer to intro.pdf.

Copyright © 2001 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

SmartModel, ModelAccess, ModelTools, SourceModel Library, LM-1200, and
Synopsys Eaglei are registered trademarks; MemPro, MemSpec, MemScope,
FlexModel, LM-family, LM-1400, Logic Model, ModelSource, and SourceModel are
trademarks of Synopsys, Inc.

All company and product names are trademarks or registered trademarks of their
respective owners.

SmartModel Library User’s Manual

2 Synopsys, Inc. February 2001

SmartModel Library User’s Manual Contents

February 2001 Synopsys, Inc. 3

Contents

Preface . 11
About This Manual . 11
Related Documents . 11
Manual Overview . 11

Typographical and Symbol Conventions . 12
Getting Help . 13

The Synopsys Website . 14
Synopsys Common Licensing (SCL) Document Set . 14

Comments? . 15

Chapter 1
SmartModel Library Features . 17

SmartModel Library Overview . 17
SmartModel Library Versioning . 18

Model Versions . 20
Tool Versions . 20

SmartModel Types . 20
Model Timing Versions . 21
Model Configuration . 21
SmartModel Windows . 22

Predefined Window Elements . 23
Memory Windows . 23
Using Window Elements . 25

SmartModel Datasheets . 25
Title Banner . 26
Supported Components and Devices . 27
Sources . 27
Model History . 27
Getting SmartModel Datasheets . 27

Chapter 2
About the Models . 29

Introduction . 29
Features Common to Most Models . 29

64-Bit Time . 29
Logic Values . 30

Contents SmartModel Library User’s Manual

4 Synopsys, Inc. February 2001

Implementation-Specific Model Features . 33
Fault Simulation . 33
Save and Restore Operations . 33
Timing Check Control . 33
Model Reset . 33
Model Reconfiguration . 34
Modeling Certain Timing Relationships . 34

Modeling Assumptions . 34
Setup and Hold Timing Checks . 35
Unprogrammed States in Memory Models . 35
Read Cycle Checks in SRAMs . 35
Simulating Processor Models in Partial Designs . 35
Models with Boundary Scan Features . 36
Approaches for Using Unknowns . 38

Modeling Changing or Uncertain States . 40

Chapter 3
Browser Tool . 43

Introduction . 43
Selecting Models in $LMC_HOME . 44
Selecting Tool Versions . 45
Default Configuration (LMC) File . 45
Using the Browser Tool . 45

Starting the Browser . 46
Creating a Custom User Menu . 46
Displaying by Model Name at Startup . 47
Disabling the Display of User-Defined Timing (UDT) Files 47

Configuration (LMC) Files . 48
Configuration File Syntax . 48

Custom Configuration (LMC) Files . 49
Creating a Custom Configuration (LMC) File . 50
Creating a Custom Model Filter . 51
Creating a Custom Timing Version . 51
Determining the Most Recent Model Version . 52
Displaying Model Datasheets . 53
Displaying All Timing Versions of One Model . 53
Locating a Model in the Model List . 53
Displaying a Specific Vendor's Models . 54
Displaying All Models That Have the Same Function 55
Finding Out More Details About a Model . 55

SmartModel Library User’s Manual Contents

February 2001 Synopsys, Inc. 5

Finding Out What Model Version You Have . 55
Loading a Custom Configuration File . 56
Use Environment Settings (LMCs) . 56
Repairing Errors Reported by a Model Report . 58

Browser Tool GUI . 59
Browser Window . 59
Menu Bar . 61
File Menu . 61
View Menu . 62
Actions Menu . 62
User Menu . 63
Docs Menu . 63
Help Menu . 63
Toolbar . 64
Selection Pane . 65
Status Area . 66
Model Filters Dialog Box . 66
Copy Customizable Files Dialog Box . 67
Model Detail Dialog Box . 68
Model Report Dialog Box . 68
Save As... Dialog Box . 69
Open Configuration File Dialog Box . 69

Chapter 4
Memory Models . 71

Configuring Memory Models . 71
Using Memory Models . 72
The Memory Image File (MIF) . 72

Creating a Memory Image File (MIF) . 73
Using a Memory Image File (MIF) . 73
Memory Image File (MIF) Format . 73

Memory Image File (MIF) Address Mapping . 75
Memory Image File (MIF) Format Checks . 76
Dumping Memory Data . 77

Chapter 5
PLD Models . 79

Configuring PLD Models . 79
Programming PLD Models . 80
JEDEC File Format Checks . 81
Using PLD Models . 82

Contents SmartModel Library User’s Manual

6 Synopsys, Inc. February 2001

Chapter 6
SmartCircuit FPGA Models . 83

Introduction . 83
Using SmartCircuit Models . 84

Quick Start for SmartCircuit Models . 85
SmartCircuit Technology Overview . 86

User-Defined Timing for JEDEC-based Models . 88
Debugging Tools Overview . 89

Sample Circuit . 90
SmartCircuit Model Pin Mapping . 90

Tracing Events In Your Design . 91
Causal Tracing Command Descriptions . 92

Viewing Internal Nodes During Simulation . 95
SmartModel Windows . 95
SmartCircuit Monitor . 96
Using Unsupported Devices . 98

Browsing Your Design Using SmartBrowser . 106
Issuing SmartBrowser Commands Interactively . 107
Using the SmartBrowser Tool in Standalone Mode . 107
Using the SmartBrowser Tool to Create a Windows Definition File 109
Using SmartBrowser Commands . 110

SmartBrowser Command Reference . 111
Model Command File (MCF) Reference . 119

MCF Command Descriptions . 119
smartccn Command Reference . 122

CCN Output Files . 125
ccn_report Command Reference . 125

AutoWindows . 128

Chapter 7
Processor Models . 129

Configuring Processor Models . 129
Simulating with HV Models . 130

PCL File Checks . 131
Processor Control Language (PCL) . 132

Using PCL to Configure HV Models . 132
PCL Program Structure . 133
Interrupts and Exceptions . 135
The Command Header File . 136
Returned Values . 136

SmartModel Library User’s Manual Contents

February 2001 Synopsys, Inc. 7

Unknown Values . 137
PCL Constructs . 138
PCL Statement Types . 146
PCL Program Control Statements . 148

Debugging Designs with Trace Messages . 151
Running the PCL Compiler . 152

Example PCL Program . 153

Chapter 8
User-Defined Timing . 157

Introduction . 157
Timing Files . 158

Instance-Based Timing . 158
Timing File Search Rules . 158

Creating New Timing Versions . 160
User-Defined Timing Examples . 161

Adding a New Timing Version . 162
Creating Custom Timing Versions . 164

Timing Data File Format . 165
Assumed Propagation Delays . 166

Models With Vendor-Supplied Delay Ranges . 166
Calculated Propagation Delays . 167

Timing Data File Comments . 168
General Comments . 168
Timing Description Comments . 168
Timing Expression Comments . 169
Internal Pin Comments . 169
Range Comments . 170

Timing Data File Model Block . 170
Timing Statement Format . 171
Timing Statement Format . 173

Timing Data File Grammar . 174
Using the Timing Compiler . 178

Timing Compiler Checks . 178
Running the Timing Compiler . 179

Chapter 9
Back-Annotating Timing Files . 181

What is Backanno? . 181
Process Overview . 182
Creating a Configuration File . 182

Contents SmartModel Library User’s Manual

8 Synopsys, Inc. February 2001

File Format . 182
Sample Configuration File . 183
MODEL Section . 184
ANNOTATE Section . 185
Interconnect Statement . 187

Setting Environment Variables . 189
Backanno Command Syntax . 189
Running Backanno . 189
Copying the Resulting Timing Files (.tf) . 190
Replacing the Original SDF Files . 190

Chapter 10
Library Tools . 191

Introduction . 191
Creating PortMap Files . 192

Using the ptm_make Tool . 192
PortMap File Format . 193

Copying Customizable Files with sl_copy . 197
Translating Memory Image Files . 198
Adding Back-Annotation . 200
Checking SmartModel Installation Integrity . 200

Appendix A
Reporting Problems . 203

Introduction . 203
Using Model Logging . 203

Transmitting the Log File . 205
Other Diagnostic Information . 205
Model History and Fixed Bugs . 205

Model History Entry Field Descriptions . 206

Appendix B
Glossary . 207

Introduction . 207

Index . 211

SmartModel Library User’s Manual Figures

February 2001 Synopsys, Inc. 9

Figures

Figure 1: SmartModel Versioning Environment . 18
Figure 2: Model Versioning Overview . 19
Figure 3: Diagram of TAP States . 37
Figure 4: 9-Bit Register . 38
Figure 5: Changing States Timing Diagram . 41
Figure 6: UNIX Browser Tool Window . 59
Figure 7: NT Browser Tool Window . 60
Figure 8: Browser Tool Menu Bar . 61
Figure 9: Process Flow for Memory Models . 71
Figure 10: Process Flow for PLD Models . 79
Figure 11: SmartCircuit Model Data Flow . 87
Figure 12: Sample SmartModel Circuit . 90
Figure 13: SmartCircuit Pin-to-Port Mapping . 91
Figure 14: Data Flow for Processor Models . 129
Figure 15: PCL Program Format Example . 134
Figure 16: User-Defined Timing Process . 160
Figure 17: Timing Data File Elements . 165
Figure 18: Assumed Propagation Delays . 166
Figure 19: Calculated Propagation Delays . 167
Figure 20: Timing Data File Comments . 168
Figure 21: Annotated Timing Data File Model Block . 170
Figure 22: SmartModel Back-Annotation Process . 182
Figure 23: Delay Scaling Example . 186
Figure 24: Interconnect Example . 188

Tables SmartModel Library User’s Manual

10 Synopsys, Inc. February 2001

Tables

Table 1: Examples of Predefined Windows from Model Datasheets 23
Table 2: SmartModel Logic Values . 30
Table 3: Comparison of Generated Unknowns in the Example Flip-Flop 39
Table 4: Toolbar Button Descriptions . 64
Table 5: Bits in Row and Column Addresses . 75
Table 6: JEDEC Standard 3-A Fields and Their Uses in PLD Models 80
Table 7: Windows and Monitors Tool Comparison . 95
Table 8: Monitor Signal Values . 97
Table 9: Comparison of HV and Full-Functional Processor Models 130
Table 10: PCL Keywords . 138
Table 11: PCL Operators . 140
Table 12: PCL Operator Precedence and Associativity . 142
Table 13: Conversion Specification Modifiers . 144
Table 14: Argument Conversion Types . 144
Table 15: Derived Propagation Delay Values . 166
Table 16: Output-edge Values . 176
Table 17: Timing Unit Values . 178

SmartModel Library User’s Manual Preface

February 2001 Synopsys, Inc. 11

�

Preface

About This Manual
This manual contains user and reference information for SmartModel Library users.
The focus is on how to use the SmartModel simulation models and tools. This manual
does not contain information about installing the library—that information is presented
in the SmartModel Library Installation Guide.

Related Documents
For general information about SmartModel Library documentation, or to navigate to a
different online document, refer to the Guide to SmartModel Documentation. For the
information on supported platforms and simulators, refer to SmartModel Library
Supported Simulators and Platforms.

For detailed information about specific models in the SmartModel Library, use the
Browser tool ($LMC_HOME/bin/sl_browser) to access the online model datasheets.

Manual Overview
This manual contains the following chapters and appendixes:

Preface Describes the manual and lists the typographical
conventions and symbols used in it; tells how to get
technical assistance.

Chapter 1:
SmartModel Library
Features

Provides an overview of the library, including how
model and tool versioning works and the different
model types.

Chapter 2:
About the Models

Overview of common model features and modeling
assumptions.

Preface SmartModel Library User’s Manual

12 Synopsys, Inc. February 2001

�

Typographical and Symbol Conventions
● Default UNIX prompt

Represented by a percent sign (%).

● User input (text entered by the user)

Shown in bold type, as in the following command line example:

% cd $LMC_HOME/hdl

● System-generated text (prompts, messages, files, reports)

Shown as in the following system message:

No Mismatches: 66 Vectors processed: 66 Possible

Chapter 3:
Browser Tool

How to use the Browser tool to select model versions
and view product documentation.

Chapter 4:
Memory Models

How to configure and use memory models.

Chapter 5:
PLD Models

How to configure and use programmable logic
device models.

Chapter 6:
SmartCircuit FPGA Models

How to configure and use SmartCircuit models of
FPGA and CPLD devices. Also describes how to
use the debugging tools to enhance the usefulness of
SmartCircuit models.

Chapter 7:
Processor Models

How to configure and use full-functional and
hardware verification models of microprocessors and
microcontrollers.

Chapter 8:
User-Defined Timing

How to use the user-defined timing feature to create
your own custom timing versions for SmartModels.

Chapter 9:
Back-Annotating Timing
Files

How to use the Backanno tool to back-annotate
timing values using Standard Delay Format (SDF)
files.

Chapter 10:
Library Tools

How to use the SmartModel Library command-line
tools.

Appendix A:
Reporting Problems

How to diagnose problems with SmartModels and
request technical support when necessary.

Appendix B:
Glossary

Definitions for terms that have special meaning in
the context of this manual.

SmartModel Library User’s Manual Preface

February 2001 Synopsys, Inc. 13

�

● Variables for which you supply a specific value

Shown in italic type, as in the following command line example:

% setenv LMC_HOME prod_dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

● Command syntax

Choice among alternatives is shown with a vertical bar (|), as in the following
syntax example:

-effort_level low | medium | high

In this example, you must choose one of the three possibilities: low, medium, or
high.

Optional parameters are enclosed in square brackets ([]), as in the following
syntax example:

pin1 [pin2 ... pinN]

In this example, you must enter at least one pin name (pin1), but others are optional
([pin2 ... pinN]).

Getting Help
If you have a question while using Synopsys products, use the following resources:

1. Start with the available product documentation installed on your network or located
at the root level of your Synopsys CD-ROM. Every documentation set contains
overview information in the intro.pdf file.

Additional Synopsys documentation is available at this URL:

http://www.synopsys.com/products/lm/doc

Datasheets for models are available using the Model Directory:

http://www.synopsys.com/products/lm/modelDir.html

2. Visit the online Support Center at this URL:

http://www.synopsys.com/support/lm/support.html

This site gives you access to the following resources:

❍ SOLV-IT!, the Synopsys automated problem resolution system

❍ product-specific FAQs (frequently asked questions)

http://www.synopsys.com/products/lm/doc
http://www.synopsys.com/products/lm/modelDir.html
http://www.synopsys.com/support/lm/support.html

Preface SmartModel Library User’s Manual

14 Synopsys, Inc. February 2001

�

❍ lists of supported simulators and platforms

❍ the ability to open a support help call

❍ the ability to submit a delivery request for some product lines

3. If you still have questions, you can call the Support Center:

North American customers:
Call the Synopsys Eaglei and Logic Modeling Products Support Center hotline at
1-800-445-1888 (or 1-503-748-6920) from 6:30 AM to 5 PM Pacific Time, Monday
through Friday.

International customers:
Call your local sales office.

The Synopsys Website
General information about Synopsys and its products is available at this URL:

http://www.synopsys.com

Synopsys Common Licensing (SCL) Document Set
Synopsys common licensing (SCL) software is delivered on a CD that is separate from
the tools that use this software to authorize their use. The SCL documentation set
includes the following publications, which are located in (root)/docs/scl on the SCL CD
and also available on the Synopsys FTP server (ftp://ftp.synopsys.com):

● Licensing QuickStart—(142K PDF file)
This booklet provides instructions for obtaining an electronic copy of your license
key file and for installing and configuring SCL on UNIX and Windows NT.

● Licensing Installation and Administration Guide—(2.08M PDF file)
This guide provides information about installation and configuration, key concepts,
examples of license key files, migration to SCL, maintenance, and troubleshooting.

You can find general SCL information on the Web at:

http://www.synopsys.com/keys

ftp://ftp.synopsys.com/pub/SCL/LQS.pdf
ftp://ftp.synopsys.com/pub/SCL/LIAG.pdf
http://www.synopsys.com/keys
http://www.synopsys.com

SmartModel Library User’s Manual Preface

February 2001 Synopsys, Inc. 15

�

Comments?
To report errors or make suggestions, please send e-mail to:

doc@synopsys.com

To report an error that occurs on a specific page, select the entire page (including
headers and footers), and copy to the buffer. Then paste the buffer to the body of your
e-mail message. This will provide us with information to identify the source of the
problem.

mailto:doc@synopsys.com

Preface SmartModel Library User’s Manual

16 Synopsys, Inc. February 2001

�

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

February 2001 Synopsys, Inc. 17

�

1
SmartModel Library Features

SmartModel Library Overview
The SmartModel Library is a collection of over 3,000 binary behavioral models of
standard integrated circuits supporting more than 12,000 different devices. The library
features models of devices from the world’s leading semiconductor manufacturers,
including microprocessors, controllers, peripherals, FPGAs, CPLDs, memories, and
general-purpose logic. SmartModels connect to hardware simulators through the
SWIFT interface, which is integrated with over 30 commercial simulators, including
Synopsys VCS and Scirocco, Cadence Verilog-XL, and Mentor Graphics QuickSim II.

Instead of simulating devices at the gate level, SmartModels represent integrated
circuits and system buses as “black boxes” that accept input stimulus and respond with
appropriate output behavior. Such behavioral models are well suited for distribution in
object code form because they provide improved performance over gate-level models,
while at the same time protecting the proprietary designs created by semiconductor
vendors.

All SmartModels are listed in the Model Directory, which you can find on the Web at:

http://www.synopsys.com/products/lm/modelDir.html

This Web site provides the most up-to-date information about model availability and
allows you to view model datasheets, which list all device components and
manufacturers supported by each model in the library.

http://www.synopsys.com/products/lm/modelDir.html

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

18 Synopsys, Inc. February 2001

�

SmartModel Library Versioning
Models are the basic units in the library. You can install more than one version of any
model in the same $LMC_HOME. Multiple model versions allow separate design
teams to use different versions of the same model without interfering with each other.
This means that design team #1 (for example) can get a bug fix that they need for a
particular model without affecting design team #2 that may not care about that fix in the
context of their work. You can also install new model shipments that you receive from
Synopsys right into an existing SmartModel installation. The SmartModel environment
makes it easy to make the latest simulation models available to design teams that need
them without affecting the design teams that do not. Figure 1 illustrates the benefits of
the flexible SmartModel Library versioning system. Different design teams can select
new or revised models using custom configuration files. For more information, refer to
“Configuration (LMC) Files” on page 48.

Figure 1: SmartModel Versioning Environment

SmartModels

($LMC_HOME)

DesignTeam
Number 2

DesignTeam
Number 1

New Models
Bug Fixes

ttl00 (Version 01002)ttl00 (Version 01001)

Synopsys

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

February 2001 Synopsys, Inc. 19

�

Each versioned model supports multiple timing versions. Each timing version, in turn,
can support multiple devices, or physical integrated circuits that you can order from a
manufacturer. When you install a particular model version, you get all of the timing
versions for that model. Similarly, when you purge a particular version of a model from
the library, you purge all of its timing versions as well. Figure 2 illustrates how these
concepts work together.

Figure 2: Model Versioning Overview

Model

Device

Timing
Version

Timing
Version

Device Device Device

Model

Device

Timing
Version

Timing
Version

Device Device Device

Model

Device

Timing
Version

Timing
Version

Device Device Device

Model Version 01001

Model Version 01002

Model Version 01003

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

20 Synopsys, Inc. February 2001

�

Note�
To see all of the timing versions and components supported by any model in
the library, review the model’s datasheet.

Model Versions
Model versions have the five-digit format xxyyy (for example, 01001), where xx
designates a major revision and yyy designates a minor revision. This five-digit version
number appears on all model datasheets. Look in the banner section at the top of the
datasheet for this key piece of information.

Tool Versions
SmartModel Library tools are also versioned and use the same numbering scheme as
models. For some SmartModel Library tools, called model-versioned tools, the version
of the tool to use is determined by the model. You cannot change the versions of
model-versioned tools because a particular version of a model may depend on a specific
tool version to function properly. Examples of model-versioned tools include
compile_timing, ccn_report, smartbrowser, and smartccn. For other SmartModel
Library tools, called user-versioned tools, you select the version of the tool to use via the
default and custom configuration (LMC) files.

Note�
For information on selecting specific model and tool versions, refer to
“Selecting Models in $LMC_HOME” on page 44 and “Selecting Tool
Versions” on page 45.

SmartModel Types
There are two basic types of SmartModels:

● Full-functional Models (FFMs) simulate the complete range of device behavior.
Most SmartModels fall into this category.

● Bus-Functional Models (BFMs) simulate all device bus cycles. There are two types
of BFMs in the SmartModel Library:

❍ Hardware Verification (HV) models, which you control using Processor Control
Language (PCL), a language that is similar to C.

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

February 2001 Synopsys, Inc. 21

�

❍ FlexModels, which you can control using Verilog, VHDL, or C.

For some devices, more than one type of model may be available, but these are
exceptions, not the general rule. For detailed information about a specific SmartModel
(including FlexModels), refer to the model’s datasheet. For general information about
FlexModels, refer to the FlexModel User’s Manual.

Model Timing Versions
All SmartModels have at least one timing version. To see what timing versions are
available for a particular model, use the Browser tool to display a list of timing versions
for that model.

If you need a timing version that is not supplied with the library, or if you want to back-
annotate customized delays into the model’s simulation, you can create a custom timing
version as described in “User-Defined Timing” on page 157.

Model Configuration
To configure a model means to define it completely, by doing the following:

● Setting environment variables and specifying the model version

● Creating technology-dependent setup files (JEDEC, MIF, or MCF). Different
model types require different setup files. To find out the required setup file for a
particular model, refer to the model’s datasheet.

● Setting values for attributes that specify the instance name, timing version,
propagation delay range, and location of setup files. The way you specify attributes
depends on the simulator that you are using

❍ Verilog simulators—use defparams in a .v file

❍ VHDL simulators—use generics in a .vhd file

❍ Schematic-capture based simulators—use model symbol properties

Note�
For information on configuring SmartModels (including FlexModels) for
use in your simulator, refer to the Simulator Configuration Guide for
Synopsys Models.

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

22 Synopsys, Inc. February 2001

�

SmartModel Windows
SmartModel Windows, also referred to as “Windows,” is a SmartModel Library feature
that allows you to view and change the contents of internal registers during simulation.
Using Windows, you can:

● Display the current value of an internal register

● Force new values into writable registers

● Set up a monitoring function to inform you when a register value changes

Note�
FlexModels do not support SmartModel Windows.

You read and write to a model’s internal registers through Windows using
simulator-specific commands, one for each model instance. These commands can be
issued on the command line or in a simulation script.

SmartModel Windows availability depends on the:

● Model—Only some models support Windows. Typically, these are processor,
CPLD, FPGA, and memory models. Refer to the model’s datasheet to find out if it
supports Windows.

● Simulator—Currently, SmartModel Windows is supported by many simulators,
including (but not limited to) Synopsys VCS, Cadence Verilog-XL and RapidSim,
IBM AUSSIM, Mentor Graphics QuickSim II, ViewLogic ViewSim, MTI Verilog,
Lucent ATTSIM, and Synopsys VSS. Refer to your simulator documentation for
information about Windows support.

● Authorization—SmartModel Windows is automatically enabled if you have one of
these license features:

❍ simmodel-ultra

❍ simmodel-prem

❍ simmodel-sw-all

❍ simmodel-std

❍ simmodel-base

❍ simmodel-sw-model_name (e.g., simmodel-sw-ttl00)

❍ simmodel-sw-model_family. (e.g., simmodel-sw-xc40000)

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

February 2001 Synopsys, Inc. 23

�

Predefined Window Elements
For SmartModels that support Windows, Synopsys provides window elements with
names, dimensions, and read/write features that correspond to registers specified by the
manufacturer for the modeled device. These predefined window elements are
documented in each model’s datasheet.

Table 1 shows examples of predefined window elements taken from specific model
datasheets.

In addition to the information in Table 1, some model datasheets provide instructions on
how to use a particular model’s window elements.

Memory Windows
Notice that the predefined window elements in Table 1 represent either single-bit
registers, one-dimensional arrays (multibit registers), or two-dimensional arrays. Two-
dimensional arrays are used for memory array windows.

Within SmartModel Windows, memory array windows let you monitor events that take
place in a memory array during simulation. The memory array can be part of a memory
device or any other device that contains on-chip memory. Using this functionality, you
can monitor read and write operations in the array without individually monitoring
every array location. (For large memories, monitoring every array element is not
practical.)

Table 1: Examples of Predefined Windows from Model Datasheets

Model

Number
of

Elements Element Name
Window

Dimensions R/W Access

pal32vx10 10 Q0-Q9 1 bit Read/Write

i28f001bxb 2 COMMAND_REGISTER 8 bits Read Only

PROTECT_STATUS 1 bit Read/Write

xc17128d 1 BIT_ADDR_REGISTER 18 bit Read/Write

mt581c64k18b2 3 MEM 65K x 18 bit
array

Read/Write

MEM_addr 16 Read Only

MEM_rw 2 Read Only

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

24 Synopsys, Inc. February 2001

�

Each model's memory array has three associated windows: the Memory Array Window,
the Memory Address Window, and the Memory Read/Write Window.

The Memory Array Window:

● Represents the memory array itself

● Has the same dimensions as the specific model's memory array (for example, a 16K
x 32-bit memory)

● Supports read/write access

● Has a model-specific name that is specified in the model datasheet

● Has an initial value of “X” (unknown)

For example, in Table 1 the model mt581c64k18b2 has a 64k x 18 bit array named
MEM that has read/write access.

The Memory Address Window:

● Represents the array index

● Has as many bits as needed to contain the binary representation of the array size

● Is read-only

● Is named by appending “_addr” to the memory array window name.

For example, in Table 1 the model mt581c64k18b2 has a 16-bit memory address
window named MEM_addr that has read-only access.

The memory address window is loaded with the appropriate index value each time
there is a memory array transaction. Thus, the contents of this window always
represent the index of the last location accessed by either a read or a write. In rare
cases where more than one array location is accessed during a single model
evaluation, the memory address window contains all Xs (unknowns); this is also the
initial value of the memory address window.

The Memory Read/Write Window:

● Represents the read/write and access status

● Is always 2 bits wide

● Is read only

● Is named by appending “_rw” to the memory array window name

● Has an initial value of “1X”

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

February 2001 Synopsys, Inc. 25

�

For example, in Table 1 the model mt581c64k18b2 has a 2-bit Memory Read/Write
window named MEM_rw that has read-only access.

The least-significant bit of the Memory Read/Write window is the Read/Write bit,
which initially is X (unknown) and contains a:

❍ 0 if the array is written to

❍ 1 if the array is read from

❍ X if an array read and write occurred in the same cycle

For ROM models, this bit always contains a 1.

The most-significant bit of the Memory Read/Write window is an access flag, which
is toggled each time a model evaluation causes a read or a write of the memory
array. Thus, you can detect a situation where there may have been two consecutive
memory transactions of the same type at the same address.

Refer to the individual model datasheets for the names, dimensions, and read/write
access characteristics of each model's predefined memory windows.

Using Window Elements
You read from and write to window elements using simulator-specific commands. For
details, refer to the command set for your simulator.

For examples of using window elements with Cadence Verilog-XL or Mentor Graphics
QuickSim II, refer to the Simulator Configuration Guide for Synopsys Models.

SmartModel Datasheets
SmartModel datasheets provide specific user information about each model in the
library. The model datasheets supplement, but do not duplicate, the manufacturer’s
datasheets for the hardware parts. In general, the model datasheets describe:

● Supported hardware components and devices

● Bibliographic sources used to develop the model (i.e., specific vendor databooks or
datasheets)

● How to configure and operate the model

● Any timing parameters that differ from the vendor specifications

● How to program the device (if applicable) or otherwise use it in simulation

● Differences between the model and the corresponding hardware device

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

26 Synopsys, Inc. February 2001

�

Models are partitioned by function, including:

● Processors/VLSI

● Programmables

● Memories

● Standards/Buses

● General Purpose

SmartModel datasheets have standard sections that apply to all models and model-
specific sections whose contents depend on the model type. The following sections
provide general information about what to expect from the various sections in a
SmartModel datasheet.

Note�
FlexModel datasheets follow a different format than other SmartModel
datasheets, but are similarly designed to provide you with all the
information needed to successfully use the model.

Title Banner
The title banner provides information about the model name, title, function, subfunction,
MDL version number, and date of the last change to the model.

MDL Version Numbers and Model History
With the SmartModel Library, model versions are called MDL version numbers. Not all
MDL version number changes are significant to model users. For example, making an
editorial change in a model’s datasheet will cause the model’s MDL version to
increment, but model users would see no difference in the behavior of the model with
the later version. For this reason, the model history section at the end of each
SmartModel datasheet lists model history only for significant changes, where the model
would behave differently in simulation.

Providing model history just for significant changes also means that there will often be
gaps in the published model history. For example, the title banner on a model datasheet
might reference MDL version 01024, but the model history section shows the last
significant model change to be at MDL version 01021. This means that the intervening
MDL version numbers (01022 and 01023) did not change model behavior in any way
that would be visible to users. Note that all model bug fixes generate model history
entries and cause the MDL version number to increment.

SmartModel Library User’s Manual Chapter 1: SmartModel Library Features

February 2001 Synopsys, Inc. 27

�

Supported Components and Devices
Each model datasheet includes a section entitled “Supported Components and Devices”
which lists all of the hardware parts, by manufacturer, that the model can substitute for
during simulation. In this section, each component represents one of the unique timing
versions or speed grades supported by the model. Similarly, each device represents a
hardware part that you can buy from the listed manufacturer.

Sources
This section lists all of the specific bibliographic references used for information about
the behavioral and timing characteristics of the modeled device.

Model History
This section appears at the end of each datasheet. It only contains model history change
information if there were significant changes to the model’s behavior in the previous
year. Read this section to get information on the latest model versions. Each change
entry that appears in the “Model History” section notes the model version number
associated with that particular change. For more information about model history, refer
to “Model History and Fixed Bugs” on page 205.

Models versions are identified with the five-digit MDL version number that appears at
the top of every SmartModel datasheet, in the Banner section.

Getting SmartModel Datasheets
You can get SmartModel datasheets several different ways:

● Through the Browser tool. To make a datasheet appear, just select the model you
are interested in and click on the datasheet icon in the upper left portion of the
vertical tool bar.

● Through the Model Directory on the Web:

http://www.synopsys.com/products/lm/modelDir.html

Note�
The Model Directory on the Web always provides datasheets for the latest
SmartModel versions. The Browser tool shows you datasheets only for
models installed at your site, which may or may not be the latest versions
available.

http://www.synopsys.com/products/lm/modelDir.html

Chapter 1: SmartModel Library Features SmartModel Library User’s Manual

28 Synopsys, Inc. February 2001

�

SmartModel Library User’s Manual Chapter 2: About the Models

February 2001 Synopsys, Inc. 29

�

2
About the Models

Introduction
SmartModel Library models are behavioral simulation models of integrated circuits.
This chapter provides information about standard and model-specific SmartModel
features in the following major sections:

● Features Common to Most Models

● Implementation-Specific Model Features

● Modeling Assumptions

● Modeling Changing or Uncertain States

Features Common to Most Models
SmartModel Library models have many features in common. This bedrock technology
helps give models from the library a similar look and feel that makes them easier to use.
Common features include 64-bit time, supported logic values, status reporting, error
checking, unknown handling, user-defined timing, and selectable propagation delays.

64-Bit Time
All SmartModels use 64-bits to compute elapsed simulation time. If simulation time
exceeds this capacity, the models behave unpredictably.

Chapter 2: About the Models SmartModel Library User’s Manual

30 Synopsys, Inc. February 2001

�

Logic Values
Models in the SmartModel Library use a logic value system based on the IEEE 1164.1
VHDL nine-state, multivalue logic system, as shown in Table 2.

Model Status Reports
You can generate a model status report by issuing the ReportStatus command through
the command channel at any time during a simulation. Model status reports contain the
following information:

● Model name and version

● Model attributes and their values

● Timing constraint setting

● Names, descriptions, and values of each window element

● Names and descriptions of each window array

Table 2: SmartModel Logic Values

Symbol Meaning

0 Strong 0

1 Strong 1

X Strong X

L Weak 0

H Weak 1

W Weak Unknown

Z High-Impedance

U Uninitialized (treated as
unknown)

D Don’t care (treated as
unknown)

SmartModel Library User’s Manual Chapter 2: About the Models

February 2001 Synopsys, Inc. 31

�

The general format of the model status report message is as follows:

Note: <<Status Report>>
Model Logical Name: swiftnand
Model Physical Name: swiftnand
Model '.mdl' Version: 01000
Model Directory: /lmc_home/models/swiftnand
Model '.lmc' Name: /lmc_home/data/hp700.lmc
Model-reported Version of Main Shared Library: 01000
Model-reported Version of SmartLink Interface: v1.0
InstanceName: I$xx
TimingVersion: SWIFTNAND-1
DelayRange: MIN
Timing Constraints: On

Error Checking
SmartModel Library models provide usage and timing checks that display error, note,
trace, or warning messages during simulation. The format and location of these
messages depends on the design environment, but the content is essentially the same.

Usage Checks
Usage checks, which vary greatly with device type, help ensure a chip is used correctly.
For example, a DMA controller model might include a check on whether or not all
internal nodes and registers were initialized. An SRAM check might produce a message
like: “Address, A0-A13, changed within Write cycle.” These checks also document
times, device names, instances, and error types.

For example:

WARNING: Ignoring unknown signal level on HALT pin, assume pin inactive.
(TEST68K MC68020RC12.1P) [MC68020-12], at 185.0 ns

Elements of this example have the following meanings:

● Error type:

WARNING: Ignoring ...

● Design name:

TEST68K

● Device name:

MC68020RC12.1P

● Timing version:

MC68020-12

Chapter 2: About the Models SmartModel Library User’s Manual

32 Synopsys, Inc. February 2001

�

Timing Checks
Timing checks include the component-specific set-up, hold, frequency, pulse width, and
recovery times specified in the semiconductor vendor’s specifications. Timing checks
generate a single value—they do not have a range and thus are not affected by the
propagation delay range.

For example:

ERROR: PULSE WIDTH on CLK (High) was 1.0 ns; 10.0 ns is the specified
minimum
(DEMO68K PAL16L8A-2MJ.167P) [MMI_16L8A-COM], at 12201.0 ns

Nominal and Worst-Case Specifications for Timing Checks
In cases where a manufacturer specifies both nominal and worst-case values for a timing
parameter, the model always uses the worst-case specification.

Turning Off Timing Checks
You can turn off timing checks using any of the following methods:

● Through the SWIFT command channel with the SetConstraints ON | OFF command
(not available for FlexModels).

● Using a simulator command implemented by the vendor. Note that this method may
not be available; refer to your simulator documentation for information about
turning timing checks on or off for SmartModels.

● With explicit settings in a user-defined timing file.

Handling of Unknowns
SmartModels make the most of each simulation by generating or propagating unknowns
only when necessary. When appropriate, a model issues a warning message rather than
propagating an unknown. This pessimistic unknown handling can preserve the
usefullness of a simulation.

User-Defined Timing
Most SmartModels support user-defined timing. If you need a model timing version
that Synopsys has not provided, you can create custom timing files to use in simulation.
For more information, refer to “User-Defined Timing” on page 157.

Note�
Netlist-driven SmartCircuit models do not support user-defined timing.

SmartModel Library User’s Manual Chapter 2: About the Models

February 2001 Synopsys, Inc. 33

�

Selectable Propagation Delays
All SmartModels support a range of propagation delay values to represent minimum,
typical, and maximum specifications.

Implementation-Specific Model Features
The availability of some SmartModel features depends on whether they are supported in
your particular simulation environment. Consult your simulator documentation to
determine which of these capabilities are supported and how to access them. Following
are brief introductory descriptions of these implementation-specific model features.

Fault Simulation
Fault simulation allows concurrent evaluation of multiple faulty circuits in a design.
The SmartModel Library supports this feature as an extension to the logic simulation
capabilities of SmartModels.

Save and Restore Operations
If your simulation environment supports Save and Restore operations, you can save a
simulation state, then later restore the saved state to the circuit using the SmartModel
Library save and restore capability.

Timing Check Control
Timing check control allows you to control the timing constraint checks issued during
simulation. By default, all SmartModels start up with setup, hold, and recovery timing
checks enabled. The timing check control feature allows you to enable and disable these
timing checks at any time during a simulation. This feature affects all timing checks of
a model instance except those explicitly turned off in the external timing file.

Model Reset
SmartModels support the ability to reset a model to its initial state at any time during a
simulation. The model reset operation resets the internal state variables, but not the
input port values, attribute values, and mode settings, which retain their current values.
For example, if timing checks are disabled before performing the reset operation, then
timing checks remain disabled even though the default is for timing checks to be
enabled.

Chapter 2: About the Models SmartModel Library User’s Manual

34 Synopsys, Inc. February 2001

�

Model Reconfiguration
SmartModels support the ability to force a model to reload any or all of its configuration
files (memory image, JEDEC, MCF, PCL), or select a new timing version at any time
during a simulation.

Modeling Certain Timing Relationships
In some cases a model’s timing specifications do not map perfectly to a semiconductor
vendor’s specifications. One example of this type of variance is where a crystal clock
input is used to update an internal state machine that in turn drives the outputs of the
device. The vendor’s datasheet describes only the timing relationships among external
output signals without reference to the internal clock.

To accurately model the internal behavior of such a device, the model timing is specified
relative to the internal clock. For example, in the model of the Intel 87C51FA 8-bit
microcontroller, timing is specified relative to the internal clock (XTAL2). These
timing values are derived from Intel's data—the values faithfully reproduce the
relationships among external signals as they are described in the vendor’s datasheet.

The internal clock-to-output timing relationships are modeled to approximate the
vendor’s output-to-output timing specifications. If you need to duplicate individual
vendor specifications, you can use the user-defined timing feature of the SmartModel
Library, but note that there is no way to model the complete set of vendor timings
simultaneously.

Modeling Assumptions
In most cases SmartModel Library models represent all of a device’s functional
behavior, but there are exceptions. Sometimes a manufacturer does not quantify a
component parameter or a model is designed in cooperation with a vendor before the
actual device is available in silicon. In addition, there are some device capabilities that
do not make sense in the context of logic simulation, because the chip’s electronic
environment is not the same as a simulation environment. The electrical programming
of an EEPROM is a good example; programming voltage levels do not exist in logic
simulation.

In some cases a model goes beyond the manufacturer’s specifications in order to make
simulation more useful. For example, the model of the Brooktree Bt458 RAMDAC (a
color palette component) has a special test mode that does not exist in the component.

All model-specific exceptions between the behavior of an actual device and its model
are documented in the model's datasheet. When appropriate, notes and warning
messages generated by a model also inform users about exceptions.

SmartModel Library User’s Manual Chapter 2: About the Models

February 2001 Synopsys, Inc. 35

�

The following sections provide details on modeling assumptions that are common to all
models in the SmartModel Library. Refer to the individual model datasheets for
information about model-specific assumptions.

Setup and Hold Timing Checks
When a range of values is specified by a semiconductor vendor, setup and hold timing
errors are triggered by violations of the worst-case specifications.

Unprogrammed States in Memory Models
All memory locations in RAM models, if used without memory image files, are read as
unknowns.

The uninitialized contents of ROM models vary according to the manufacturer’s
specifications and are noted in the model datasheets. ROM models do not need to be
programmed as long as their data is not used during simulation.

Read Cycle Checks in SRAMs
Read cycle timing checks are not performed in SRAM models. This eliminates spurious
read cycle timing violation messages during the simulation of most designs. The
messages would be generated in designs where the SRAMs are continuously selected
while new read addresses are supplied. Due to slight differences between high-to-low
and low-to-high propagation delays, transitions from the previous address to the new
one could pass through an undesired address for a very short period of time. The same
message generation problem can occur with read cycle timing violations based on chip
select pins.

Read cycle time is simply the minimum amount of time required to successfully access
the SRAM; therefore, the model does not supply valid data until the read access time has
been satisfied.

Simulating Processor Models in Partial Designs
To allow for simulations with designs that are not fully operational, processor models do
not propagate unknowns on some inputs (the clock and various control pins, primarily).
Instead, the models substitute a 1 or 0—whichever has the least effect on the
simulation—and issues a warning message alerting you to the change.

Chapter 2: About the Models SmartModel Library User’s Manual

36 Synopsys, Inc. February 2001

�

Models with Boundary Scan Features
Models of boundary scan devices have a 2-byte state code assigned to each of 16
possible TAP controller states. When you access the TAP register using SmartModel
Windows, the model returns a state code, indicating the current TAP controller state.
The TAP register is a read-only element, so forcing the TAP register to a value has no
effect. Figure 3 shows the TAP states and their associated state codes.

SmartModel Library User’s Manual Chapter 2: About the Models

February 2001 Synopsys, Inc. 37

�

Figure 3: Diagram of TAP States

01

Run-test/idle

00

Test-Logic-Reset
TMS=1

TMS=0

TMS=1 TMS=1 TMS=1

TMS=1

TMS=1 TMS=1

TMS=1 TMS=1

TMS=1 TMS=1

TMS=1

TMS=1

TMS=0 TMS=0

TMS=0 TMS=0

TMS=0 TMS=0

TMS=0

TMS=0

TMS=0TMS=0

TMS=0

TMS=0

TMS=0

TMS=1

D0

Select-DR-Scan

D1

Capture-DR

D2

Shift-DR

D3

Exit1-DR

D4

Pause-DR

D5

Exit2-DR

D6

Update-DR

C0

Select-IR-Scan

C1

Capture-IR

C2

Shift-IR

C3

Exit1-IR

C4

Pause-IR

C5

Exit2-IR

C6

Update-IR

TMS=1

TMS=0

Chapter 2: About the Models SmartModel Library User’s Manual

38 Synopsys, Inc. February 2001

�

Approaches for Using Unknowns
Depending on where an unknown occurs in a circuit, it can propagate through your
entire simulation. Later events can become buried in unknowns, making your
simulation less useful than it could be. To gain more information, you would have to fix
the first problem and then rerun the simulation.

SmartModel Library models are designed not to generate or propagate unknowns
unnecessarily. A model uses error messages to inform you about its states and the
assumptions made to substitute a good value for an unknown.

For example, Figure 4 shows a simple 9-bit register. When “enable” is asserted, on the
next rising clock edge, the register puts the value of the D pins into the internal Q
registers and also on the output pins. When “clear” is asserted, the internal registers are
cleared to zero.

Figure 4: 9-Bit Register

Internally, this device is a series of positive edge-triggered, D-type flip-flops. Even in
so simple a device, there are many opportunities for unknowns; the clock, clear, D, or
any combination of these could be unknowns. In addition, the Q register could start as
an unknown.

SmartModel Library User’s Manual Chapter 2: About the Models

February 2001 Synopsys, Inc. 39

�

Let us look at how a “Smart Flip-Flop” handles unknowns. The operation of the Smart
Flip-Flop is shown in Table 3. The following definitions apply to symbols used in the
table:

● CLR~. Clear input, asserted when low.

● Q. Value of the Q output prior to evaluation.

● “Smart” newQ. Value of the Q output of a Smart Flip-Flop after the evaluation.

● “Not Smart” newQ. Value of the Q output of a flip-flop modeled without the
techniques used to develop SmartModel Library models.

● Caret (^). A valid rising clock edge.

● Hyphen (-). The clock is known not to be rising; it is stable high or low, or
could fall once from high to low.

● X. An unknown on either an input or an output, which refers to the logic values of
X, W, U, or D described in “Features Common to Most Models” on page 29.

Case 1
Row 1 of the table shows that CLR~ is deasserted high, and there is a 1 on D. The
original state of Q doesn’t matter in this case, and there is a rising clock edge. The
result is a 1 in Q.

Case 2
Row 2 shows that CLR~ is asserted low. The resulting Q is 0 even though there are
unknowns on D and Q because the states of D, CLK, and Q do not matter with
“clear” asserted.

Table 3: Comparison of Generated Unknowns in the Example Flip-Flop

Case Row CLR~ Q D CLK
“smart
newQ”

“not smart
newQ

Case 1 1 1 X 1 ^ 1 1

Case 2 2 0 X X X 0 0

Case 3 3 X X 0 ^ 0 X

Case 3 4 X X 1 ^ X X

Case 4 5 X 0 X - 0 X

Case 4 6 X 1 X - X X

Chapter 2: About the Models SmartModel Library User’s Manual

40 Synopsys, Inc. February 2001

�

Case 3
Rows 3 and 4 show what happens when both CLR~ and Q are unknown and there
is a rising clock edge. In the “not smart” flip-flop the output is unknown; however,
in the “Smart Flip-Flop” the output depends on the D input. For the “Smart Flip-
Flop,” if D is 0 as in Row 3, then newQ is known to be 0. This situation leads to
either CLR~ being asserted, or the 0 at D being captured by the clock (CLK).
Conversely, if D is 1 as in Row 4, then newQ is truly unknown. In this case, if
CLR~ is asserted, then newQ is 0. However, if CLR~ is not asserted, then the 1 at
D is captured by the clock, which makes newQ a 1.

Case 4
Rows 5 and 6 show what happens when both the CLR~ and D are unknown, and
the clock has not changed while Q has been at a steady state. In the “not smart”
flip-flop the output is unknown. However, in the “Smart Flip-Flop” the output
depends on the previous state of the Q output.

For the “Smart Flip-Flop,” if Q is 0 as in Row 5, then newQ remains at 0 either
because CLR~ is asserted or no clock has occurred to change the output.
Conversely, if Q is 1 as in Row 6, then newQ is truly unknown. In this case, if
CLR~ is asserted then newQ is 0. However, if CLR~ is not asserted, then the
output remains the same.

Modeling Changing or Uncertain States
SmartModel Library models simulate all the timing parameters and logic states
specified by the device manufacturer, but in some situations the states of some pins are
uncertain. In most memory parts, for example, the data input/output lines can be either
high, low, high-impedance, or changing from one state to another. The models simulate
each known state according to its specifications, and use unknowns to represent the
uncertain or changing states. This concept is illustrated in Figure 5.

SmartModel Library User’s Manual Chapter 2: About the Models

February 2001 Synopsys, Inc. 41

�

Figure 5: Changing States Timing Diagram

For example, a memory part manufacturer cannot be specific about the data line states
between the end of the data hold time and the end of the data access time. During that
time the I/O lines could be carrying the data from the last cycle or the current cycle. To
prevent data from a previous cycle from being accepted as valid, the model generates
unknowns during that time segment.

Though a memory part is used in the example, this modeling technique is useful in any
situation where uncertainties exist—as in the transitions from and to high-impedance
shown in Figure 5. If you push your designs to the limit, as you might when designing a
memory cache, you may appreciate this logically pessimistic behavior.

The access delay feature of memory models can be turned off using the library’s user-
defined timing feature.

tCE

tOE

tACC

tOH tDF

HIGH Z

tACC tOH

ADD

CE

OE

OUTPUT

address(i) address(i+1)

data(i) data(i+1)

Chapter 2: About the Models SmartModel Library User’s Manual

42 Synopsys, Inc. February 2001

�

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 43

�

3
Browser Tool

Introduction
The Browser tool ($LMC_HOME/bin/sl_browser) provides a graphical user interface to
the SmartModel Library and the online documentation. This chapter provides
information about how to use the Browser to perform the day-to-day functions required
to make optimal use of the SmartModel Library of behavioral simulation models. This
information is organized in the following major sections:

● Selecting Models in $LMC_HOME

● Selecting Tool Versions

● Default Configuration (LMC) File

● Using the Browser Tool

● Configuration (LMC) Files

● Custom Configuration (LMC) Files

● Browser Tool GUI

Setting Environment Variables on NT Platforms
Many SmartModel Library installation and configuration steps require that you set
environment variables. Most of the examples in this manual show how to set an
environment variable in UNIX using a C shell. For NT, you set environment variables
using the System Properties window. To access the System Properties window select
Start > Settings > Control Panel and double-click the System icon. From the System
Properties window, select the Environment tab, enter the variable name and value, and
click Set. Then click on OK to dismiss the window.

Chapter 3: Browser Tool SmartModel Library User’s Manual

44 Synopsys, Inc. February 2001

�

By default, new variables that you enter become “User” environment variables. If you
have administrator privileges you will also be allowed to create “System” environment
variables. Note that any “User” variables that you create will override “System”
variables set up by the system administrator at your site.

If the NT machine where you installed the SmartModel Library is to be used by multiple
users it is probably best to set basic environment variables such as $LMC_HOME as
“System” variables. To do this you need administrator privileges. First, highlight an
existing entry in the System Variables portion of the System Properties window. Then
enter the variable name and value and click Set.

Running Console Applications on NT Platforms
Many SmartModel Library user procedures assume that you have access to a UNIX
shell such as the C shell. For example, instructions and examples for using SmartModel
Library command-line tools assume that you have access to a C shell. If you are
running on an NT platform, use the Console Application to run these tools. To access
the Windows NT Console Application, select Start > Programs > Command Prompt.

References to environment variables on the NT command line must be delimited by the
percent sign (%). This differs from the way environment variables are typed on the
UNIX command line where the variable is simply introduced with the dollar sign ($).
For example, $LMC_HOME/bin/mytool works on UNIX platforms, but must be typed
as %LMC_HOME%\bin\mytool on NT.

Selecting Models in $LMC_HOME
You can install and maintain multiple versions of the same model can in the same
$LMC_HOME. You select a specific version of a model to use in a design simulation
using configuration (LMC) files.

The default model version is the most recently installed version. In cases where you do
not want to use the latest installed version of a model, you can override the default
model version by creating one or more custom configuration (LMC) files. The software
locates the default and custom configuration files using the $LMC_HOME and
$LMC_CONFIG environment variables. For more information about model versioning,
refer to “SmartModel Library Versioning” on page 18.

When you invoke the Browser, the selection pane displays a list of timing versions for
the models that will be used by the simulator based on your $LMC_HOME and
$LMC_CONFIG variable settings. To find out what other versions of a model are
installed in your library, use the Model Detail command.

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 45

�

Selecting Tool Versions
For some SmartModel Library tools, called model-versioned tools, the version of the
tool that is used is determined by the model. You cannot change the versions of model-
versioned tools because a particular version of a model may depend on a specific tool
version to function properly. Examples of model-versioned tools include
compile_timing, ccn_report, smartbrowser, and smartccn.

For other SmartModel Library tools, called user-versioned tools, you select the version
of the tool to use via the default and custom configuration (LMC) files, in the same way
that you select different model versions. You can select and use any version of a user-
versionsed tool that you have installed. However, it is often best to use the latest
version. Examples of user-versioned tools include ptm_make, mi_trans, and
swiftcheck.

For more information about SmartModel Library tools refer to “Library Tools” on
page 191.

Default Configuration (LMC) File
The default configuration (LMC) file that comes with the SmartModel Library contains
a list of all installed SmartModel Library models, user-versioned tools, and their most
recently-installed versions. The LMC file is platform-specific, and is typically named
platform.lmc (for example, hp700.lmc). Normally, when a model version is installed in
the library, the $LMC_HOME/data/platform.lmc file is updated with the most recently
added model version. If, for example, Version 01002 has been more recently installed
than Version 01004, then Version 01002 is the default version used even though Version
01004 has a higher version number.

Before using the Browser tool, you must specify the default configuration file for the
Browser by setting your local $LMC_HOME environment variable to the install
directory. The model versions specified in the default configuration file will be used by
the simulator unless you define other model versions in one or more custom
configuration (LMC) files.

Using the Browser Tool
Set your environment variables and search paths by following the setup instructions
provided in the SmartModel Library Installation Guide. You are now ready to use the
Browser.

Chapter 3: Browser Tool SmartModel Library User’s Manual

46 Synopsys, Inc. February 2001

�

Starting the Browser
At the command-line prompt, enter the following command to start the Browser:

% $LMC_HOME/bin/sl_browser

You can also customize some Browser features by creating an initialization file called an
sl_browser.ini file. Features that you can customize include creating a custom user
menu, displaying by model at startup, and disabling the display of user-defined timing
(UDT) files. Following are procedures that you can follow to accomplish any of these
tasks.

Creating a Custom User Menu
If you have your own custom programs that operate on a specific model, and you want
to integrate these programs with the Browser, you can customize the Browser interface
to create a User menu that invokes these programs.

In the current working directory or in $HOME (for access by you only); or in
$LMC_HOME/data (for access by all who use the same $LMC_HOME), create a file
named sl_browser.ini.

Enter the following lines in the file:

[USER TOOLS]
menu text 1=command1 to execute
menu text 2=command2 to execute
menu text 3=command3 to execute ...
menu text n=commandn to execute

Note that you must enter the string [USER TOOLS] literally.

The following example sl_browser.ini file specifies the command /user/joeb/bin/foobar,
and names the corresponding menu entry Foobar.

[USER TOOLS]
Foobar=/user/joeb/bin/foobar

In the Browser, before executing your program, you must select a model on which the
program is to operate. For the model selected, the Browser automatically passes to your
program three arguments:

arg1 arg2 arg3

where arg1 is the model name, arg2 is the version number, and arg3 is the timing-
version (optional).

When you start the Browser, the User menu appears on the menu bar to the right of the
Actions menu.

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 47

�

Displaying by Model Name at Startup
By default, the Browser window displays the library models by timing version name. If
you want the Browser to display by model name instead, you can override this default
using the sl_browser.ini file. Follow these steps:

1. If you already have an sl_browser.ini file, use it in the instructions that follow.
Otherwise, create the file in the current working directory, in $HOME, or in
$LMC_HOME/data.

2. Enter these lines in the file:

[OPTIONS]
show_models=true

Note that you must enter the string [OPTIONS] literally.

Disabling the Display of User-Defined Timing (UDT)
Files

By default, the Browser window displays any compiled user-defined timing (UDT) files
that are in $LMC_PATH. If you want to disable the display of UDT files, you can
override this default using the sl_browser.ini file. Follow these steps:

1. If you already have an sl_browser.ini file, use it in the instructions that follow.
Otherwise, create the file in the current working directory, in $HOME, or in
$LMC_HOME/data.

2. Enter these lines in the file:

[OPTIONS]
show_udt=false

Note that you must enter the string [OPTIONS] literally.

The following example shows an sl_browser.ini file that creates the command
/user/joeb/bin/repl and names the menu entry Replace. This example also configures
the Browser to display by model name and disables the display of UDT files.

[USER TOOLS]
Replace=/user/joeb/bin/repl

[OPTIONS}
show_models=true
show_udt=false

Chapter 3: Browser Tool SmartModel Library User’s Manual

48 Synopsys, Inc. February 2001

�

Configuration (LMC) Files
A configuration file is also called an “.lmc” file or “LMC” file. LMC stands for “List of
Model Configurations.” There are two kinds of configuration files: default
configuration files and custom configuration files. All configuration files must have the
extension .lmc.

Configuration files contain a list of model names and user-versioned tool names, with a
version number specified for each model and tool. Following is an example of a
configuration file:

%PLT hp700

Models added by Sl_Admin: Fri Feb 23 15:56:24 1996

%EXE swiftcheck 01009
%EXE mi_trans 04059
%EXE ptm_make 01006
%MOD atv2500 01000
%MOD bt458 01000
%MOD c5c_c8c_2 01000
%MOD dm74s188 01000
%MOD ecl01 01000
%MOD gal18v10 01000
%MOD hm658128 01000
%MOD ifc161 01000
...
%MOD ttl0 01000 7400 74LS00
...
%MOD windows 01000
%MOD z8536 01000

Configuration File Syntax
There are three commands that can appear in an LMC file, as follows:

%PLT platform_name

If this optional command is present, it indicates that a check is to be made to determine
if the platform specified is the same as that on which the software is currently running.
Examples of allowed values are decalpha, hp700, sunos, solaris, ibmrs, and pcnt. The
first line in the above example,

%PLT hp700

indicates the hp700 platform. If PLT is absent, no checking is done.

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 49

�

Hint�
If you want a single LMC file to be shared among several platforms, omit
the PLT command.

%EXE tool_name version

This command specifies the versions of the most recently installed user-versioned
SmartModel Library tools. Examples of user-versioned tools include the following:

● swiftcheck—performs integrity checks on the installed library

● mi_trans—translates memory image files for memory models

● ptm_make—creates simulator-specific portmap files, which list the port names of a
model and map those port names to the physical pins of the device.

In the example, the lines:

%EXE swiftcheck 01009
%EXE mi_trans 04059
%EXE ptm_make 01006

indicate that, when the tools are called, the versions that will be used are 01009 for
swiftcheck, 04059 for mi_trans, and 01006 for ptm_make.

%MOD model_name model_version [alias[alias]
This command specifies the model name, model version, and any aliases that might
apply to the model. In the example, the line

%MOD ttl00 01000 7400 74LS00

indicates model ttl00, version 01000, with aliases of 7400 and 74LS00.

Custom Configuration (LMC) Files
A custom configuration file contains a list of installed SmartModel Library models and
user-versioned tools to be used by the simulator. If you want to use tool or model
versions that are different from those in the default configuration file, create one or more
custom configuration files that specify the names and versions of those models and
tools.

Chapter 3: Browser Tool SmartModel Library User’s Manual

50 Synopsys, Inc. February 2001

�

LMC files are platform-specific and must have the extension .lmc. You locate customer
configuration files for the Browser and your simulator by setting the $LMC_CONFIG
environment variable to the paths to the .lmc files. There are several reasons why you
might want to create a custom configuration file:

● Freeze your design, so that it always references the same model versions.

● Access a specialized model version that no one else in your group should use.

● Check new models before releasing them to others.

● Archive your design, along with the model versions used.

● Access an updated model version to use a new or revised function, when other
design teams do not want to disturb their designs by using the updated model.

● Revert to a previous version of one of the tools.

For NT, separate multiple entries for the $LMC_CONFIG environment variable using a
semicolon-separated list, not a colon-separated list as in UNIX.

The model versions specified in custom configuration files are used by the simulator,
overriding the versions of those same models that are specified in the default
configuration file. However, the model versions you specify must be installed in the
library at your location. To determine what versions of a specific model are installed in
your library, use the model detail function.

Creating a Custom Configuration (LMC) File
To create a custom configuration file, follow these steps:

1. In your home directory, open a new file named (for example) my_platform.lmc.
Although the file will be platform-specific, you do not have to use “platform.lmc”.

2. In another window, open a read only copy of the default configuration file,
$LMC_HOME/data/platform.lmc.

3. In the default configuration file, search for the models and tools whose version
numbers you want to change.

4. As you find each item, copy its version record (the entire line on which the item
appears) into the new file.

5. In the new file, change the version numbers to the ones you want.

6. Save the file.

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 51

�

As an alternative, instead of copying the version record, you can create new version
records using the syntax rules described in “Custom Configuration (LMC) Files” on
page 49. For example, to revert to the previous version of the swiftcheck tool and the
model adsp1008a, you would follow these steps:

1. In the default configuration file, locate those two items, and copy the respective
version records into your new file. The lines you copied might look like this:

%EXE swiftcheck 04091
%MOD adsp1008a 01003

The version numbers represent the current versions; the previous versions are
therefore 04090 and 01002.

2. Change each version number to the previous version and save the file.

%EXE swiftcheck 04090
%MOD adsp1008a 01002

Creating a Custom Model Filter
When you start up the Browser, it displays a large list of models and timing versions.
Normally, each user's design does not use all of the models. To limit the display to only
those models that are of interest to you, use the Model Filters dialog box. You can filter
the display using any combination of names, vendors, functions, and license packages.
For specific instructions, refer to “Model Filters Dialog Box” on page 66.

Creating a Custom Timing Version
If you need a timing version that is not already available with the SmartModel Library,
you can create your own custom timing version by copying and modifying an existing
timing file. Follow these steps to create a custom timing version:

1. Create a directory for the customized timing file.

2. In the Browser selection pane, select the model whose timing file you want to
customize.

3. From the Actions menu, choose Copy Customizable Files, or click on the Copy
Customizable Files button in the toolbar. The Copy Customizable Files dialog box
opens.

4. If Timing Source File is not already selected, select it by clicking on its check box.

5. In the To Destination Directory text field, type the path name of the directory you
just created.

6. Click on the Copy button. The dialog box closes. The file has been copied to the
specified directory.

Chapter 3: Browser Tool SmartModel Library User’s Manual

52 Synopsys, Inc. February 2001

�

To edit the timing file, follow these steps:

1. Open the timing file.

2. Edit the timing file. If you are not familiar with the format and grammar of timing
data, refer to “User-Defined Timing” on page 157.

3. Save the timing file as model.td in the directory you created.

To prepare the timing file for simulation, compile the timing file. For details, refer to
“Running the Timing Compiler” on page 179.

Note�
You must recompile the timing file each time you set your custom
configuration file to a different model version or install a new model version
in the library. Each compiled timing file (.tf file) is compatible only with
the model version in the configuration files at the time the timing file is
compiled.

To locate the timing file for the Browser and the simulator, set your $LMC_PATH
environment variable to the directory that contains the compiled timing file, as shown in
the example below:

% setenv LMC_PATH /user/me/

Your custom timing version is now ready for use in simulation. By default, the Browser
displays this timing version and any other custom timing versions you may have in
$LMC_PATH.

Determining the Most Recent Model Version
To determine whether you have the most recent model version available, follow these
steps:

1. Select the model in the Browser’s main window and click on the Model Detail
toolbar button. This brings up a Model Detail window which lists all versions of that
model installed in your $LMC_HOME.

2. Locate the latest datasheet for the model, using one of the following methods.

a. Go to the Model Directory on the Web:

http://www.synopsys.com/products/lm/modelDir.html

Enter the timing version name and start the search. From the resulting list,
select the required timing version. When the product information appears, click
on the product code to show the datasheet.

b. Contact your local Synopsys representative.

http://www.synopsys.com/products/lm/modelDir.html

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 53

�

3. Look in the banner section at the top of the datasheet for the version number of the
model. Compare the version number with that of the model in your library. If they
match, you have the most recent version. If the datasheet shows a more recent
version, the difference may or may not be significant.

4. Read the more recent datasheet's history section to find out how the model changed.
(Model history sections appear at the end of each datasheet.) If the change was
functional or due to a bug fix, then there could be a significant difference between
the most recent version and the one you have. If the change was purely
administrative and did not affect model functionality, you may not need the most
recent version.

Displaying Model Datasheets
To display the datasheet for any model installed at your site, follow these steps:

1. From the Browser window selection pane, select a model.

2. Choose the Display Datasheet command from the Actions menu, or click on the
Display Datasheet toolbar button to make the datasheet appear.

Displaying All Timing Versions of One Model
To display all timing versions of one model, follow these steps:

1. If the selection pane is displaying the models by timing versions, choose Display by
Model Name from the View menu.

2. Locate the model whose timing versions you want to display.

3. Click on the folder icon next to the model name. In the selection pane, the timing
versions, including any custom timing versions that are in $LMC_PATH, appear in
hierarchical fashion, subordinate to the model.

Locating a Model in the Model List
To locate a model in the model list, follow these steps:

1. If the selection pane is displaying the models by timing versions, choose Display by
Model Name from the View menu.

2. To locate the desired model, choose the Filter command from the Actions menu, or
click on the Filter toolbar button. The Model Filters dialog box appears.

3. If the String Search option is not already selected, select it by clicking on its check
box. In the String Search text field, type in the model name.

Chapter 3: Browser Tool SmartModel Library User’s Manual

54 Synopsys, Inc. February 2001

�

4. Deselect any other options that are selected by clicking on the check boxes. Only
the String Search check box should be selected.

5. Click on Filter.

6. Click on Close. The Model Filters dialog box closes and the selection pane contains
the model.

Note�
You can also scroll to the desired model if it is currently in the selection
pane.

If you do not find the model you are looking for, try expanding the search criteria by
putting wild cards in the search string. Model names generally do not exactly match the
vendor device names.

If you know the model is not in the library installed at your site, check with your system
administrator to find out whether the model is available on the CD but was not installed.
If the model is not available at your site, check the Model Directory on the Web at:

http://www.synopsys.com/products/lm/modelDir.html

or call your local Synopsys representative to find out if the model has recently become
available.

Displaying a Specific Vendor's Models
To display models of a specific vendor's devices, follow these steps:

1. Choose the Filter command from the Actions menu, or click on the Filter toolbar
button. The Model Filters dialog box appears.

2. Select the Vendors option by clicking on its check box.

3. Deselect the String Search field and any other options that are selected by clicking
on the appropriate check boxes. Only the Vendors check box should be selected.

4. In the Vendors list box, scroll to the desired vendor and select it.

5. Click on Filter.

6. Click on Close. The Model Filters dialog box closes and the selection pane lists all
models of the specific vendor.

http://www.synopsys.com/products/lm/modelDir.html

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 55

�

Displaying All Models That Have the Same Function
To display all models that have the same function, follow these steps:

1. If the selection pane is displaying the models by timing versions, choose Display by
Model Name from the View menu.

2. Choose the Filter command from the Actions menu, or click on the Filter toolbar
button. The Model Filters dialog box appears.

3. Select the Function/Subfunction option by clicking on its check box.

4. Deselect the String Search field and any other options that are selected by clicking
on the appropriate check boxes. Only the Function/Subfunction check box should
be selected.

5. In the Function/Subfunction list box, scroll to the desired function and select it.

6. Click on Filter.

7. Click on Close. The Model Filters dialog box closes and the selection pane lists all
models that have the specified function.

Finding Out More Details About a Model
To find out more details about a model, follow these steps:

1. Locate the model you are interested in.

2. Double-click on the model (or use the Model Detail command on the Actions
menu). The Model Detail dialog box appears. It contains information about the
version, configuration file, timing versions, and other details.

3. Click on Close. The dialog box closes.

Finding Out What Model Version You Have
To find out what model version you have, follow these steps:

1. In the selection pane, select the model or timing-version you are interested in.

2. From the Actions menu or the toolbar, choose Model Detail. The Model Detail
window opens. The model version is displayed in the Version box.

Chapter 3: Browser Tool SmartModel Library User’s Manual

56 Synopsys, Inc. February 2001

�

Loading a Custom Configuration File
To load a previously created custom configuration (LMC) file, follow these steps:

1. If you are currently running the Browser, exit it.

2. Set your $LMC_CONFIG environment variable to the path of your LMC file.

❍ If you have no other configuration file already defined in $LMC_CONFIG, or if
you do have an older file already defined but want the file you are now loading
to replace the old file for this work session, enter the following on the command
line:

% setenv LMC_CONFIG /user/johnq/newfilename.lmc

❍ If you have a configuration file already defined in $LMC_CONFIG, and for this
work session want to use this existing file in addition to the configuration file
you are now loading, set $LMC_CONFIG to both file names, separated by a
colon, in the order in which you want the files to be searched for models, as
shown in the following example:

% setenv LMC_CONFIG/user/johnq/newfilename.lmc :
/user/johnq/oldfilename.lmc

For NT, you must separate multiple entries for the $LMC_CONFIG
environment variable using a semicolon-separated list, not a colon-separated list
as in UNIX.

3. Invoke the Browser. The selection pane displays a list of timing versions, including
any model versions you specified in your new configuration file. The status pane
still contains the path referenced by the $LMC_HOME environment variable.

Use Environment Settings (LMCs)
Selecting this menu entry returns you to the list of models or timing versions originally
displayed in the Browser's selection pane. This list shows the models that the simulator
will use at simulation time. To derive the list, the software uses the environment settings
$LMC_CONFIG (which contains path names to any custom configuration files) and
$LMC_HOME (which points to the default configuration file). Therefore, the list can
be derived from more than one configuration (LMC) file, as indicated by the designation
“(LMCs)” following the Use Environment Settings menu entry. If there are no custom
configuration (LMC) files, then the list is derived entirely from the default configuration
(LMC) file.

For each model called by the design, the software searches first for model versions
specified in the custom configuration files listed in $LMC_CONFIG, in the order in
which they are listed. If a model is not found, the software next searches for it in the
default configuration (LMC) file, $LMC_HOME/data/platform.lmc.

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 57

�

For example, if:

● LMC_HOME=/d/lsl/latest

and

● LMC_CONFIG=/user/me/my_platform.lmc:/user/joe/joes_platform.lmc

for each model, the model version is obtained as follows:

1. The software first searches for the model in /user/me/my_platform.lmc. If the
model is found, that model version is used and the software stops searching for the
model even though it might also be present in subsequent files.

2. If the software does not find the model in the first file, it searches
/user/joe/joes_platform.lmc. As before, if the model is found, that model version is
used and the software stops searching for that model.

Note�
If the first model encountered is a version that is not in the library, the
selection pane does not display that model at all, even though there might be
other versions of it in the library. This behavior mirrors that of the simulator
at simulation time. Models that are missing from the displayed list will not
be found by the simulator. To detect and prevent potential simulation errors,
check to see if any models called by your design are missing from the
displayed list. If so, generate a Model Report and then repair any errors
reported.

3. If the software does not find the model in the last custom configuration file, it
searches the default platform.lmc file found in the directory /d/lsl/latest/data. If the
model is found, that model version is used and the search ends.

4. If the model is not found in any file, the SWIFT interface indicates to the simulator
that the model is invalid. Depending on the simulator, it may issue an error message.
If you receive an error message about bad integration and a possible missing model,
or if you are unable to create an instance of a model, first set your
LMC_COMMAND environment variable to “verbose on” and rerun the simulation.
If the messages produced are not sufficient to help you diagnose the problem, then
run the swiftcheck utility program.

Before running swiftcheck, make sure that one of the configuration files contains an
EXE command that specifies a version of swiftcheck. Also, check your custom
configuration files for a possible typing error in entering the model name, or for a
possible reference to a model version not installed in the library at your site.

Chapter 3: Browser Tool SmartModel Library User’s Manual

58 Synopsys, Inc. February 2001

�

For more information about using LMC_COMMAND, refer to the Simulator
Configuration Guide for Synopsys Models. For more information about swiftcheck,
refer to “Checking SmartModel Installation Integrity” on page 200.

Repairing Errors Reported by a Model Report
To generate a model report, follow these steps:

1. Select one of the model report options by clicking on its radio button.

2. Click OK. The dialog box closes and the Model Report results window appears.
This window contains the model report.

For more information about model reports, refer to “Model Report Dialog Box” on
page 68.

Models found in configuration files but not in library
When you select this report, the Browser lists models found in the default configuration
file (platform.lmc) or in your custom configuration files but not in the library installed at
your site. The Browser reports these models as errors. To repair errors, follow these
steps:

1. For each model, note whether or not it is used in your design.

2. For each model used in your design, use the Admin tool to install the model or
model version in the library at your location, or ask your system administrator for
help installing the models.

Models found in library but not in configuration files
When you select this report, the Browser lists models that were found in the library
installed at your site but not in the default configuration file (platform.lmc) or in your
custom configuration files. The Browser reports these conditions as errors. To repair
errors, follow these steps:

1. For each model, note whether or not it is used in your design.

2. For each model used in your design, check all configuration files for an incorrectly
entered model name.

3. Edit your custom configuration files to correct incorrect model names and to add
missing models.

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 59

�

Browser Tool GUI
The Browser tool has standard graphical user interface features. Following are brief
descriptions of the windows, menus, icons, and dialog boxes you can use to work with
the models.

Browser Window
The Browser window is the command center from which you control the Browser as
you work with models.

Figure 6: UNIX Browser Tool Window

Menu Bar

Toolbar

Status Area Selection Pane

Chapter 3: Browser Tool SmartModel Library User’s Manual

60 Synopsys, Inc. February 2001

�

Figure 7: NT Browser Tool Window

The are four Browser window elements

:

● Menu Bar—At the top of the Browser window, the menu bar contains the File,
View, Actions, Docs, and Help menus. You use these menus to initiate all Browser
functions.

● Toolbar—Arranged vertically at the left side of the Browser window, the toolbar
buttons provide easy access to functions also available through the Actions and
Docs menus.

● Selection Pane—The selection pane takes up most of the window, and contains lists
of models and timing versions.

● Status Area—The status area shows the path name to the SmartModel Library
being operated on, and gives various status messages as appropriate.

Menu Bar

Toolbar

Status Area Selection Pane

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 61

�

You can customize the Browser window by adding an optional User menu or changing
the default display. For more information, refer to “Creating a Custom User Menu” on
page 46.

Menu Bar
The menu bar (see Figure 8) features several pull-down menus that you can use to
perform the tasks described below.

Figure 8: Browser Tool Menu Bar

File Menu
The File menu has the following options:

Use Environment Settings (LMCs)
Displays an alphabetical list of models or timing versions. The list is based on
configuration (LMC) files specified by the $LMC_CONFIG and $LMC_HOME
environment variables.

Open Specific Configuration (LMC)
Opens the Open Configuration File dialog box to select a single LMC file from which to
obtain a list of timing versions to display.

Print
Opens the Print dialog box (available only on NT platforms).

Print Preview
Opens the Print Preview (available only on NT platforms.)

Print Setup
Opens the Print Setup dialog box, where you can select a default or user-defined printer.
(This menu item is only available on NT platforms.)

Chapter 3: Browser Tool SmartModel Library User’s Manual

62 Synopsys, Inc. February 2001

�

Exit
Ends the active Browser tool session.

View Menu
The View menu has the following options:

Display by Timing-Version Name
Displays an alphabetical list of timing version names from models in the LMC files.

Display by Model Name
Displays an alphabetical list of model names from the LMC files.

Show Model Names
Displays the model name associated with each timing version name. .

Expand Model
Expands the models by displaying hierarchical trees of the available timing versions for
each selected model. You can do the same thing by clicking on the model icons.

Expand All
Expands all models by displaying hierarchical trees of the available timing versions for
all models.

Collapse Model
Hides the timing versions for the selected models. You can do the same thing by
clicking on the icons of the expanded models.

Collapse All
Hides the timing versions for all models.

Actions Menu
The Actions menu has the following options:

Display Datasheet
Displays the datasheet for the selected model or a timing version. (Same as the Display
Datasheet toolbar button.)

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 63

�

Filter...
Opens the Model Filter dialog box, where you can select filtering criteria for displaying
a subset of the model list. (Same as the Filter toolbar button.)

Copy Customizable Files (timing,...)
Opens the Copy Customizable Files dialog box, where you can copy timing files or
other customizable files for the selected model or timing version to a specified directory
for customization. (Same as the Copy Customizable Files toolbar button.)

Model Detail...
Opens the Model Detail dialog box, which provides version, platform, and other
information about the selected model or timing version. (Same as the Model Detail
toolbar button.)

Report...
Opens the Report dialog box, which displays environment information and allows you
to perform consistency checks on the installed library. (Same as the Report toolbar
button.)

User Menu
A custom User menu appears only if you create one using the optional sl_browser.ini
file. Clicking on the dashed line lets you “tear off” the User menu and drag it to a
convenient spot on your desktop for easy reference as you work. The following
example menu entries invoke the external commands as specified in the sl_browser.ini
file. You must select a model before choosing one of these entries.

Optional User Command 1

Optional User Command 2

...

Optional User Command n

Docs Menu
The Docs menu provides links to the SmartModel Library online documentation.

Help Menu
The Help menu displays the tool version number, copyright, and other information.

Chapter 3: Browser Tool SmartModel Library User’s Manual

64 Synopsys, Inc. February 2001

�

Toolbar
You can invoke the major Browser tool functions from the toolbar. The toolbar buttons
provide another way to access functions available from the Actions and Docs menus. To
display the function of each toolbar button, place the pointer on the button. Table 4
describes the different toolbar buttons and what you can do with them.

Table 4: Toolbar Button Descriptions

Button Use To ...

Display Datasheet—
Displays the datasheet for the selected
model or timing version. (Same as the
Display datasheet command on the Actions
menu.)

Filter—
Opens the Model Filters dialog box, which
you can use to select the filtering criteria
for displaying a subset of the model list.
(Same as the Filter command on the
Actions menu.)

Copy Customizable Files—
Opens the Copy Customizable Files dialog
box, which you can use to copy timing files
or other customizable files for the selected
model or timing-version to a specified
directory for customization. (Same as the
Copy Customizable Files... command on
the Actions menu.)

Model Detail—
Opens the Model Detail dialog box, which
displays version, platform, and other
information about the selected model or
timing-version. (Same as the Model Detail
command on the Actions menu.)

Report—
Opens the Report dialog box, which
displays environment information and
allows you to perform consistency checks
on the installed library. (Same as the
Report command on the Actions menu.)

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 65

�

Selection Pane
The Selection Pane displays an ordered list of models or their timing versions. When
you invoke the Browser, by default the selection pane displays a list of timing versions
corresponding to the Use Environment Settings (LMCs) menu entry, and includes any
user-defined timing (UDT) files that are contained in the $LMC_PATH variable. Each
timing version name lists the corresponding model name in parentheses next to the
timing version name.

In the View menu, the Expand Model, Collapse Model, Expand All, and Collapse All
commands are grayed out.

To display a smaller subset of the list:

1. Choose the Filter command from the Actions menu, or click on the Filter toolbar
button (second from top). The Model Filters dialog box is displayed.

2. Filter the list as described in “Model Filters Dialog Box” on page 66.

To display the list by model name, choose the Display by Model Name command from
the View menu. The selection pane displays an ordered list of models by model name.
In the View menu, the Expand Model, Collapse Model, Expand All, and Collapse All
commands are no longer grayed out.

To toggle the hierarchical display of timing versions for a single model:

1. With the selection pane displaying an ordered list of models by model name, click
on the folder icon of the desired model. The selection pane displays the model and
its timing files as a hierarchical tree.

2. Click again on the folder icon of the same model. The timing files disappear.

Note�
You can also toggle the hierarchical display using the Expand Model,
Collapse Model, Expand All, and Collapse All commands.

Docs Button—
Opens the SmartModel Library User’s
Manual (this manual) in PDF format using
the Acrobat Reader.

Table 4: Toolbar Button Descriptions (Continued)

Button Use To ...

Chapter 3: Browser Tool SmartModel Library User’s Manual

66 Synopsys, Inc. February 2001

�

To toggle the hierarchical display of timing versions for all models:

1. Select the Expand All command from the View menu. The selection pane displays
all models and their timing files as hierarchical trees.

2. Choose the Collapse All command from the View menu. The timing files disappear.

To display a list of timing versions from a single configuration (LMC) file:

1. From the File menu, choose Open Specific Configuration (LMC). The Open
Configuration File dialog box opens.

2. Select the desired configuration file and click OK. The Open Configuration File
dialog box closes and the selection pane displays the corresponding set of timing
versions.

Status Area
The status area displays the path to the model library that appears in the Selection Pane,
the number of models and timing versions found, and various status messages.

The status area also displays tool tips for the toolbar buttons as you move the pointer
over them.

Model Filters Dialog Box
The Filter function opens the Model Filters dialog box. Use it to specify filter options
for displaying a subset of the model library. You can select one or more of the four filter
options by checking the appropriate check box. The dialog box fields are as follows:

● String Search field—Contains a string that specifies a model name or timing
version name to search for. The search field is initially set to display all models or
timing versions. By default, this field is selected (checked) when the dialog box
opens.

● Vendors list box—Contains a list of vendors to select as filter options. Use this
field if you want to narrow the display to models of devices from specific vendors.

● Function/Subfunction list box—Contains a list of functions and subfunctions to
select as filter options. Use this field if you want to confine the display to models
that have specific functions or subfunctions.

● Licensed Packages list box—Contains a list of licensed packages to select as filter
options. Use this field if you want to confine the display to models contained in one
or more specific licensed packages, or if you want to know whether a specific model
is contained in a particular licensed package.

● Summary Filter Options field—Displays the filter options currently selected.

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 67

�

Execute the filter function using the Filter button at the bottom of the dialog box.

To specify a model or timing version to search for, type the complete name of the model
or timing version, or a partial name with the wild card character (*) in the String Search
text field in each position where you have omitted characters.

To select one or more of the three remaining filter options, follow these steps:

1. Click on the check box for each desired option. Some combination of (No Vendor),
(No Function), and (No Marketing Group) appears in the Summary of Filter
Options list box. These appear ANDed with each other and with the String Search
value.

2. For each option you checked, select one or more items from its list box. Use the
scroll bar to traverse the list. To select more than one item, hold down the Ctrl key
as you click on each item. As you select each item, its name appears in the
Summary of Filter Options list box. If you select multiple items, they appear ORed
together.

To filter the models, follow these steps:

1. When you have finished selecting filter options, click on the Filter button.

2. Move the Filter dialog box or click on the Close button to dismiss it. The list box in
the Browser window displays a list of models and timing versions that meet the
filtering criteria. The status pane displays the number of models and timing
versions found.

Copy Customizable Files Dialog Box
The Copy Customizable Files function opens the Copy Customizable Files dialog box.
Use it to copy a model's timing file (or other customizable file) to your directory for
customization. For information about customizing timing files, refer to “User-Defined
Timing” on page 157.

To copy a customizable file, follow these steps:

1. From the selection pane, select the model or timing version whose timing file or
other customizable file you want to copy.

2. From the Actions menu, choose Copy Customizable Files. The Copy Customizable
Files dialog box opens. All customizable files for that model appear in the dialog
box.

3. If the file you want to customize is not already selected, click on its check box.

Chapter 3: Browser Tool SmartModel Library User’s Manual

68 Synopsys, Inc. February 2001

�

4. In the To Destination Directory text field, type the full path name of the directory
where you want the file to be copied.

5. Click on the Copy button.

Model Detail Dialog Box
The Model Detail function opens the Model Detail dialog box. Use it to get information
about a specific model, such as its configuration file, installed versions, timing versions,
and installed platforms.

Initially, the list of installed versions in the Installed Versions field shows the top version
selected. The Timing Versions and Installed Platforms list boxes show information
specific to the installed version selected.

To display timing versions and platforms for another installed version, use the Installed
Versions list box to select another version.

Model Report Dialog Box
The Report function opens the Model Report dialog box. Use it to view information
about environment variables and select reports by clicking on their radio buttons.

The dialog box fields are as follows:

● Environment Variable field—At the top of the dialog box, this field contains paths
referenced by the environment variables used by the Browser. Use this information
to verify that the models are referenced as you intended.

● Report Selection field—Following the environment variable field, this field
contains three options you can choose for generating reports:

❍ Report Configuration (LMC) file errors

Choose this option if you want to know about any models used by your design
that cannot be found in the library installed at your site. This option is selected
initially.

❍ Report models found in Library but not in Configuration (LMC) files

Choose this option if you want to know whether any models in the library
installed at your site are not listed either in the default configuration file or in
your custom configuration files.

❍ List all models with their source Configuration (LMC) files

SmartModel Library User’s Manual Chapter 3: Browser Tool

February 2001 Synopsys, Inc. 69

�

Choose this option if you want to see a mapping of each model to the
configuration file in which the Browser found it. Using this report, along with
the contents of the $LMC_CONFIG environment variable, you can verify that
the file listed first in $LMC_CONFIG contains the version of the model you
want to use in your design.

Save As... Dialog Box
You can use the Save As... button to save a model report for future viewing or printing.

If the existing file name you want to use is not in the currently selected directory, you
can search for it in directories above and below the current directory.

To traverse the directory structure, follow these steps:

1. Select a directory from the Directories list box.

2. Click on the Filter button. The selected directory now appears as the top-level
directory in the Directories list box. The Files list box contains the names of files in
the selected directory that have the extension .rpt. Notice that the file names are not
displayed until you click on the Filter button. Alternatively, if you know the file
name directory you want to use, you can type it directly into the Filter or Selection
fields.

On NT platforms, use the standard Windows navigational tools to get to the
directory where you want to save the model report.

To save a report under an existing file name, follow these steps:

1. Select the desired file from the Files list box. The file name is now appended to the
directory path name in the Selection text field.

2. Click on OK.

To save a report under a new file name, follow these steps:

1. In the Filter text field, change the old path name to the new path name.

2. Click on OK.

Open Configuration File Dialog Box
The Open Specific Configuration (LMC) function opens the Open Configuration File
dialog box. On NT, this dialog box is called Open. Use it to display the contents of a
configuration (LMC) file (custom or default). If the file you want to open is not in the
currently selected directory, you can search for it in directories above and below the
current directory.

Chapter 3: Browser Tool SmartModel Library User’s Manual

70 Synopsys, Inc. February 2001

�

To traverse the directory structure, follow these steps:

1. Select a directory from the Directories list box.

2. Click on the Filter button. The selected directory now appears as the top-level
directory in the Directories list box. The Files list box contains the names of files in
the selected directory that have the extension .lmc. Notice that the file names are
not displayed until you click on the Filter button.

On NT, use the standard Windows navigational tools to find and open the
configuration file that you want.

To open a file, follow these steps:

1. Select the desired file from the Files list box. The file name is now appended to the
directory path name in the Selection text field.

2. Click on OK. The Browser window selection pane now displays the model names
from the selected file. Note that the Browser does not display a model if the
configuration file specifies a version that is not in the installed library.

By default, the Browser searches for files with the extension .lmc. However, you can
search for files with a different extension, and you can search for a specific file. To
search for files with a different name or extension, follow these steps:

1. In the Filter text field, edit the file name so that it contains the desired name or *.ext.

2. Click on the Filter button. The Files list box now contains names of files in the
selected directory that have the current name or extension.

To search for files in a different directory, follow these steps:

1. Delete the text in the Filter text field.

2. Type in the desired path name, including the file name or extension.

3. Click on the Filter button. The Files list box now contains names of files in the
specified directory that meet the filtering criteria.

On NT, use the standard Windows navigational tools to navigate and find the
configuration file that you want.

SmartModel Library User’s Manual Chapter 4: Memory Models

February 2001 Synopsys, Inc. 71

�

4
Memory Models

Configuring Memory Models
Memory models simulate internal memory locations. Most memory models are for
memory devices, but there are some processor, interface, and oscillator models that also
have on-chip memory. You configure memory models at simulation startup using a
Synopsys memory image file (MIF). For on-chip memory in processor models you
configure the memory from a PCL program using the model-specific PCL commands
documented in the model's datasheet. Memory models check their initialization files
when they are loaded for simulation, as shown in Figure 9.

Figure 9: Process Flow for Memory Models

MIF File
Creation

MIF
File

Memory
Model

Chapter 4: Memory Models SmartModel Library User’s Manual

72 Synopsys, Inc. February 2001

�

Using Memory Models
Memory models are flexible enough to support a wide range of potential uses in
simulation. To make optimal use of this flexibility, keep the following points in mind:

● Load minimum memory. Because memory allocation is dynamic and due to the
fact that you do not have to load all of the memory locations in a device, it is good
practice to load only the minimum necessary to support the simulation. At
simulation startup the model allocates only as much system memory as required by
the data. The memory is allocated in groups of bytes based on the model's memory
size in order to minimize the number of allocations. During simulation, if an
address is used that is in an unallocated area, the model allocates new memory
locations to support the data written to the model.

● Key memory image file (MIF) names to your schematic. It is best to name MIF
files with the model instance name as part of the file name. Because model instance
names are always unique, this is a handy way to pair memory devices with their
correct MIF files.

● Reuse MIF files. You can load the same MIF file into as many models as you want
by using the same file name with all instances on the schematic diagram.

● Turn off access delays. Memory models prevent invalid data from being accessed
before the minimum read cycle time has been satisfied by outputting unknowns. If
this feature is not useful for your particular simulation needs, you can disable it by
creating a custom timing file. For information about custom timing files, refer to
“User-Defined Timing” on page 157.

● Monitor internal memory. Change or monitor the values of internal memory
locations using SmartModel Windows memory window elements. For processor
models that have internal memory, you can use PCL commands to get the values of
internal memory locations. .

The Memory Image File (MIF)
A memory image file (MIF) is an ASCII file containing memory data to be loaded into a
model before simulation, thus saving the simulation time that would otherwise be
required to load the memory. You can load a memory model with a file that has
previously been dumped from the same or from a different memory model, as long as
their word widths are compatible.

One common use of memory image files is for programming models of ROMs and
PROMs. If these models are not configured with an associated MIF file, they issue a
warning message at simulation startup.

SmartModel Library User’s Manual Chapter 4: Memory Models

February 2001 Synopsys, Inc. 73

�

Creating a Memory Image File (MIF)
To create a MIF file, follow these steps:

1. Using a text editor, create a file (for example, ram4kx4.img)

2. Enter the memory data, using the correct MIF file format.

Using a Memory Image File (MIF)
To load a model’s simulated memory from a MIF file, follow these steps:

1. Configure the model to use the MIF file by assigning the file to the SWIFT
MemoryFile parameter.

2. Start the simulation. MIF files are automatically loaded and checked for format
errors.

If you do not load memory data at simulation startup, check the model datasheet to
determine the default memory values at initialization. The contents of a memory device
model’s internal memory at initialization depend on the manufacturer’s implementation.
Typically, the default for RAMs is “unknown” and the default for ROMs is “1.”

You can modify previously addressed locations multiple times using one MIF file. This
way you can load the entire memory image with one line in your MIF file and then
modify selected values on a case-by-case basis.

Memory Image File (MIF) Format
A MIF file contains one or more records. Each record specifies the data to be written to
one or more memory locations.

MIF File Conventions
The following list shows the conventions and rules that apply to the syntax description
for MIF file records:

● Braces ({ }) indicate a list of one or more entries.

● Brackets ([]) indicate optional entries.

● Italics indicate variables for which you specify actual values.

● Fields are not case-sensitive.

● More than one record can appear on a line.

● The character “X” or “x” indicates an unknown value, and is illegal except in a data
word where the data is expressed in binary, octal, or hexadecimal (not decimal).

Chapter 4: Memory Models SmartModel Library User’s Manual

74 Synopsys, Inc. February 2001

�

MIF File Record Syntax
Following is the syntax for MIF file records:

{address1 [:address2] / base_specifier data_value;} [# comment]

address1
The memory location to which data is to be written, or the beginning address of a
range.

:address2
The end address of a range. Either a colon (:) or a hyphen (-) can be used as a
delimiter.

/base_specifier
A slash (/) separates the address specification from the data word. The
base_specifier argument is one of the following:

`b. Binary
`o. Octal
`d. Decimal
`h. Hexadecimal (the default)

You can mix different base numbers within a record.

data_value;
The value of the data word to be written to the specified memory locations. A
semicolon (;) defines the end of each record.

comment
A comment can be included in a record by using the pound sign (#). All
information from the pound sign to the end of the line is treated as a comment.

Example 1
The following example shows how various constructs can be used or combined in a MIF
file. In this example, the width of the memory location is 8 bits.

0:3/0; #Colon separator for address range
4-6/0; #Hyphen separator for address range
`d7/'b10101110; #Address and data can use a different

#numeric base
10/0; 11/`b10000000; #Two records on the same line
12:1e/'HxF; `d31/`hX8; #Information is case-insensitive
20:7FF/4; #Load remaining addresses with 00000100

SmartModel Library User’s Manual Chapter 4: Memory Models

February 2001 Synopsys, Inc. 75

�

Example 2
When you specify the data value to load into memory, the safest practice is to specify
values that match the width of the memory location; however, this is not required. If the
data value has fewer bits than the memory location, the model pads the value with
leading zeros. If the data value is larger than the memory location, the model rejects the
data and issues a warning message.

The following example specifies that the hex value F (binary 1111) is to be loaded into
memory location 0 (zero). If the memory location is 9 bits wide, the value entered is
000001111; if the location is 6 bits wide, the value is 001111; and so on.

0/F

Example 3
Unknown values are most easily specified in binary; often the unknown represents a
single bit. In the following example, for an 8-bit memory location the binary value is
loaded into 0F exactly as written; the hex value xF is loaded into FA as xxxx1111. For a
9-bit memory location, the binary value is loaded as 01010x0x1 and the hex value as
0xxxx1111.

OF/'b1010x0x1;
FA/xF;

Memory Image File (MIF) Address Mapping
Each record in a MIF file specifies an address followed by the data value to load at that
address. To translate the address in a MIF file to a column and row address (or vice
versa), follow the steps below. (Or, if you have an Intel Hex or a Motorola S-record
memory image file, you can use the mi_trans tool to translate the file into the format
used by memory models in the SmartModel Library. For more information, refer to
“Translating Memory Image Files” on page 198.)

1. Use Table 5 to find the number of bits in the row and column addresses.

Table 5: Bits in Row and Column Addresses

Device Size Row Bits
Column

Bits

4 MB 11 11

1 MB 10 10

256 KB 9 9

64 KB 8 8

Chapter 4: Memory Models SmartModel Library User’s Manual

76 Synopsys, Inc. February 2001

�

2. Write the address in the memory image file, in binary, padding with leading zeroes
to get the correct number of bits. For example, with a 1 MB memory device, the
address 4834 hexadecimal expressed in 20 bits is:

0000 0100 1000 0011 0100

3. Divide the bits into two sets. The upper number of bits is the row address and the
lower is the column address:

00 0001 0010 00 0011 0100

The row address (in hex) is 12; the column address is 34.

As another example, we use a 256 KB memory and a MIF file address of 2405.
Written as an 18-bit value, the address is:

00 0010 0100 0000 0101

Divide the 18-bit address into two 9-bit segments and translate back to hex:

0 0001 0010 0 0000 0101

In hex, the row address is 12, and the column address is 05.

Memory Image File (MIF) Format Checks
When a model configured with a MIF file is loaded for simulation, the model performs
error checks to validate that the following conditions are true:

● Valid memory locations for the device were specified.

● Legal specifications were used.

● Data values do not exceed the memory width.

If a model’s MIF file loads correctly, you will see a message similar to the following
example:

Info: Loading the memory image file "U2.mem".
(n=U2) (comp=lai_cy7c128-14-0-8) (loc=A1-48) (lai=CY7C128-25),
at t=0 (0.0 ns).

--- 17 values have been initialized.

SmartModel Library User’s Manual Chapter 4: Memory Models

February 2001 Synopsys, Inc. 77

�

If a model’s MIF file does not load correctly, the resulting message will be similar to the
following example:

Info: Loading the memory image file "U2.mem".
(n=U2) (comp=lai_cy7c194-14-0-8) (loc=A1-48) (lai=CY7C194-25),
at t=0 (0.0 ns).

--- Invalid data value "DB" on line 2.
It must be less than or equal to F. The line will
be ignored.

--- Invalid data value "18" on line 3.
It must be less than or equal to F. The line will be
ignored.

--- Invalid data value "50" on line 7.
It must be less than or equal to F. The line will be
ignored.

--- 7 values have been initialized.

If you specify a MIF file and the model fails to locate it, a warning message identifying
the model is generated when the model is loaded. As long as the memory image is not
required during the simulation, neither the warning message nor the default parameter
value on the memory device will adversely affect your simulation.

Dumping Memory Data
Models that simulate internal memory locations can write their contents to an external
system file—referred to as a dump file. You can use the SWIFT command channel
DumpMemory command to write the contents of a model's simulated memory locations
to a dump file at any time during a simulation. If the specified file does not exist, it is
created. If the file already exists, it is overwritten. The memory dump operation allows
you to eliminate the read cycles required to verify the success of a test. If you issue the
DumpMemory command on a model that does not have internal (simulated) memory
locations, a warning message is issued.

The dump file format is the same as MIF file format—addresses and data are
represented in hexadecimal, except that data is represented in binary if the data contains
any unknown bits.

Chapter 4: Memory Models SmartModel Library User’s Manual

78 Synopsys, Inc. February 2001

�

The size of the dump file is minimized by filtering data that remains in its initial or
power-up state, and by writing out only one data line for contiguous addresses that
contain the same data value. For example, consider the following memory contents—
8 bits wide:

Addr 0 = 0
Addr 1 = 0
Addr 2 = 0
Addr 3 = 0
Addr 8 = 11111111
Addr 15 = 1100X1X0

All other addresses contain an initial value of X.

The dump file contents would be:

0:3/0; 8/FF; F/'b1100X1X0;

Note�
If you subsequently load the dump file for the same instance of a memory
model, you are guaranteed to put the memory back in exactly the same state
it was in when it was dumped.

SmartModel Library User’s Manual Chapter 5: PLD Models

February 2001 Synopsys, Inc. 79

�

5
PLD Models

Configuring PLD Models
Like the actual devices, Programmable Logic Device (PLD) models in the SmartModel
Library are programmable. To configure a PLD model, you use a JEDEC standard file.
PLD models check their initialization files when loaded for simulation, as shown in
Figure 10.

Figure 10: Process Flow for PLD Models

JEDEC File
Creation

JEDEC
File

PLD
Model

Chapter 5: PLD Models SmartModel Library User’s Manual

80 Synopsys, Inc. February 2001

�

Like all models in the library, PLD and PAL models provide error checking during
simulation.

Each PLD model datasheet contains a port name to pin number cross-reference table,
which shows the mapping of a model’s port names to a particular package type’s pin
numbering.

Programming PLD Models
PAL and PLD models are programmed with a file that conforms to JEDEC
STANDARD No 3-A, Standard Data Transfer Format Between Data Preparation
System and Programmable Logic Device Programmer, May 1986. To configure a
model to use a particular JEDEC file, use the SWIFT JEDECFile parameter. Table 6
showstheprogrammingandtestingfieldsspecifiedbytheJEDECstandard.

Table 6: JEDEC Standard 3-A Fields and Their Uses in PLD Models

Identifier Description Use

not applicable Design specification required

N Note not used

QF Number of fuses in the device not used

QP Number of pins in test vectors not used

QV Maximum number of test vectors not used

F Default fuse state optional if Field L is used

L Fuse list optional if Field F is used

C Fuse checksum optional, and “0000” is valid

X Default test condition not used

V Test vectors not used

P Pin sequence not used

D Device (obsolete) not used

G Security fuse not used

R, S, T Signature analysis not used

A Access time not used

SmartModel Library User’s Manual Chapter 5: PLD Models

February 2001 Synopsys, Inc. 81

�

The F and L fields are complementary; if one is used, the other is optional. Fields
marked “not used” still can be included in the model’s programming file but they have
no effect.

You can use a JEDEC standard file already created by programs like ABEL, CUPL, or
PALASM, or you can create your own simplified version. If you create your own
JEDEC file, the PLD models do not require all the fields specified by the standard; use
the programming and testing fields described in the table.

Following is an example of a simple JEDEC programming file. The example specifies
that the default fuse condition is a low-resistance link (0). The fuses from 0 to 39 are
explicitly defined by the L field; and a checksum is used.

DUMMY HEADER*
F0*
L0000 01001110 00001000 11110000 11111111 01010001*
C021A*

Note�
As defined in the JEDEC standard, if a fuse is specified more than once, the
last state replaces all previous states for that fuse. If more than one
checksum field is in the file, the last one is used, which allows a file to be
easily modified or patched.

JEDEC File Format Checks
At simulation startup, each PLD model searches for its JEDEC programming file. If the
programming file is missing or unspecified the model issues a warning message. If the
programming file is properly specified, the model instead issues an informational
message when loading is complete. The message format is similar to that shown in the
example below.

Info: Loading the JEDEC file “U23.jed”.
(n=U23) (comp=EP1800) (loc=A9-12) (lai=EP1800), at t=0 (0.0 ns).

--- 12680 fuses have been blown.

When a PLD model with a JEDEC programming file is loaded for simulation, the model
performs a series of error checks. The model checks the order of the fields in the file
and then compares the character types and number of digits against the field type. The
model also checks that all fuse links are specified, and that all the addresses are legal for
the device. Finally, the model computes the checksum and checks it against the
checksum in the JEDEC file.

Chapter 5: PLD Models SmartModel Library User’s Manual

82 Synopsys, Inc. February 2001

�

The following example shows the kind of information message that the model generates
after going through the error checking sequence.

Info: Loading the JEDEC file “U31.jed”.
(n=U31) (comp=PAL16R4) (loc=B1-8) (lai=mmi_16r4), at t=0 (0.0 ns).

--- Invalid numeric character "L" on line 23.
A hexadecimal digit is expected.
--- The checksum value “3056” on line 63 does
not match the calculated value “3543”.
--- Not all of the fuses have been defined. The
first undefined fuse is at address “4”.
--- 1036 fuses have been blown.

Using PLD Models
To make PLD models easier and more efficient to use, follow these guidelines:

● Key JEDEC file names to your instance name.

Use the instance name as part of your JEDEC file name. This is a handy way to pair
PLD models with their programming files because each model has a unique instance
name.

● Patch programming files rather than rewriting them.

PLD models conform to the JEDEC standard, which contains provisions for easily
patching a programming file. To patch a programming file, simply append the new
fuse and/or checksum data to the end. The new data always replaces previous
specifications.

● Reuse file names rather than changing the SWIFT JEDECFile parameter.

In many simulation environments, changing the file name requires changing the
schematic, recompiling, and then restarting the simulation. You can avoid this
problem by reusing a model's file name for a file with new information in it rather
than instantiating the part and changing the value of the property or parameter.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 83

�

6
SmartCircuit FPGA Models

Introduction
SmartCircuit models simplify the integration and simulation of device models from the
leading FPGA and CPLD device vendors. And the debugging tools designed
specifically for use with SmartCircuit models enable you to monitor design state, trace
cause and effect events, and analyze your design structure.

This chapter presents user and reference information for SmartCircuit models and their
debugging tools organized as shown in the following table.

Type of
Information Is Located In ...

Overview ● “Using SmartCircuit Models” on page 84

● “SmartCircuit Technology Overview” on page 86

● “Debugging Tools Overview” on page 89

Procedure ● “Tracing Events In Your Design” on page 91

● “Viewing Internal Nodes During Simulation” on page 95

● “Browsing Your Design Using SmartBrowser” on page 106

Reference ● “SmartBrowser Command Reference” on page 111

● “Model Command File (MCF) Reference” on page 119

● “smartccn Command Reference” on page 122

● “ccn_report Command Reference” on page 125

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

84 Synopsys, Inc. February 2001

�

For a detailed application note that discusses how to use the various SmartCircuit
debugging tools to verify an FPGA design, refer to the SmartModel Products
Application Notes Manual.

Using SmartCircuit Models
SmartCircuit models integrate smoothly with the software tools from leading CPLD and
FPGA device vendors and third-party vendors that produce netlist or JEDEC files
back-annotated with package-pin and/or timing information.

SmartCircuit models must be configured and initialized before they will operate. The
model configuration phase consists of attaching SWIFT parameters to a model instance
via the simulation environment. The software assigns default names to these parameters.
With SmartCircuit models, you must set the SCFFile parameter to point to the location
of the model command file (MCF) for the model.

If the model cannot find the specified MCF file at initialization, it issues an error
message. When the model finds the specified MCF, it checks the file syntax and
executes the commands that it contains, including the “load” command found in all
MCF files. After loading the compiled configuration netlist (CCN), the model
initializes. If the model cannot load the CCN file, it issues an error message.

The operation phase begins at time 0 after the model loads the MCF. The actual
functions performed depend on the device being modeled; details are documented in the
datasheets for the device and model.

Note�
SmartCircuit models do not support JTAG functions or configuration
through boundary scan pins.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 85

�

Quick Start for SmartCircuit Models
Before using any SmartCircuit model in a design, refer to the model's datasheet for
specific information about how to configure and use that particular model. Individual
model datasheets provide information about technical issues or special usage
considerations you may need to be aware of, such as specific options required in the
FPGA vendor tools to target the netlist to SmartModels. For information on finding
model datasheets using the Browser tool, refer to “SmartModel Datasheets” on page 25.

To use a SmartCircuit model in a design, follow these steps:

1. Instantiate the model in your design.

For information about instantiating SmartModels and configuring them for use in
your simulator, refer to the Simulator Configuration Guide for Synopsys Models.

2. Generate a design netlist or JEDEC file.

Using the design tools provided by the device manufacturer or third-party vendor,
generate a netlist or JEDEC file for your design. Refer to the model datasheet for
information on the required netlist format or JEDEC file for your device.

3. Create a model command file (MCF).

An MCF file is an ASCII file that contains instructions the model executes at
startup. Your MCF can have any name you choose, but the convention is to give
these files .mcf extensions for consistency.

Using an ASCII editor, create and save a file that contains the following line:

load -source netlist_name

where netlist_name is the path to the netlist or JEDEC file you generated in Step 2.

For example, if your netlist is named sample.edo, use the following command in
your MCF file:

load -source sample.edo

The model automatically loads the specified netlist and translates it into a compiled
configuration netlist (CCN), if necessary.

4. Verify or change the model's SCFFile parameter.

To use a SmartCircuit model in a simulation, set the value of the SCFFile parameter
to the path name of the model's MCF file. This can be done in one of two ways:

❍ Edit the parameter value to use the name of the MCF you created in Step 3.

-or-

❍ Assign your MCF file the same name as the current value of the SCFFile
parameter.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

86 Synopsys, Inc. February 2001

�

1. Run your simulation.

SmartCircuit Technology Overview
SmartCircuit technology uses a hierarchy of cell descriptions to model a family of
FPGAs or CPLDs. Each cell provides logic building blocks that map to specific
functions of the device. The cell descriptions for a device family are combined into a
cell library for that family of devices.

Figure 11 illustrates the typical data flow for a SmartCircuit model; boldfaced items
indicate tools or files supplied by Synopsys.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 87

�

Figure 11: SmartCircuit Model Data Flow

Sample

OE

OUT

CLK

DIN2
DIN1

Single CPLD
device in a

user’s design

Model Command File
(design.mcf)

load design.ccn

EDA Simulator

Third-Party netlist
generation tool

Pin Map file
(design.pmp) VSB

ccn_report

SmartBrowser

Netlist/JEDEC
file

Generic cell library
(base.ccl)

Family cell library
(family.ccl)

Design
Database

smartccn

CCN file
(design.ccn)

U1
U2

U3

Model

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

88 Synopsys, Inc. February 2001

�

At the top of Figure 11, starting with a single FPGA or CPLD device you have
instantiated in your design, you use the device manufacturer’s (third-party) compiler
tool to generate an FPGA design netlist or a JEDEC file for the model along with any
other required design-specific options. (Refer to the individual SmartCircuit model
datasheets for information about the design netlist or JEDEC file format required for a
specific model).

SmartCircuit models also obtain vendor-specific functions from a cell library (for
example altera.ccl) that is based on device families from semiconductor vendors such as
Actel, Altera, Vantis, Lucent, Cypress, Intel, Lattice, QuickLogic, and Xilinx.

The smartccn tool uses inputs from both of these sources to produce the complied
configuration netlist (CCN) file needed to configure a SmartCircuit model for
simulation. You can also use the smartccn tool to generate other files, such as pin-map
files (.pmp). For more information, refer to “smartccn Command Reference” on
page 122.

You can later extract information from the CCN file using the ccn_report tool, the
SmartBrowser, or the Visual SmartBrowser (VSB). For example, you can generate a
windows definition file, which allows you to monitor internal nets within your design.

As illustrated at the bottom of Figure 11, the simulator loads the model, which
configures itself based on commands found in the MCF file.

User-Defined Timing for JEDEC-based Models
If you have created a timing file that contains timing specifications that are newer than
those shipped with the model, you can compile the netlist with the more recent timing
information. Note that the user-defined timing feature only works with JEDEC-based
SmartCircuit models.

To compile the new timing file into a model, invoke smartccn with the -u switch and
specify the name of the user-defined timing UDT file. The -u switch directs smartccn to
use the timing contained in the specified UDT file.

The following example causes smartccn to compile a new CCN file for the mach110
model using a UDT file called my_new_timing.tf.

% smartccn sample.jed -u my_new_timing.tf -m mach110

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 89

�

Debugging Tools Overview
SmartCircuit debugging tools work in conjunction with the models to help you verify
and validate your design at the back-end system level. After your design has been
flattened, mapped, and fitted—to the point where the original structure is lost—
SmartCircuit models and debugging tools help you visualize and fix design issues.

The SmartCircuit debugging tools have four major components:

● Causal Tracing (described on page 91)—enables you to identify the source of
timing or functional problems for models of CPLD and FPGA devices. For
example, you can use causal tracing to locate the source of setup, hold, or pulse
width violations before running your simulation. Afterwards, you can trace a design
error or a constraint violation to its source and quickly determine if the error is in the
system or in the programmable logic design.

● SmartCircuit Monitor (described on page 96)—lets you view internal states and
signal elements inside your programmable logic design. You select probe sites of
interest and SmartCircuit Monitor reports back state and net information through the
transcript window of your simulator.

● SmartBrowser (described on page 106)—allows you to dissect the design netlist to
observe connectivity of elements and their properties.

● Visual SmartBrowser (VSB) (described in Visual SmartBrowser User’s Manual –
UNIX version or NT version)—provides all the capabilities of the command-line
SmartBrowser, while adding improved visual traversal and display of your
programmable logic design through an easy-to-use GUI interface.

SmartCircuit Monitor and Causal Tracing commands are placed in the model command
file (MCF), along with the standard MCF commands. At simulation startup, the
simulator reads the MCF for a model and interprets the commands it contains, including
debugging commands. The output from these commands is piped to the simulator
transcript window. Based on the information you gather with these tools, you can make
changes to your design or MCF and then rerun your simulation.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

90 Synopsys, Inc. February 2001

�

Sample Circuit
To help you better understand how to use SmartCircuit models and the debugging tools,
use the sample circuit in Figure 12 as a reference for the examples presented in this
chapter.

.

Figure 12: Sample SmartModel Circuit

SmartCircuit Model Pin Mapping
Place and route tools assign physical pin numbers to nodes in your design (schematic or
HDL). When connecting a SmartCircuit model symbol in a schematic (or netlist), you
must know which pins on the symbol correspond to the nodes in the design. Use the
model’s pin map file (.pmp) as a cross-reference between pin names and numbers.

The pin map file generated by using the -p switch with the ccn_report tool is a duplicate
of the pin map file generated by the smartccn compiler. Pin map files contain cross-
references between model port names, package pin numbers, and the design netlist.
Figure 13 illustrates this relationship.

PRN

CLRN

D Q
N8

N7

N1

N6

N5

N4

N3

Y

Q

BUF1

BUF2

BUF3

BUF4

VCC

OE

A1

A2

CLK

AND2

DFF

TSBUF1

TSBUF2

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 91

�

Figure 13: SmartCircuit Pin-to-Port Mapping

Note�
Pin naming conventions are detailed in the datasheets for individual
SmartCircuit models. For information on finding model datasheets using
the Browser tool, refer to “SmartModel Datasheets” on page 25.

Tracing Events In Your Design
When you encounter problems with a design during a simulation run, it is often helpful
to be able to trace events to see where the problem is occurring or to trace the causes of
a problem to their roots. You can use the causal tracing capability to do just that.

Throughout this discussion of causal tracing, we often use the terms parent event and
child event. Parent events and child events have a cause-and-effect relationship; some
stimulus or circumstance on the parent event causes the child event to occur. An event
that was caused by a preceding event, and in turn causes another event, is both a parent
and a child at the same time.

Causal tracing consists of two commands: set cause and report. These commands have
several forms you can use to define the scope of event tracing and produce reports
detailing the cause or effect of an event. Report output appears in the model message
transcript.

The signal values displayed within causal tracing are the same as those displayed by the
monitor command. These signal values are described in Table 8 on page 97.

Design Netlist Package Pins Model Ports

CLK

Q

IO_MC28

IO_MC13

28
18

Vendor Place & Route Tools SmartCircuit Model Pin Mapping

A1 4 IO_MC1

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

92 Synopsys, Inc. February 2001

�

Causal Tracing Command Descriptions
Following are summaries of the causal tracing commands that you can put in the
model’s MCF file. For causal reporting purposes, when events occur simultaneously at
a circuit element, only one event is determined to have caused any subsequent circuit
changes.

● report cause—produces a list of parent events of the triggering event on a net or
port that occur between start_time and stop_time.

● report effect (page 93)—produces a list of child events of the triggering event on a
net or port that occur between start_time and stop_time.

● set cause (page 94)—determines what events are reported when a constraint
violation occurs or determines the general scope of causal reporting.

You can use the report cause and report effect commands to produce reports showing the
cause and effect of events that take place during your simulation. The following
sections provide details about each command.

report cause Command
report cause name start_time [stop_time]

Produces a list of parent events of the triggering event on a net or port that occur
between start_time and stop_time. If you don't specify a stop_time, the tool checks the
event only at the time specified by start_time.

The report cause command traces the cause of a signal event on a node in a design. A
node can be any net or port defined within a design.

A cause report is simply the chronological history of signal events that lead up to the
trigger event. The report is in reverse chronological order—it starts at the trigger event
and traces backward until it reaches the causal signal event that is responsible for the
trigger event.

When used in conjunction with the set cause full command, the cause report includes the
history of all signal events, starting at the trigger event and working backwards to the
causal event.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 93

�

When used in conjunction with the set cause nofull command, the cause report includes
only the causal event.

Note�
The report cause command can trace only one causal event at a time. When
report cause encounters simultaneous signal events that have caused the
trigger event, it traces only one event. Which event gets traced depends on
the internal ordering of the model's causal history records.

report effect Command
The report effect command traces the effect of a signal event on a node within a design.
A node can be any net or port defined within a design. The effect report is a history of all
signal events, starting at the trigger event and working forward to all terminal events. A
signal event on a design port is considered terminal, even though the port may be
bidirectional.

For example:

report effect name start_time [stop_time]

produces a list of child events of the triggering event on a net or port that occur between
start_time and stop_time. If you don't specify a stop_time, the tool checks the event only
at the time specified by start_time.

When the report effect command encounters simultaneous signal events at an internal
circuit element, one signal event is considered to have caused any subsequent signal
events. The report ends at the point where the event being traced does not cause any
subsequent events.

To produce an effect report for the sample circuit shown in Figure 12, your MCF would
need to contain these lines:

report effect CLK 150
report effect A1 200

Unlike cause reports, effect reports are not bounded. In a cause report, the start and end
times are known, and the report is bounded by these times. In effect reports, the end
time is unknown when the report begins, so effect reports may be interrupted by other
reports or by model messages.

Note�
You cannot change the scope of effect reports. The scope of effect reporting
is always full.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

94 Synopsys, Inc. February 2001

�

set cause Command
The set cause command has two variations: one that determines the general scope of
cause reporting, and a second that determines the constraint violation scope of cause
reporting.

For example,

set cause constraint | noconstraint

determines what events are reported when a constraint violation occurs. The default
setting is noconstraint. The constraint argument causes the analysis report to contain all
events involved in a constraint violation. For instance, if there is a setup or hold
violation, then the DATA and CLK paths that caused the event to occur are reported.
The noconstraint argument causes the model to produce a report listing only the errors,
with no tracing information, when a constraint violation occurs.

Whereas,

set cause full | nofull

determines the general scope of causal reporting. The default setting is full, which
produces an analysis report that contains all causal events, from the trigger through the
earliest parent event. The report produced when you use the nofull argument is
significantly shorter, and lists only the parent events.

Note�
You must specify the full/nofull and constraint/noconstraint arguments using
separate set cause commands.

To produce a cause report with the scope set to full for the sample circuit shown in
Figure 12, your MCF file would need to contain these lines:

set cause full
report cause Y 150 250
report cause Q 280

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 95

�

Viewing Internal Nodes During Simulation
There are two different ways to view events on internal nodes during simulation using
SmartCircuit models:

● “SmartModel Windows” on page 95

● “SmartCircuit Monitor” on page 96

Table 7 compares these different viewing methods so that you can choose which one is
best for your needs.

(1) Not all SmartModel Window elements are set up for write permission. For information on the
read/write status of window elements, refer to the individual model datasheets.

Although the SmartBrowser tool (described on page 106) does not allow you to read or
write to internal nodes, it does provide the complementary capability to view overall
design topology and properties.

SmartModel Windows
SmartModel Windows is a feature that allows you to access internal net and state
information during simulations. SmartModel Windows is especially useful with
SmartCircuit models because it enables you to monitor and change design element
values.

With SmartModel Windows, you can create windows for two types of design elements:
states and nets. When you force a window element to some value, it remains at that
value until a normal event occurs that changes the state of that element or until you
apply a new forced value.

You define windows by placing statements in the MCF file. You can also place these
statements in a separate file that is referred to by a “do” command in the MCF file.

Table 7: Windows and Monitors Tool Comparison

Viewing Tool
Read the State of
Internal Nodes?

Write to the State of
Internal Nodes? Output Appears In ...

SmartModel Windows Yes Yes (1) Simulator waveform
viewer

SmartCircuit Monitor Yes No Simulator transcript
window

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

96 Synopsys, Inc. February 2001

�

Creating Buses and Windows
Sometimes it is useful to combine a number of design elements into a bus and then
window the bus. You can also create a bus to rename a single design element. In some
simulators, such as Cadence Verilog-XL, you need to use the bus command to alias a net
or state name, because the net or state name contains illegal characters.

For example, you cannot window the net name /Block1/Net1 in the Verilog-XL
environment because it contains the illegal character '/'. One solution to this limitation is
to create a bus for each of the elements that contains illegal characters, and then create a
window for the bus, as shown in the following example.

bus State1 /DFF/STATE
window State1

Use the SmartBrowser interactive utility or the Visual SmartBrowser (VSB) to identify
which nets and states are available to be windowed. These tools both let you view a
CCN file, browse the design, and list all nets, states, and instances along with their
connections. For more information on the SmartBrowser tool, refer to “Browsing Your
Design Using SmartBrowser” on page 106 of this manual. The VSB tool is
documented in a separate manual entitled Visual SmartBrowser User’s Manual (UNIX
version or NT version).

You can use the AutoWindows feature of the ccn_report tool to automatically generate a
windows definition file. Then, use the “do” command to include the windows definition
file in your MCF file. For more information on creating AutoWindows, refer to
“AutoWindows” on page 128.

SmartCircuit Monitor
The SmartCircuit Monitor enables you to observe any element in your design and
receive messages in the simulator transcript window about any changes that occur on
that element. The specified elements can be any nets or buses in your design.

Note�
The number of monitors that can be active at one time is determined by the
maximum length of a message string allowed by your simulator. Some
simulators might allow as few as 256 characters in a message string, thus
limiting the number of monitor statements you can use.

Let’s take a look at an example based on the sample circuit shown in Figure 12. To
monitor an element, you include a monitor command statement in the model’s MCF file.
For example, if you want to monitor input nets OE, A1, A2, and CLK; internal nets
N3 - N8; and output nets Y and Q, the command in your MCF would look like this:

monitor OE A1 A2 CLK N3 N4 N5 N6 N7 N8 Y Q

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 97

�

When you start your simulation and load the MCF file, monitors are assigned to the
elements specified on the command line.

To make the report easier to read, place a label at the beginning of each line of the
report. Use the set label command, from within the MCF file, to specify the string. For
example, to specify the label “SAMPLE>”:

set label SAMPLE>

The complete MCF file for our example would look like this:

load -source sample.edo
set label SAMPLE>
monitor OE A1 A2 CLK N3 N4 N5 N6 N7 N8 Y Q

You can also assign monitors using the Visual SmartBrowser or the SmartBrowser. For
information on using the Visual SmartBrowser, refer to the Visual SmartBrowser User’s
Manual (UNIX version or NT version). For information on using the SmartBrowser
tool, refer to “Browsing Your Design Using SmartBrowser” on page 106.

When you assign a monitor to an external I/O port or any net connected directly to an
external I/O port, the monitor is placed on the input side of the port. This enables the
monitor to report the value being driven into the model. To monitor the value driven out
of an external I/O port, you must access the external port value via the simulator
interface.

Note�
Some models have special input pin attributes, such as pull-up resistors. In
such cases, the monitor command reports the resolved value of the
simulator's input and the model's input pin attribute.

SmartCircuit Monitor Signal Values
The output produced by SmartCircuit Monitor commands includes a set of signal values
(see Table 8). Each bit of a monitored signal is represented by a single character in the
output.

Table 8: Monitor Signal Values

Output Value Description

0 Logic 0 Signal strength strong

1 Logic 1 Signal strength strong

X Unknown Signal strength strong

Z High-impedance High-impedance

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

98 Synopsys, Inc. February 2001

�

Using Unsupported Devices
If you need to use a device type that is not currently supported within a particular device
family or model, you can use smartccn to generate an interface file. You might need an
interface file in the following cases:

● When the device type specified by your netlist is not supported by any available
models (for example, a new vendor device type).

● When the device type specified by your netlist should map to an available model,
but is not recognized by that model (for example, the device designator is either
obsolete or new).

● For a JEDEC-based model, when the component name specified on the command
line is not recognized by that model (for example, when adding a new or a custom
timing version).

The smartccn tool uses interface files to define the mapping between a device's pins and
a model's ports. To use an unsupported device, follow these steps:

1. Select the correct model according to the following criteria:

❍ If the device type specified within your netlist is not supported by any available
models, then select a model from the same vendor family that has a pin count
equal to or greater than the pin count of the device you are using.

❍ If the device type specified within your netlist should map to an available
model, but does not, then select the model that it should map to.

❍ If you are using a JEDEC-based model with an unrecognized component name,
then select the model that component designates.

Note�
You can map an unsupported JEDEC-based device into an existing
JEDEC-based model only if the devices have identical fuse maps.

L Logic 0 Signal strength resistive

H Logic 1 Signal strength resistive

R Unknown Signal strength resistive

U Uninitialized Uninitialized

Table 8: Monitor Signal Values (Continued)

Output Value Description

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 99

�

2. Create an interface file by running smartccn with the -g switch as shown in the
following example:

% smartccn -m model -g

The output file is named model.inf.

3. Add your device to the interface file using an ASCII text editor as follows:

a. Find the correct DEVICE specification section within the interface file. Note
that although most models generate an interface file with a single DEVICE
specification section, some models support multiple packages (for example,
PGA and LCC). Such interface files contain a different DEVICE section for
each unique package.

b. Modify the correct DEVICE specification section by either adding a new
DEVICE line containing your device name or replacing one of the existing
DEVICE lines with you device name.

1. If you are mapping a new vendor device into an existing model, modify the
device-to-model mapping using an ASCII text editor as follows. In the device
specification section, modify the package pin number value within the pin records
until you have one “corrected” PIN record for each of the user-configurable pins on
the new device. You can rearrange the order of pin statements and freely map any
user-configurable pin on the new device into any user-configurable pin in the
existing model, but do not edit pin names and do not map a user-configurable pin to
a non-configurable pin. Excess pins that are not mapped to the new device may
have any package pin number, as long as they don’t collide with the new pin
numbers you are targeting. The excess pins are ignored during simulation.

Some models have special non-configurable pins (for example, the PROGRAM pin
in the Xilinx 4k family). You can identify these pins by examining the pin type
designator within a pin record. To avoid simulation problems, these pins need to be
mapped correctly. Do not map a user-configurable pin to a non-configurable pin
(ideally, these pins should be mapped directly between devices).

Note�
Do not change pin names. Also, do not add or delete PIN statements from a
device declaration. Changes like these can make the model nonfunctional.

2. Generate a new CCN file by running smartccn with the -i switch, which forces the
compiler to read its device-to-model mapping information from the specified
interface file.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

100 Synopsys, Inc. February 2001

�

Example
The following example causes smartccn to generate a new CCN file for the mach110
model based on device-to-model mapping information in the specified interface file.

% smartccn -m mach110 -i mach110.inf

Interface File Format
Interface files contain one or more device declarations for one or more models. Each
device declaration conforms to the format shown below. Any interface files you create
must also conform to this format.

Begin device declaration
DEVICE : <device_name>[, ...]
MODEL <model_name>
LIBRARY <library_name>
PIN <pin_name> <package_pin_number> [{ C | O | I | B }]
. . .
END

End device declaration

Keywords (DEVICE, MODEL, etc.) and pin names must appear in uppercase, while the
model name and library name must be lowercase. Device names are case-insensitive.

Hint�
To create a new device declaration block, you will probably find it easiest to
copy and modify an existing block that you know is properly formatted

If you include multiple device declarations in an interface file, each declaration must use
unique device names. Ordering of pin declarations is not significant. A pound sign (#)
at the beginning of a line signifies a comment, which the compiler ignores.

You can determine the pin type by looking in the interface file for the declaration of a
device with the same type.

Following are descriptions of the SmartCircuit interface (.inf) file keywords.

DEVICE : device_name
Specifies the name of the device as it appears in the netlist file (for example,
3020PG84 or 2064pc68).

END
Signifies the end of a device declaration (required).

MODEL model_name
Specifies the name of the model.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 101

�

LIBRARY vendor_cell_library
Specifies the name of the device model library.

PIN pin_name package_pin_number [C | O | I | B]

pin_name
The name that Synopsys assigns to each model pin (required).

package_pin_number
The physical pin number for the specified pin (required).

[C | O | I | B]
Pin type designator (optional); one of the following:
C Designates a user-configurable pin or a pin that is used by the configurable

portion of the device.
O Designates a non-configurable output pin.
I Designates a non-configurable input pin.
B Designates a non-configurable input/output pin.

Using Unsupported Devices Example
Let’s say you have a 240-pin FPGA model, but need to simulate with a 208-pin model
from the same device vendor. If a 208-pin model is not available, you can create your
own by modifying the interface file of the similar 240-pin model that you already have
in the library. First, create an interface file (.inf) by running the smartccn tool on the
existing 240-pin model as described in “Using Unsupported Devices” on page 98. The
following interface file example was created by running smartccn on the xcs30_240
model from Xilinx.

Next, edit this interface file to make it work for the 208-pin device. For details on the
.inf file syntax and editing rules, refer to “Interface File Format” on page 100. In this
example, you need to add a DEVICE line to match the device you are targeting:

DEVICE XCS30-3PQ240C s30xlpq208-4

Then assign the extra pins that you don’t need to pin numbers that don’t exist. Don’t
comment out unneeded pins, because the smartccn netlist compiler requires the number
of pins to match the model specification (240 in this case). Here, we assigned the
unneeded pins to false pin numbers of 900 and above, as shown in the following edited
version of the interface file. (Note that the ordering of pins is not significant.) The user
edits to the original .inf file in the following example are highlighted.

Edited inf file
DEVICE XCS30-3PQ240C s30xlpq208-4
MODEL xcs30_240
LIBRARY xilinx
LIBRARY simprims
PIN <symbol_pinName> <package_pinNumber> <pinType>

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

102 Synopsys, Inc. February 2001

�

where pinType is either [I]nput, [O]utput, [B]idirectional,
[C]onfigurable
PIN CCLK 155 C
PIN DIN 153 C
PIN DONE 104 C
PIN ERR_INIT 77 C
PIN HDC 56 C
PIN LDC 60 C
PIN MODE 52 I
PIN PAD2 206 C
PIN PAD3 205 C
PIN PAD4 204 C
PIN PAD5 203 C
PIN PAD6 202 C
PIN PAD7 201 C
PIN PAD8 200 C
PIN PAD9 199 C
PIN PAD10 198 C
PIN PAD11 197 C
PIN PAD12 196 C
PIN PAD13 194 C
PIN PAD14 193 C
PIN PAD15 900 C
PIN PAD16 901 C
PIN PAD17 191 C
PIN PAD18 190 C
PIN PAD19 189 C
PIN PAD20 188 C
PIN PAD21 187 C
PIN PAD22 186 C
PIN PAD23 185 C
PIN PAD24 184 C
PIN PAD25 181 C
PIN PAD26 180 C
PIN PAD27 179 C
PIN PAD28 178 C
PIN PAD29 177 C
PIN PAD30 176 C
PIN PAD31 175 C
PIN PAD32 174 C
PIN PAD33 902 C
PIN PAD34 903 C
PIN PAD35 172 C
PIN PAD36 171 C
PIN PAD37 169 C
PIN PAD38 168 C
PIN PAD39 167 C
PIN PAD40 166 C
PIN PAD41 904 C

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 103

�

PIN PAD42 165 C
PIN PAD43 164 C
PIN PAD44 163 C
PIN PAD45 162 C
PIN PAD46 161 C
PIN PAD48 159 C
PIN PAD51 152 C
PIN PAD52 151 C
PIN PAD53 150 C
PIN PAD54 149 C
PIN PAD55 148 C
PIN PAD56 147 C
PIN PAD57 146 C
PIN PAD58 145 C
PIN PAD59 144 C
PIN PAD60 905 C
PIN PAD61 906 C
PIN PAD62 907 C
PIN PAD63 142 C
PIN PAD64 141 C
PIN PAD65 139 C
PIN PAD66 138 C
PIN PAD67 137 C
PIN PAD68 136 C
PIN PAD69 135 C
PIN PAD70 134 C
PIN PAD71 133 C
PIN PAD72 132 C
PIN PAD73 129 C
PIN PAD74 128 C
PIN PAD75 127 C
PIN PAD76 126 C
PIN PAD77 125 C
PIN PAD78 124 C
PIN PAD79 123 C
PIN PAD80 122 C
PIN PAD81 120 C
PIN PAD82 119 C
PIN PAD83 908 C
PIN PAD84 909 C
PIN PAD85 117 C
PIN PAD86 116 C
PIN PAD87 115 C
PIN PAD88 114 C
PIN PAD89 113 C
PIN PAD90 112 C
PIN PAD91 111 C
PIN PAD92 910 C
PIN PAD93 110 C

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

104 Synopsys, Inc. February 2001

�

PIN PAD94 109 C
PIN PAD96 107 C
PIN PAD98 101 C
PIN PAD99 100 C
PIN PAD100 99 C
PIN PAD101 98 C
PIN PAD102 97 C
PIN PAD103 96 C
PIN PAD104 95 C
PIN PAD105 94 C
PIN PAD106 93 C
PIN PAD107 92 C
PIN PAD108 911 C
PIN PAD109 90 C
PIN PAD110 89 C
PIN PAD111 88 C
PIN PAD112 87 C
PIN PAD113 912 C
PIN PAD114 913 C
PIN PAD115 85 C
PIN PAD116 84 C
PIN PAD117 83 C
PIN PAD118 82 C
PIN PAD119 81 C
PIN PAD120 80 C
PIN PAD122 76 C
PIN PAD123 75 C
PIN PAD124 74 C
PIN PAD125 914 C
PIN PAD126 915 C
PIN PAD127 73 C
PIN PAD128 72 C
PIN PAD129 70 C
PIN PAD130 69 C
PIN PAD131 68 C
PIN PAD132 67 C
PIN PAD133 916 C
PIN PAD134 65 C
PIN PAD135 64 C
PIN PAD136 63 C
PIN PAD137 62 C
PIN PAD138 61 C
PIN PAD140 59 C
PIN PAD141 58 C
PIN PAD142 57 C
PIN PAD146 48 C
PIN PAD147 47 C
PIN PAD148 46 C
PIN PAD149 45 C

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 105

�

PIN PAD150 44 C
PIN PAD151 43 C
PIN PAD152 42 C
PIN PAD153 41 C
PIN PAD154 40 C
PIN PAD155 39 C
PIN PAD156 917 C
PIN PAD157 37 C
PIN PAD158 36 C
PIN PAD159 35 C
PIN PAD160 34 C
PIN PAD161 918 C
PIN PAD162 919 C
PIN PAD163 32 C
PIN PAD164 31 C
PIN PAD165 30 C
PIN PAD166 29 C
PIN PAD167 28 C
PIN PAD168 27 C
PIN PAD169 24 C
PIN PAD170 23 C
PIN PAD171 22 C
PIN PAD172 21 C
PIN PAD173 20 C
PIN PAD174 19 C
PIN PAD175 920 C
PIN PAD176 921 C
PIN PAD177 17 C
PIN PAD179 15 C
PIN PAD180 14 C
PIN PAD181 922 C
PIN PAD182 12 C
PIN PAD183 11 C
PIN PAD184 10 C
PIN PAD185 9 C
PIN PAD186 8 C
PIN PAD189 5 C
PIN PAD190 4 C
PIN PAD191 3 C
PIN PGCK1 2 C
PIN PGCK2 55 C
PIN PGCK3 108 C
PIN PGCK4 160 C
PIN PROGRAM 106 I
PIN SGCK1 207 C
PIN SGCK2 49 C
PIN SGCK3 102 C
PIN SGCK4_DOUT 54 C
PIN TCK 7 C

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

106 Synopsys, Inc. February 2001

�

PIN TDI 6 C
PIN TDO 157 O
PIN TMS 16 C
END

With this edited version of the interface file, you can now use the smartccn tool to
generate a new compiled configuration netlist file to use to simulate the 208-pin model,
as explained in “Using Unsupported Devices Example” on page 101.

Browsing Your Design Using SmartBrowser
There are two different tools that you can use to browse your programmable logic
design:

● Visual SmartBrowser (VSB)—a GUI tool that is documented in the Visual
SmartBrowser User’s Manual (UNIX version or NT version).

● SmartBrowser—a command-line tool that is documented in the following sections
of this manual.

You can use either tool to read a compiled configuration netlist (.ccn) file and:

● Follow connectivity between all circuit objects

● List circuit objects

● Examine specific circuit objects

● Modify and save circuit properties

● Create window and monitor definitions

● Map illegal characters to valid strings

● Run command files and save log files

You might choose to use one tool or the other based on your preference for command-
line tools like the SmartBrowser that can be used in batch mode with shell scripts or
GUI tools like VSB that provide a more intuitive interface and superior visual display of
design netlist information. You might also opt to issue SmartBrowser commands
interactively in your simulator session, as described next, rather than using one of the
browsing tools in a separate window.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 107

�

Issuing SmartBrowser Commands Interactively
Most SmartBrowser commands can be issued through the SWIFT command channel.
The command channel is a handy way to issue SmartBrowser commands interactively
during your simulator session to any SmartCircuit model instance in your design. When
you use the command channel you don’t have to open a separate window and search for
your design netlist before returning to your main task of probing and verifying a design
in a simulator session. The ability to interact directly with any SmartCircuit model in
your design is the primary reason to use the command channel rather than running
SmartBrowser commands in a separate shell session. For general information on the
command channel, refer to the Simulator Configuration Guide for Synopsys Models.
The SmartBrowser commands, themselves, are documented in “SmartBrowser
Command Reference” on page 111.

Note�
Not all SmartBrowser commands can be issued through the command
channel. For details on which commands are available for use with the
command channel, refer to “SmartBrowser Command Reference” on
page 111.

Using the SmartBrowser Tool in Standalone Mode
To invoke the SmartBrowser tool you need to specify the CCN file for the model that
you want to examine. In addition, you can specify several other command switches that
allow you to save a log file, run a command or log file in either interactive or batch
mode, or view the SmartBrowser help file.

When you invoke the SmartBrowser tool, it looks in your home directory for an
initialization file called .smartbrowse_rc and executes any commands in that file before
doing anything else. The initialization file is an ASCII file that you create containing
any SmartBrowser commands that you want to run. Initialization files are not required,
but they are useful for tasks that you want performed each time you invoke the tool,
such as defining command aliases.

For NT, invoke the SmartBrowser tool using the console command line. For more
information, refer to “Running Console Applications on NT Platforms” on page 44.

Syntax
smartbrowse ccn_filename [-b] [-l log_file] [-m model_name] [-r run_file]

[-re log_file] [-help]

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

108 Synopsys, Inc. February 2001

�

Note�
The ccn_filename must be the first argument on the command line, but
switches can appear in any order.

Argument
ccn_filename Use this required argument to specify the name of the

compiled configuration netlist (.ccn) for the model.

Switches
-b Starts the SmartBrowser tool in batch mode. Use this

switch in conjunction with the -l, -r, and -re switches.
When you invoke the SmartBrowser tool in batch
mode, the tool runs silently and never enters interactive
mode. Batch mode enables you to use the
SmartBrowser tool in shell scripts.

-l log_file Causes the SmartBrowser tool to write out a transcript
of the SmartBrowser session to a file with the name
specified by the log_file argument. You can also
generate a log file by using the interactive log
command.

-m model_name Specifies the name of the model; required if the CCN
file is in an old format, or if the SmartBrowser tool is
invoked without the ccn_filename argument.

-r run_file Causes the SmartBrowser tool to run the specified file
before entering interactive mode. If you use this switch
with the -b switch, the SmartBrowser tool will not enter
interactive mode. All SmartBrowser interactive
commands are legal in this file. Commands run in
silent mode and are not echoed on the screen. To echo
the commands, use the interactive run command.

-re log_file Executes a log file before the tool enters interactive
mode. As with the -r switch, if you also use the -b
switch, the SmartBrowser tool will not enter interactive
mode. All SmartBrowser interactive commands are

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 109

�

legal in this file. Commands run in silent mode and are
not echoed on the screen. To echo the commands, use
the interactive rerun command.

A log file differs from a run file, which you use with
the -r switch, in that the log file contains output results
in addition to commands and comments; a run file
contains only commands and comments. In the log
file, the executable commands are placed in square
brackets (for example, [list nets]). When you run the
log file using the -re switch only the commands in
brackets are executed.

-help Displays a help message for the SmartBrowser tool.
You can also specify just -h, -he, or -hel and get the
same output.

Using the SmartBrowser Tool to Create a Windows
Definition File

One way to create a windows definition file is to use the interactive SmartBrowser
commands “assign window” and “save mcf”.

As when manually creating the windows definition file, you use the SmartBrowser list
command to find the names of the elements you want windowed. Assign windows to
the selected items, then use the “save mcf” command to save your definitions to a file.
This file is subsequently referred to by a “do” command in the MCF file.

This section summarizes the SmartBrowser interactive commands that you can use for
developing a windows definition file.

Regular assignments:

assign window name(s) [= bus_name]
assign window > bus_name
assign window instance

For AutoWindows:

set bus bitOrder big | little
set bus delimiter [postfix_char]
assign window auto # Find all window elements for current scope

Listing and saving all defined windows:

list mcf # List all defined windows, monitors, and buses
set saveMcf noClobber | append | overwrite
save mcf # Save all window, monitor, and bus definitions

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

110 Synopsys, Inc. February 2001

�

The following SmartBrowser command creates three net windows definitions, one for
each of the specified nets.

assign window net N4 N6 N8

Alternatively, you could use the following “assign window” command to bus the three
nets together into a window element called foobus.

assign window net N4 N6 N8 = foobus

The next command illustrates how to create a bus and assign a window to a net that has
a name containing illegal characters.

assign window state /DFF/STATE = fooState

Another way to create buses is to use the AutoWindows feature, as shown in the
following example.

set bus bitOrder little # Set bus to little endian
set bus delimiter [] # Bus numbering is between []s
assign window net data[0] > databus

This set of commands finds all nets of the form data[#] (with data[0] as the most
significant) and buses them together to form a window element called databus.

Using SmartBrowser Commands
The SmartBrowser tool recognizes a large set of commands, all of which are described
in “SmartBrowser Command Reference” on page 111. To make the command set easier
to work with, the SmartBrowser tool supports abbreviation, aliasing, and automatic
completion of interactive commands.

Scope of Commands
The output produced by many of the SmartBrowser commands depends on the amount
of your design that is visible to the command; this view is referred to as the scope. Your
current location is the current scope. As you traverse through a design, your current
scope changes, as does the information that is displayed by commands.

At the top level of a design, the scope encompasses the entire design. As you travel
deeper into the design, the scope becomes more and more focused. Some commands
can traverse a design and produce reports that contain information outside the current
scope, while other commands are limited to seeing only what is in the current scope.

Abbreviating Interactive Commands
You can abbreviate any interactive command, using the shortest string that uniquely
identifies the command. In most cases that equals the first two characters of the
command. For example, you can abbreviate the command “set scope” to “se sc”.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 111

�

Note�
When using the SWIFT command channel to issue a SmartBrowser trace
command, you must abbreviate the command to “tr”.

Command Aliasing
The SmartBrowser tool supports command aliasing, which is similar to the command
aliasing capability in UNIX. Aliasing enables you to provide shortcut names for
SmartBrowser commands, combine multiple commands into a single alias name, define
switch names for command keywords, and rename commands so that they are easier to
remember.

Command Completion
Many of the SmartBrowser interactive commands require that you supply one or more
keywords with the command, as well as an argument that identifies the element you
want to work with. If you do not supply all the necessary keywords, or the argument,
the SmartBrowser tool prompts you for the missing information. If you want to clear
the command, press the Return key until you get the SmartBrowser command prompt
back.

Command completion is particularly helpful if you cannot remember a command's
syntax or if you type the command incorrectly. Note that command completion is
disabled when using the SWIFT command channel.

SmartBrowser Command Reference
The following lists provide brief descriptions of the SmartBrowser commands. These
commands enable you to:

● Obtain lists of design elements

● View, examine, and analyze designs, hierarchies, or cells

● Establish environment settings

● Save designs

● Perform other tasks related to your design

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

112 Synopsys, Inc. February 2001

�

Although the SmartBrowser tool supports more than 60 commands, many of them are
variations on a single command. For that reason, and to make the command set easier to
understand, the command descriptions are divided into the following groups:

● “Analyze Commands” on page 112

● “Assign Commands” on page 112

● “Examine Commands” on page 113

● “List Commands” on page 114

● “Set and Show Commands” on page 115

● “Trace Commands” on page 116

● “General Commands” on page 118

Most of the SmartBrowser commands can also be issued through the SWIFT command
channel, as noted on the following pages.

Analyze Commands
The following analyze commands can also be issued through the SWIFT command
channel.

analyze cell cell_class
Analyzes the specified cell for circuit errors.

analyze design
Traverses a design hierarchy and performs an analyze cell function on every
user-defined cell.

analyze hierarchy [max_level]
Displays the instance hierarchy of the current instance scope and down. The
max_level parameter specifies how many levels of hierarchy to trace.

Assign Commands
The following assign commands can also be used issued through the SWIFT command
channel, except the assign timing command

assign monitor instance name
Assigns a monitor to all nets attached to the specified instance.

assign monitor net name1 . . . nameN [= bus_name]
Defines a monitor definition for the specified net. The optional = bus_name
parameter lets you bus the specified elements together.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 113

�

assign monitor net name > bus_name
Defines a monitor for the specified net, looks for all elements related to the
specified net, and buses the found elements together.

assign monitor state name1 . . . nameN [= bus_name]
Defines a monitor definition for the specified state. The optional = bus_name
parameter lets you bus the specified elements together.

assign monitor state name > bus_name
Defines a monitor for the specified state, looks for all elements related to the
specified state, and buses the found elements together.

assign timing timing_label [port_name] min_val [typ_val max_val]
Modifies the min, typ, and max values of the specified timing label. If the timing
label is port specific, you must specify the port name. If only the min_val is
specified, then all values are set to min_val. Note that this command cannot be
issued through the SWIFT command channel.

assign window auto
Automatically windows all nets in the current scope and all SCV states.

assign window instance name
Assigns a window to all nets attached to the specified instance.

assign window net name1 . . . nameN [= bus_name]
Defines a window definition for the specified net. The optional = bus_name
parameter lets you bus the specified elements together.

assign window net name > bus_name
Defines a window for the specified net, looks for all related elements that could be
buses to the specified net, and buses the found elements together.

assign window state name1 . . . nameN [= bus_name]
Defines a window definition for the specified net. The optional = bus_name
parameter lets you bus the specified elements together.

assign window state name > bus_name
Defines a window for the specified net, looks for all related elements that could be
buses to the specified net, and buses the found elements together.

Examine Commands
The following examine commands can also be issued through the SWIFT command
channel.

examine instance instance_name
Displays detailed information about the specified instance and all instance-specific
data.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

114 Synopsys, Inc. February 2001

�

examine net net_name
Displays details about the specified net.

examine port port_name
Displays details about the specified port attached to the current cell scope.

examine state state_name
Displays details about the specified state attached to the current cell scope.

examine timing timing_label [port_name]
Displays details about the specified timing label. If the timing label is port-
specific, you must also include the port name.

List Commands
The following list commands can also be issued through the SWIFT command channel.

list all
Lists all instance, net, port, and state names and timing labels in the current cell
scope.

list cells scvCells | userCells
Lists all vendor or user cell class names in a design.

list instances [match_string]
Lists all instance names defined in the current cell scope. The list can be
constrained to only those instance names that match the match_string.

list mcf
Lists all monitors and windows defined during the current interactive session.

list nets [match_string]
Lists all net names defined in the current cell scope. The list can be constrained to
only those net names that match the match_string.

list pinInterface
Lists all package pins and describes how those pins connect to the symbol pins and
design ports.

list ports [match_string]
Lists all port names attached to the current cell scope. The list can be constrained
to only those port names that match the match_string.

list states [match_string]
Lists all state names in an SCV cell of an instance hierarchy in the current cell
scope and below. The list can be constrained to only those state names that match
the match_string.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 115

�

list timing
Lists all timing labels defined in the current cell scope.

Set and Show Commands
The following set and show commands can also be issued through the SWIFT command
channel, except as noted.

set bus bitOrder big | little
Sets autoWindows bit order to big endian or little endian. The default is little
endian.

show bus bitOrder
Displays the current bus bit ordering.

set bus delimiter prefix [postfix]
Defines the autowindows bus index delimiter. The default delimiter is square
brackets ([and]).

show bus delimiter
Displays the current bus delimiter.

set help completion on | off
Toggles the interactive help completion capability. The default is on. (Cannot be
issued through the SWIFT command channel.)

show help completion
Displays the current help completion setting. (Cannot be issued through the
SWIFT command channel.)

set illegalchars character
Allows you to specify characters that may be illegal in their simulation
environment. Replaces illegal characters with underscore characters (_).

show illegalchars
Displays the current illegal character settings.

show saveMcf
Displays the current setting for the “save mcf” file writing mode.

set listAll
Configures the default list command to list all elements.

set saveMcf noClobber | append | overwrite
Sets the writing mode for the “save mcf” command. The default mode is
noClobber, which prevents an existing MCF file from being overwritten.
Overwrite mode will create a new file, replacing an existing one by the same name.
Append mode adds lines to the end of an existing MCF file.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

116 Synopsys, Inc. February 2001

�

set scope instance_scope_name
Enters the specified cell instance scope. The instance_scope_name argument may
be either an absolute or a relative scope path. Use double dots (..) to enter the
parent instance scope. The default scope is the top level of your design.

show scope
Displays the current instance scope level and path. Also displays information
about the number of nets, ports, and instances.

set timing range min | typ | max
Establishes the timing range used for viewing instance-specific timing values. The
default timing range is “min”. (Cannot be issued through the SWIFT command
channel.)

show timing range
Displays the current timing range setting. (Cannot be issued through the SWIFT
command channel.)

set timing unit ps | ns | us | ms
Establishes the unit value used when viewing or modifying timing values. The
default unit values is ps (picoseconds).

show timing unit
Displays the current value of the timing unit setting.

show doc
Displays all documentation for the current cell scope.

show version
Displays the version of the SmartBrowser tool.

Trace Commands
The following trace commands can also be issued through the SWIFT command
channel. When used this way, SmartBrowser trace commands must be shortened to “tr”
to prevent them from being misinterpreted as standard SmartModel command channel
trace commands.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 117

�

trace fin instance_name [max_level]
Traces and displays a connection tree of all inputs to the specified instance cell
scope. The max_level parameter specifies how many levels of logic to trace.
Here’s an annotated example for a trace fin command issued for the TSBUF2
instance shown in Figure 12.

In this example. the input port “IN” of TSBUF2 is connected to net “N8”.

TSBUF2 (TRI) in: IN net: N8

The previous net “N8” is connected to the output “Q” of the DFF instance,
which is driven by the “D” input. The “D” input is connected to the net “N5”.

This notation (|<) indicates that the signal is connected to the net on the
previous level of hierarchy.

|<- DFF (DFF) out: Q in: D net: N5
| |<- BUF3 (AND1) out: &1 in: &2 net: A2
| | |<< <A2>
|<- DFF (DFF) out: Q in: CLK net: N6
| |<- BUF4 (AND1) out: &1 in: &2 net: CLK
| | |<< <CLK>
|<- DFF (DFF) out: Q in: CLRN net: VCC
|<- DFF (DFF) out: Q in: PRN net: VCC TSBUF2 (TRI) in: OE net: N3
|<- BUF1 (AND1) out: &1 in: &2 net: OE
| |<< <OE>

trace fout instance_name [max_level]
Traces and displays a connection tree of all outputs from the specified instance cell
scope. The max_level parameter specifies how many levels of logic to trace.

trace instances instance | net | port name
Reports all instances attached to the specified instance, net, or port.

trace nets instance | net | port name
Reports all nets attached to the specified instance, net, or port.

trace objs name
Traces all objects connected to the specified element, which may be an instance,
net, or port.

trace pkgPin package_pin_name
Traces the package_pin_name to the related symbol in design port names.

trace ports instance | net | port name
Reports all ports attached to the specified instance, net, or port.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

118 Synopsys, Inc. February 2001

�

trace scvInstances instance | net | port name
Traces through the instance hierarchy until encountering an SCV cell, ultimately
reporting all SCV cell instances connected to the specified element.

trace symbolPin symbol_pin_name
Traces the symbol_pin_name to the related package pin name and design port
names.

trace topNet instance | net | port name
Finds the highest scope level net attached to the specified element.

General Commands
The following general commands can also be issued through the SWIFT command
channel, except as noted.

alias alias_name command1 . . . commandN
Defines the specified alias_name for a command or list of commands.

unalias alias_name
Undefines the specified alias_name.

log log_file
Creates the specified log file. If another log file is open, the command closes that
log file and then creates the new log file.

quit
Exits the SmartBrowser tool. (Cannot be issued through the SWIFT command
channel.)

rerun log_file
Runs the specified log_file as though it is a command file, executing only
statements within brackets (for example, [command]).

run run_file
Runs the specified SmartBrowser run_file.

save design file_name
Saves the current design, using the specified file_name. (Cannot be issued through
the SWIFT command channel.)

save mcf file_name
Saves all monitors, windows, and buses defined during the current interactive
session, using the specified file_name. You can use he “set saveMcf” command to
configure the writing mode when saving to a file that already exists.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 119

�

Model Command File (MCF) Reference
The primary function of an MCF file is to specify that the model load a compiled
configuration netlist (CCN) or compile a source netlist. You can also use MCF files to
include other command files, define bus names, and specify timing ranges. Files that
you might want to include in the MCF are ones that perform basic tasks. For example,
you can use an MCF file to include a standard setup file that creates monitors and
windows for a specific family of devices. You can also use the MCF to maintain
window element definitions either directly or by calling external files using the “do”
command.

Additional MCF commands are available with the analysis tools; these commands
report event causes and effects, monitor design elements, and define monitor report
labels. A minimum MCF for a SmartCircuit model contains a load command, as shown
below:

load -source filename

where filename is the name of the CCN file to be generated by smartccn.

The value of the SWIFT SCFFile parameter in your model instantiation determines the
MCF file that a model reads at startup. To ensure that the model reads the correct MCF
file, you can either edit the value of the SCFFile parameter to point to the appropriate
MCF file for this model, or name the MCF file to match the current value of the SCFFile
parameter.

Hint�
When you use multiple configurable devices in a design, it is best to use
MCF file names that are keyed to the model instance names. For example,
the file name xc3030_u21.mcf uses both the model name and an instance
specifier.

MCF Command Descriptions
Following are descriptions of the commands that you can use in an MCF file.

bus Command
bus bus_name name1 [name2 . . namen]

Defines a bus alias for specified nets, states, external ports, or previously defined buses.
Useful only with SmartModel Windows, SmartCircuit Monitors, and Causal Tracing
reports.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

120 Synopsys, Inc. February 2001

�

bus_name
The name of the bus alias.

name1
The name of a net, state, external port, or previously defined bus that is to be
mapped to the bus_name alias. You must provide at least one name.

name2 . . namen
Optional additional names to be mapped to the bus_name alias.

The bus command must appear in the MCF file after the load command. In addition,
you must define a bus name before you can use that bus name in another command.

do Command
do filename

Executes the file specified by filename. A do command can appear anywhere in an
MCF file.

filename
The name of a script file to be executed by the model.

echo Command
echo string

Echoes the specified string to the simulation session transcript. An echo command can
appear anywhere in an MCF file.

string
The string to be echoed to the simulation transcript window.

help Command
help

Displays a help message for the MCF file.

load Command
load [-source] filename [-nocheck] [-scale factor] [smartcnn switches]

Loads either a compiled configuration netlist (CCN) file (if the -source switch is not
used) or a design source file (if the -source switch is used). The load command must
appear in the MCF file after the set range command. You can specify the -source, the
-nocheck, and the -scale switches on the same command line.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 121

�

-source
Indicates that the model is to invoke smartccn to compile the design source file
specified by filename and generate a CCN file, if necessary. The load command
supplies the smartccn compiler with the necessary model component and instance
information. If a CCN file of the specified name already exists, the load -source
command compares the date/time stamps of the source files against the date/time
stamp of the CCN. The load -source command automatically recompiles the CCN
for the model if one of the component files is newer than the existing CCN. No
CCN compilation occurs if all files are up to date.

filename
Specifies the name of the CCN file to be loaded; or, if load is invoked with the
-source switch, the name of the design source file to be compiled. The specified
filename can include either an absolute or a relative path, though your simulator
environment may restrict or limit the use of relative path names.

-nocheck
Disables reporting of timing constraint violations.

Hint�
Compiling large JEDEC-based CPLD models can take a long time. If
simulation initialization performance is important, compile the model
separately, before simulating. Then use the load design.ccn command in
your MCF file to picked up the compiled netlist.

-scale factor
Indicates that all timing values loaded from the CCN are to be multiplied by factor,
which must be a positive, nonzero number. The -scale switch must follow -source
and filename.

smartccn switches
Various smartccn compiler switches. The [smartccn switches] option allows you to
specify command switches for the smartccn compiler.

set range Command
set range min | typ | max

Specifies the timing range (min, typ, or max) to be used from the CCN. The default
value is set by the SWIFT DelayRange parameter from the model instantiation in the
simulator environment. The set range command must appear in an MCF file before the
load command. Using this command overrides the value set with DelayRange
parameter.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

122 Synopsys, Inc. February 2001

�

window Command
window name1 [name2 . . . namen]

Defines SmartModel Windows for specified nets, states, or bus aliases.

name1
The name of a net, state, or bus alias for which a window is to be created.
You must provide at least one name.

name2 . . . namen
Optional additional nets, states, or bus aliases for which windows are to be
created.

You can define windows for a design element from within the MCF file, either by
placing the window command directly in the MCF (in which case it must be placed after
the load command) or by creating a windows definition file and using the “do”
command to include the file in your MCF.

Note�
When you assign a window to an external I/O port, or to any net connected
directly to an external I/O port, the window is placed on the input side of the
port so that it can report the value being driven into the model. You cannot
window the value driven out of an external I/O port.

On input or I/O ports that have special attributes (for example, pull-up resistors), the
window command reports the resolved value of the simulator's input and the model's
input pin attribute.

smartccn Command Reference
Before you can use a SmartCircuit model in a simulation, you must have a compiled
configuration netlist (CCN). You can generate a CCN in two different ways:

● Use the load -source command in the model command file (MCF). This causes the
model to automatically generate the CCN as needed.

● Run the SmartCircuit netlist compiler (smartccn) and then load the CCN using the
load command in the MCF.

In most cases you should generate a CCN using the MCF rather than explicitly
executing smartccn.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 123

�

Note�
Refer to the model datasheets for detailed information on configuring
individual SmartCircuit models. For information on finding model
datasheets using the sl_browser tool, refer to “SmartModel Datasheets” on
page 25.

The smartccn tool translates a design netlist or JEDEC file, which describes the model's
configuration, into a binary format that the SmartCircuit model understands.

During the compilation process, smartccn searches for the files it needs to create a CCN.
The compiler also checks to see if a CCN already exists. If you invoke smartccn with
the load -source command in the MCF, or if you invoke the tool in standalone mode
with the -t switch, it compares the date and time stamps of the component files against
the date and time stamp of the CCN. If one of the component files is newer than the
existing CCN, smartccn automatically recompiles the CCN.

Like the models, some SmartModel tools can exist in the library in multiple versions.
One such tool is smartccn. The correct version of smartccn to use is controlled by the
model. You select only the model version. The version of smartccn is automatically
determined based on the model version in effect when you invoke the tool. For
information on selecting a model version, refer to “Selecting Models in $LMC_HOME”
on page 44.

Syntax
Run the smartccn tool from the command line as shown in the following example. Be
sure to enter the command, the required arguments, and any optional switches on a
single line.

% smartccn -m model_name source_file [-switches]

Arguments
model_name Specifies the model name for which you are compiling

a netlist or JEDEC file.

source_file Specifies the name of the netlist or JEDEC source file
that smartccn is to read. Device manufacturers and
some third-party vendors supply tools to produce
netlists that are back-annotated for pin-package and
timing information. Refer to the model datasheets to
determine the source_file formats required by
individual SmartCircuit models.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

124 Synopsys, Inc. February 2001

�

Switches
-m model_name Specifies the name of the model to be used to simulate

the netlist. The model must correspond to the targeted
device in the netlist or, for JEDEC models, the device
identified using the -c option.

-c comp_name This switch is required for JEDEC models but has no
effect for other model types. Use this switch to specify
the name of the component to be used.

-g Use this switch if you want the tool to generate an
interface file named model.inf. You use an interface
file to map new devices into an existing model.

-h Specify this switch for help using the smartccn tool.

-i interface_file Use this switch if you want smartccn to extract
netlist-to-model mapping information from the
specified interface file, rather than directly from the
model.

-n instance_name This switch can be used for JEDEC models only. It has
no effect for other model types. You use this switch to
specify that the .td timing data file for that model
instance_name has been modified for use when
compiling JEDEC files.

-o output_file Causes smartccn to produce a CCN file named
output_file rather than one named source_file.ccn.

-p Causes smartccn to suppress generation of a CCN file
and just create a pin map cross-reference file named
source_file.pmp.

-q Causes smartccn to suppress the generation of
informational messages (but not warnings and errors).

-t Causes smartccn to examine the time and date stamps
of all component files and recompile the design if the
existing CCN file is older.

-u timing_file This switch can be used only for JEDEC models. It has
no effect on other model types. You use this switch to
specify use of an alternate .tf timing file.

-v Returns the version of smartccn.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 125

�

CCN Output Files
During the translation process, smartccn produces a compiled configuration netlist
(CCN) file. By default, the CCN file has the same name as the netlist or JEDEC file that
smartccn reads, but with the extension .ccn.

When you use the default file name extensions for your netlist or JEDEC file, smartccn
replaces the extension with .ccn; but, when you use file name extensions other than the
default, smartccn appends .ccn to the name you specified. The compiler places the
output CCN file in the same directory as the netlist source file.

You can use the -o switch to specify an output CCN file name other than the default
(file.ccn). This can be useful when you want to use a netlist or JEDEC file with a
nondefault file name extension, but you want the CCN file to use the standard naming
convention. The following example shows how to use the -o switch to produce a CCN
file with a different name:

% smartccn sample.edo -m model_name -o sample2.ccn

ccn_report Command Reference
You can use the ccn_report tool to generate model reports based on information in the
model’s CCN file. To generate a report on a particular model, enter the model file name
on the command line after the ccn_report invocation. You can optionally specify
different switches depending on the information you need. Here is the syntax for using
the ccn_report tool.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

126 Synopsys, Inc. February 2001

�

Syntax
ccn_report ccn_filename { -A1 window_filename

| -A2 window_filename
| -A3 window_filename
| -A4 window_filename
| -h
| -i illegal_chars
| -m model_name
| -nr
| -p pinmap_filename
| -r replacement_char
| -v

[-n]
[-mn module_name]
[-o verilog_filename]
[-w window_filename]
[-y verilog_path]

| -vl
[-n]
[-o symbol_filename] } output_filename

Argument
The ccn_report tool takes one required argument, as follows.

ccn_filename Specifies the name of the CCN file to be used to
generate the report.

output_filename Specifies the name of the output file for the report.

Switches
There are many switches that you can optionally specify, as follows.

-A1 window_file Uses the AutoWindows feature to generate a windows
definition file with the specified name, using square
brackets ([]) as the bus index delimiters.

-A2 window_file Uses the AutoWindows feature to generate a windows
definition file with the specified name, using angle
brackets (<>) as the bus index delimiters.

-A3 window_file Uses the AutoWindows feature to generate a windows
definition file with the specified name, using
parentheses (()) as the bus index delimiters.

SmartModel Library User’s Manual Chapter 6: SmartCircuit FPGA Models

February 2001 Synopsys, Inc. 127

�

-A4 window_file Uses the AutoWindows feature to generate a windows
definition file with the specified name, using trailing
numbers as the bus index delimiters.

-h Invokes the ccn_report help message.

-i illegal_chars Defines the set of characters to be replaced during
AutoWindows generation. The default illegal character
is the slash (/).

-m model_name Specifies the name of the model. This is required if the
CCN file is in an old format, or if ccn_report is invoked
without the ccn_filename argument.

-nr Directs ccn_report to not replace any illegal characters.
Overrides the -i switch.

-p pinmap_file Directs ccn_report to produce a pin map file with the
specified name.

-r replacement_char Specifies a character to be used to replace illegal
characters. The default is the underscore (_).

-v Directs ccn_report to create a Verilog-XL module file.

-n Renames the default port names to the design port
names. This switch is used only with the -v and -vl
switches.

-mn module_name Renames the generated Verilog-XL module name to the
specified name. This switch is used only with the -v
switch.

-o verilog_filename Renames the ccn_report output file to the specified
name. This switch is used only with the -v switch.

-w window_filename Directs ccn_report to generate a modified model.v file
that contains the AutoWindows definitions. This
switch is used only with the -v switch.

-y verilog_path The path name to the model.v file. Allowed values are
$LMC_HOME/special/cds/verilog/historic and
$LMC_HOME/special/cds/verilog/swift (the default).
This switch is used only with the -v switch.

-vl Directs ccn_report to create a ViewLogic symbol file.

-n Renames the default port names to the design port
names. This switch is used only with the -v and -vl
switches.

Chapter 6: SmartCircuit FPGA Models SmartModel Library User’s Manual

128 Synopsys, Inc. February 2001

�

-o symbol_filename Renames the ccn_report output file to the specified
name. This switch is used only with the -v and -vl
switches.

AutoWindows
Using a feature known as AutoWindows, ccn_report can automatically generate a
SmartModel Windows definition file. You use AutoWindows by specifying one of the
ccn_report options (-A1 through -A4). You can then include the resulting definition file
in a model command file (MCF) using the “do” MCF command. An AutoWindows
report lists all nets and states found in the design and then buses together any signals that
follow the bus index delimiter rule selected by one of the -A1 through -A4 options.

When you recompile your design using your vendor tools, you must ensure that your
windows definitions correspond to the elements in your new compiled configuration
netlist (CCN file).

Note�
Windowing all of your design elements using AutoWindows significantly
degrades simulator performance. For information on more efficient ways to
monitor individual design elements, refer to “Viewing Internal Nodes
During Simulation” on page 95.

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 129

�

7
Processor Models

Configuring Processor Models
There are two basic types of processor models: full-functional and bus-functional.
Full-functional models (FFMs) execute instructions loaded in the memory models
within the design being simulated. Bus-functional models (BFMs) execute commands
from an external source. A further distinction is that there are two different technologies
used to develop BFMs. One is Hardware Verification (HV) models, which you control
using an external program written in Processor Control Language (PCL). The other is
FlexModels, which you can control using VHDL, Verilog, or C. BFMs represent device
behavior by simulating bus cycles, rather than by executing assembly language
instructions. Figure 14 illustrates the data flow for configuring FFM and HV processor
models. For information on using FlexModels, refer to the FlexModel User’s Manual.

Figure 14: Data Flow for Processor Models

PCL
Program

HV Model
Command

PCL
Compiler Output

HV
Processor

Model

PCL
Compiler

FFM
Processor

Model

Chapter 7: Processor Models SmartModel Library User’s Manual

130 Synopsys, Inc. February 2001

�

FFMs read programs stored in memory models, whereas HV models read compiled PCL
files. Both types of processor models are useful for developing, debugging, and
optimizing digital systems at different stages of the development cycle. During early
development phases, when change is frequent and turnaround time critical, HV models
are particularly useful because they are easy to use and run faster in simulation. An HV
model’s ability to verify proper handling of any combination of bus cycles is especially
convenient. Towards the end of a design cycle, when a hardware design is more stable
or the software must be verified, FFMs (or a hardware modeler) are essential. Table 9
compares the features of FFM and HV models.

Simulating with HV Models
HV models are easy to use when debugging a hardware design. For example, if you
wanted to run a simulation to verify a processor/memory interface with a Motorola
MC68020 using an HV model, you would follow these steps:

1. Refer to the SmartModel datasheet for details about the PCL commands supported
by the mc68020 model and write a PCL program to exercise the model functions
that you want to verify in your design.

Table 9: Comparison of HV and Full-Functional Processor Models

Model Feature
Hardware

Verification Full-Functional

Correct timing Yes Yes

Functionally correct pin
behavior

Yes Yes

Functionally correct bus
behavior

Yes Yes

Correct simulation of
response to external
interrupts

Yes Yes

Full bus functionality
(requests and grants)

Yes Yes

High-level commands
read from PCL file and
executed

Yes No

Machine code instructions
fetched and executed

No Yes

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 131

�

Verifying the basic interface requires only a couple of MC68020 bus cycles to
indicate any obvious errors in the microprocessor/memory logic interface. To test
this functionality, you could write a simple PCL program that looks like this:

/* check memory infc */

#include “mc68020.cmd”
main ()
{

write (5,0x620,4,0xFFFF);
read (5,0x624,4);

}

2. Use the compile_pcl command to compile the PCL program and create the PCL
code the microprocessor model will load.

3. Run the simulation.

Hint�
Of course, you can make your PCL program as extensive as you want,
depending on your verification requirements. Check the individual model
datasheet for a PCL program sample that exercises the model’s basic
functions, including an interrupt handler. You can cut-and-paste the program
from the datasheet and then modify as needed.

PCL File Checks
When you initialize an HV model for logic simulation, the model looks for the compiled
PCL program file specified by the SWIFT PCLFile parameter for that model instance. If
the HV model cannot find the necessary PCL file, it issues a warning message.
Similarly, if you use a memory model to store a program to drive a full-functional
processor model, the memory model looks for the memory image file specified by the
SWIFT MemoryFile parameter for that model instance. After successful initialization,
the model generates a message that looks like the following example:

NOTE: Loading the PCL program from file “pclfile”.
@i80386_hv/1:TESTMODEL(#189) [I80386-12], at 0 ns

Chapter 7: Processor Models SmartModel Library User’s Manual

132 Synopsys, Inc. February 2001

�

Processor Control Language (PCL)
HV models represent system behavior by simulating external bus cycles directly rather
than simulating the internal processing that leads to the assembly language instructions.
You control the actions of an HV model by writing a PCL program that specifies how
you want the model to respond to input stimulus, including interrupts. Each HV model
supports its own set of model-specific PCL commands that implement the specific
capabilities of the modeled device. HV model datasheets provide comprehensive
information on the how to use the specific PCL commands supported by a particular
model. In addition, the code definitions for all model-specific PCL commands and
some handy defines are contained in the model's command header file (.cmd). This file
must be included in your PCL source file using the #include preprocessor statement.

In form and structure, PCL looks very much like the C programming language, but
despite the obvious similarities there are important differences. Do not assume that a
PCL program will work just like a comparable C program. PCL includes the following
features:

● A preprocessor with a limited set of directives that allows for the definition of
constants and macros, as well as the inclusion of files

● Variables and constants (data types are limited to integers, arrays of integers, and
pointers to integers)

● User-defined functions

● Program control statements, including loops and conditional logic

● Arithmetic and logical operators

Using PCL to Configure HV Models
The following procedure describes the basic steps required to configure an HV model
for logic simulation:

1. Write a PCL program that directs the HV model to perform the desired set of
operations.

2. Use the #include statement in the PCL program's Declarations section to specify the
model's command header file (model.cmd).

3. Compile your PCL source code using the compile_pcl utility.

4. Configure your model instance to use the compiled PCL program via the SWIFT
PCLfile parameter or symbol property.

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 133

�

PCL Program Structure
All PCL programs have a basic structure in common. In addition, some HV models
require specific additions to this basic structure. In these cases, the HV model’s
datasheet provides detailed information about these additional structural requirements.
This section provides information about the basic PCL program structure that is
common to all HV models.

Every PCL program must contain a function named “main”. Program execution begins
with the first statement in the main function.

Chapter 7: Processor Models SmartModel Library User’s Manual

134 Synopsys, Inc. February 2001

�

PCL Program Structure for Single-Process Models
Figure 15 shows the basic parts of a PCL program:

Figure 15: PCL Program Format Example

/* NS32532_hv PCL*/
#include <ns32532.cmd>
int i, nob, addr, temp;

main() {
trace_on();
set_trace_level(1);
int_vectored();
nob = 1;
addr = 0x89abcd00;
for(i = 0; i <= 4; i++) {
temp = read(nob, addr);
write(nob, addr, temp);
nob++;
addr = addr + 0x11111111;

}
}

interrupt(vector)
int vector;
{
switch (vector) {
case 0x0:
subroutine_bus_error();
break;
case 0x1:
subroutine_bus_fault();
break;

}
}

subroutine_bus_error()
{
idle(10);
}

subroutine_bus_fault()
{
idle(20);
}

Include Statement

Global Variables

Main Function

Interrupt Handler

Subroutine Functions

Function

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 135

�

PCL Program Structure for Multiprocess Models
Some HV models use multiple process streams that execute concurrently. PCL
programs for multiprocess models are very similar to those for single-process models.
In addition to a “main” function, multiprocess models require two or more functions
named processN (where N is the process number). Whereas single-process models have
one interrupt handler, multiprocess models may have a separate handler for each
process.

In single-process PCL programs the main function usually does the work of generating
bus cycles, while in multiprocess PCL programs, the main function is reserved for
initializing the model and handling variables. In multiprocess PCL programs the
process functions generate bus cycles.

Interrupts and Exceptions
HV models do not have built-in interrupt or exception handlers. You must write an
interrupt handler in your PCL program if you want your HV model to respond to
interrupts in simulation.

The interrupt handler function must be named either interrupt or exception. In PCL
these two function names are synonymous—one function will suffice to handle both
types of events. When an HV model detects an interrupt, it generates a vector number.
The PCL interpreter calls your interrupt handler function and passes the vector number
as the only argument.

A typical interrupt handler function consists of a switch statement that evaluates the
vector number and passes control to an appropriate case-labeled statement block, as
shown in the following example:

exception(which)
int which;
{
switch(which)

{
case 1 : printf(“Executing exception routine #1”);

break;

case 2 : /* next exception handler routine */
. . .
case n : /* last exception handler routine */

default: break;
}

}

Chapter 7: Processor Models SmartModel Library User’s Manual

136 Synopsys, Inc. February 2001

�

At the end of the exception handler function, control resumes at the interrupted
statement. Unless the model datasheet specifies otherwise, interrupt handlers may
themselves be interrupted.

The Command Header File
Each HV model supplies its own set of PCL commands to simulate the operations or
capabilities of a device. For example, most models have commands to generate various
types of bus cycles and set the amount of trace information the model displays. These
predefined commands are documented in the model's datasheet, and are also contained
in the model's command header file.

Synopsys provides a command header file (also referred to as a “.cmd file”), model.cmd,
which contains preprocessor definitions and predefined PCL commands for the model.
You must include the command header file in your PCL program using the #include
preprocessor directive; this must be the first statement in the PCL program. This allows
the program to access the model's predefined commands and preprocessor definitions

The following syntax includes the command header file and causes the PCL program to
obtain the specified file from its default location, the $LMC_HOME/models/model
directory.

#include <i80386.cmd>

The following syntax includes the command header file and causes the PCL program to
search for the file first in the local directory and then in the default location.

#include “i80386.cmd”

Note�
If you want to define additional commands not in the command header file,
you can create your own include file. The #include statement for this file
can appear anywhere in the PCL program.

Returned Values
Some model-specific PCL commands (for example, “read”) return one or more values
to the PCL program. You can use commands that return a single value in the same way
you use a function that returns an integer. You can also access a single returned value as
the first element of the predefined retval array. However, when a command returns
multiple values, you must access the values from the retval array.

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 137

�

The first value returned by a PCL command is placed in retval[0], the second in
retval[1], and so on. To save returned values for later use, you must assign them to
variables, because the retval[] array is overwritten by the next PCL command that
returns values to the program.

Accessing the First Returned Value
When a command returns one or more values, PCL uses the first returned value as the
command's exit value. Consequently, you can access the first returned value from a
command in either of two ways:

read_d (0x03, 0x12341100, WORD);
read_value = retval[0];

Or, you can use the following:

read_value = read_d (0x03, 0x12341100, WORD);

Either method is appropriate to obtain the first value. All other returned values must be
accessed through the retval[] array.

Unknown Values
In many simulation environments, an “X” or some similar character in place of a
numerical value signifies that one or more bits of the digit are unknown. PCL cannot
interpret unknown values, and so converts them to zeros without issuing any warnings
or messages. If an HV model returns an unknown value to its PCL program, errors may
occur.

The impact of this conversion of unknowns to zeros depends on the representation of the
returned integer and on a given simulator's mechanisms for handling unknowns. In the
following example, the ninth bit of a returned binary value is unknown. If this is
translated into hexadecimal by the simulator, the hexadecimal digit containing the
unknown becomes unknown, as follows:

0000 0000 0000 0000 0000 100X 0000 0001 Binary
0 0 0 0 0 X 0 1 Hexadecimal
0 0 0 0 0 0 0 1 PCL conversion

The PCL program converts the hexadecimal value of X to 0, so the number in
hexadecimal becomes 0x001. Similarly, if the simulation environment represents this
value in octal, the octal digit containing the unknown becomes unknown, as follows:

00 000 000 000 000 000 000 100 X00 000 001 Binary
0 0 0 0 0 0 0 1 X 0 1 Octal
0 0 0 0 0 0 0 1 0 0 1 PCl conversion

The PCL program converts the octal value of X to 0, so the number in octal becomes
04001.

Chapter 7: Processor Models SmartModel Library User’s Manual

138 Synopsys, Inc. February 2001

�

PCL Constructs
PCL syntactical constructs include the following:

● Identifiers

● Data types

● Variables

● Constants

● Comments

● Operators

● Expressions

● Statements

● Function definitions

Following are details on how to use each of these constructs in PCL programs.

Identifiers
In PCL, the names that reference variables, named constants, macros, and functions are
called identifiers. An identifier can be any sequence of alphanumeric characters and
underscores, but must begin with an alphabetic character. The PCL compiler is
case-sensitive; the identifiers “ABC” and “abc” are distinct.

Keywords are reserved by the PCL compiler for statements, data types, and other
elements of the language. Using a keyword as an identifier causes a syntax error;
however, note that the PCL keywords are defined to be in lower case. Table 10 lists the
PCL keywords.

Table 10: PCL Keywords

break case continue

default do else

for if int

return switch while

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 139

�

Data Types
The only valid data types in PCL are integers, arrays of integers, and pointers to
integers. All integer values are 32-bit signed numbers.

Variables
A variable is a named value that can be changed within a program. Variables must be
declared before they can be used. The general form of a variable declaration is:

int variable_list;

The three different data types (integers, integer arrays, pointers to integers) are
distinguished by the way the variable identifier is specified. A variable list is a list of
identifiers, separated by commas (,). A variable declaration statement must end with a
semicolon (;).

The following example shows how to declare three different integer variables.

int varname1, varname2, varname3;

PCL supports only one-dimensional arrays. You can declare an array by specifying a
variable identifier, followed by the size of the array in brackets ([]). The array size must
be an integer literal. All array indexes range from 0 to n-1, where n is the number of
elements. You cannot initialize array variables in the declaration. The following
example shows a variable declaration for array variables.

int array1[100], array2[10];

You can declare a pointer variable by putting an asterisk (*) before the identifier in the
declaration, as shown in the following example:

int *ptr1;

Constants
A constant is a fixed value that cannot be changed by the program. Because of its
limited data types, PCL supports only literal constants and not named constants.
However, you can still create a named constant by using the #define directive.

You can specify a literal constant in decimal, octal, or hexadecimal format. Octal
numbers begin with a “0” while hexadecimal numbers begin with “0x” or “0X.”

The following example code shows various literal constants used in a fragment of PCL
code:

if (var1 == 10)
var2 = 0x64; /* hex for 100 decimal */

else
var3 = 0144; /* octal for 100 decimal */

Chapter 7: Processor Models SmartModel Library User’s Manual

140 Synopsys, Inc. February 2001

�

Comments
Comments in PCL begin with the string /* and end with */. Spaces are not allowed
between the asterisk and slash in either of these strings. The compiler ignores any
characters between the /* and */ strings.

Comments can be placed anywhere within a program, as long as they do not break a
keyword or identifier. Nested comments (a comment containing another comment) are
not allowed.

Operators
PCL supports the integer and logical operators shown in Table 11. Logical values in
PCL are represented by integers, and so are treated as integer values by the compiler.

Table 11: PCL Operators

Operator Description

! Logical NOT

~ Bitwise complement

+ Addition

- Subtraction, negation

* Multiplication, indirection

/ Division

% Remainder

<< Left shift

>> Right shift

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal

!= Not equal

& Bitwise AND, address of

| Bitwise inclusive OR

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 141

�

^ Bitwise exclusive OR

&& Logical AND

|| Logical OR

‘ Sequential evaluation

?: Conditional

++ Increment

-- Decrement

= Assignment

+= Addition assignment

-= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Remainder assignment

>>= Right shift assignment

<<= Left shift assignment

&= Bitwise AND assignment

|= Bitwise inclusive OR
assignment

^= Bitwise exclusive OR
assignment

Table 11: PCL Operators (Continued)

Operator Description

Chapter 7: Processor Models SmartModel Library User’s Manual

142 Synopsys, Inc. February 2001

�

Operator Precedence and Associativity
Operators nearer the top of Table 12 have precedence over those placed lower in the
table. Operators that share the same precedence are placed on the same row.

Note�
Operators are evaluated from left to right, except for those in the 2nd, 13th,

and 14th rows.

Table 12: PCL Operator Precedence and Associativity

PCL Operators Associativity

() [] Left to right

++ -- - ~ ! * & + Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< > >= <= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= |= ^= >= <= Right to left

, Left to right

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 143

�

Expressions
An expression in PCL is any syntactically correct combination of operators, constants,
variables, and function calls. An expression must always evaluate to a value. Because a
constant or a variable evaluates to a value, an expression can be as simple as a single
constant.

The PCL compiler does not support the Boolean data type. In PCL logical expressions,
a value of zero equates to FALSE and any nonzero value equates to TRUE.

Typically, an expression is used as one or more elements in a PCL statement.
Expressions are most often used in assignment statements and in program control
statements to determine entry and exit conditions.

Functions
Function definitions must conform to the following syntax:

[return_type] function_name ([parameters])
parameter declarations
{

local_variable_declarations
function_code

}

You can define functions before or after they are called. The only valid return type is
int, which is also the default. Any other return type specified (for example, void, int *,
char, char *) causes the PCL compiler to generate an error message.

Parameters are optional, but the pair of parentheses following the function name is
required. Parameters are assumed to be of type int.

The printf() Function
The PCL compiler supports the built-in printf() function. The syntax is as follows:

printf (format [, data_args]);

The printf() function formats the data arguments according to the format specifications
and writes the result to the simulator as a “note” message. The function supports a
maximum of nine data arguments. PCL automatically handles declarations for this
built-in function, so there is no printf() header file to include in your PCL program.

Chapter 7: Processor Models SmartModel Library User’s Manual

144 Synopsys, Inc. February 2001

�

The format argument can contain plain characters, which printf() copies to the stream,
and conversion specifications. Each conversion specification starts with a % character
and ends with an alphabetic character determining the type of conversion. Between the
% and terminating character, you can use the two modifiers shown in Table 13.

The printf() function recognizes the argument conversion types shown in Table 14.

Each conversion specification (excluding %%) must have a corresponding argument.

Because the following example has no conversion specification, the quoted string prints
directly to the output.

printf (“Print this string”);

In the next example, the value of the exit_value variable prints as a decimal integer at
the specified point in the error message:

printf (“Error %d has occurred”, exit_value);

Table 13: Conversion Specification Modifiers

Modifier Definition

- Left-justify the argument to be converted

N Pad the field to this width (N characters)

Table 14: Argument Conversion Types

Modifier Definition

d Decimal integer

o Unsigned octal number

x Unsigned hexadecimal number

% Print a % (no conversion)

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 145

�

Preprocessor Directives
The PCL compiler includes a preprocessor, which recognizes these directives:

#define
#else
#endif
#if
#ifdef
#ifndef
#include
#undef

A preprocessor directive must be the first item on a line.

The #define and #undef Directives
The #define directive lets you define named constants and macros. Macro names can
also include arguments to be passed into the macro body and operated on. The syntax is
as follows:

#define macro_name (argument [, argument]) macro_body

Here is an example of the #define directive used for string substitution in the
i80960sx_hv hardware verification model.

#define ONE_BYTE 1

The definition lets you specify the string “ONE_BYTE” for data transfer, rather than
specifying its numerical value for the cycle type.

After a macro is defined, it retains its meaning until the end of the source file or until
you explicitly undefine it with the #undef directive. You must undefine a macro before
you can redefine it. Undefine the macro by placing an #undef directive between the two
#define directives.

The syntax for the #undef directive is as follows:

#undef macro_name

The #include Directive
The #include directive lets you include the contents of other source files into the current
source file. By using the #include directive you can place frequently used constants or
functions into smaller, more easily maintained source files and include them in your
main PCL program file only when necessary.

When used to include the command header (.cmd) file, the #include directive must be
the first statement in a PCL program. Other #include statements can be anywhere in the
file.

Chapter 7: Processor Models SmartModel Library User’s Manual

146 Synopsys, Inc. February 2001

�

The #include directive syntax has two possible forms. To instruct the preprocessor to
search for the specified file in the directory that is appropriate for your system, enclose
the file name in angle brackets (<>), as follows:

#include <filename>

To instruct the preprocessor to search for the file in the directory where the PCL source
file resides, enclose the file name in double quotes (“ ”), as follows:

#include “filename”

You must use either angle brackets or double quotes.

PCL Statement Types
In PCL, a statement is a discrete unit of programming code that conforms to the
syntactical rules for the language. A PCL statement can be one of the following types:

● Null statement

● Assignment statement

● Compound statement

● Nested statement

● Program control statement

In addition, PCL uses a special type of statement called a predefined model command
(also referred to as a model-specific command). Predefined model commands are
specific to a particular model; that is, they implement the specific capabilities of the
modeled device. For general information, see the command header file. For
information about specific predefined model commands, refer to the model's online
datasheet.

Null Statements
A null statement is an empty statement that contains no instruction or command to
execute. A null statement has no effect other than to introduce an unknown amount of
delay. You specify a null statement with a semicolon (;).

The following example shows the use of a null statement.

if (a <= b)
; /* null statement */

else
c = a * 10;

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 147

�

Assignment Statements
An assignment statement assigns a value to a variable. The syntax for an assignment
statement is as follows:

variable_identifier = expression;

Compound Statements
PCL allows the use of compound statements, which let you use a block of statements
where a single statement is expected. You can declare local variables at the beginning of
a compound statement. The syntax for a compound statement is as follows:

{
[optional local variable declarations]
[statements]

}

Nested Statements
PCL allows the use of nested statements. Nesting statements is useful for controlling
program execution flow. Anywhere the syntax indicates the use of a statement, you can
insert any valid PCL statement.

One common example is a nested if statement:

if (x == 0){
if (y == 0)

statement;}

Nested statements can get complex. The basic rule is that execution of a statement's
syntax must complete before moving to the next statement. Therefore, if you write a
nested if statement such as that shown below, the else clause belongs to the innermost if
statement, not to the outermost one.

if (x == 0){
if (y == 0)

statement;
else

statement;}

Note that if you want to isolate the second if statement and have the else clause apply to
the first if statement, you have to treat the second if statement as a compound statement,
surrounding it with braces.

Although this discussion focuses on nesting if statements, nesting of other types of
statements is just as valid and just as necessary to accomplish certain programming
tasks. Basically, PCL follows the conventions of the C programming language for
nesting statements.

Chapter 7: Processor Models SmartModel Library User’s Manual

148 Synopsys, Inc. February 2001

�

PCL Program Control Statements
PCL program control statements specify or determine the next statement in the program
to evaluate. The program control statements available in PCL are:

● break

● continue

● do

● for

● if

● return

● switch

● while

The break Statement
The break statement terminates execution of the most recent enclosing while, do, for, or
switch statement. Control passes to the first statement following the terminated while,
do, for, or switch statement.

break;

The continue Statement
The continue statement passes control to the next iteration of a do, for, or while loop.

continue;

The remaining statements in the current iteration of the loop body are not executed.

The do Statement
The do statement is a loop that executes the associated statements once, and then
evaluates an expression to determine whether to continue or exit the loop. The syntax
is:

do
statements

while (expression);

If the expression evaluates to true (a nonzero value), the loop statements are executed
again; otherwise, program flow continues to the next statement following the loop. Note
that the statements inside the body of a do loop execute at least once.

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 149

�

The for Statement
A for loop executes its associated statement the number of times specified by the entry
expressions. The syntax is:

for (init_expr; cond_expr; loop_expr)
statements;

The init_expr is generally used to set an initial value for the loop control variable. The
cond_expr is a relational expression that determines how many times the loop is
executed. The loop_expr defines how the loop control variable changes each time the
loop is repeated.

The following example shows a for loop used to initialize array element values:

for (i=0; i<=9; i++)
sample_array[i] = 0;

The if Statement
The if statement allows you to execute a block of code based on a condition. The syntax
is:

if (expression) statement1 [else statement2];

If the expression evaluates to true (a nonzero value), then statement1 executes. The
optional else clause can be used to specify a default action; that is, if the expression is
false (equal to zero), then execute statement2 rather than statement1.

The return Statement
The return statement terminates the execution of a function.

return [expression];

If specified, the value of expression is returned to the calling function. If expression is
omitted, the return value is undefined.

Chapter 7: Processor Models SmartModel Library User’s Manual

150 Synopsys, Inc. February 2001

�

The switch Statement
The switch statement is a multiple-branch decision statement. The syntax is:

switch (expression)
{

case constant1:
statements
break;

case constant2:
statements
break;

. . .
default: statements

};

The value of expression is successively checked against a list of case constants. Program
flow is transferred to the statement sequence whose case constant matches the value of
the switch expression. If no case constant is equal to the value of the switch expression,
the default statements are executed. If there is no default case, then none of the
statements in the switch body are executed.

Execution begins at the selected statement and continues until a break statement is
executed or the end of the compound statement is reached. If you do not end a case
block with a break statement, program control “falls through” to any following
statements.

There are two important rules to remember about switch statements:

● A switch statement can only test the expression for equality.

● No two case constants in the same switch statement can have identical values. You
can, however, nest switch statements.

To associate a statement sequence with more than one case constant, omit the break
statements between the case constants. The following example shows that case
constants 1 through 3 are associated with the statement sequence that immediately
follows them. Case constant 4 is associated with the statement sequence that
immediately follows it. The syntax is:

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 151

�

switch (expression)
{

case constant1:
case constant2:
case constant3:

statements
break;

case constant4:
statements
break;

default:
statements

};

The while Statement
A while loop executes its associated statements zero or more times, based on the value
of the entry expression. The syntax is:

while (expression)
statement;

If the entry expression is true (evaluates to a nonzero value), the loop is executed. If the
entry expression is false (evaluates to zero), the loop is skipped and program control
passes to the next statement following the while loop.

Debugging Designs with Trace Messages
HV models generate trace messages to help you debug PCL programs and troubleshoot
your circuit designs. Some HV models feature an adjustable detail level for trace
messages, which lets you control the number and kind of messages generated by the
model. Refer to the individual model datasheets for information on controlling message
verbosity.

Here are some sample trace messages:

Trace: PCL Cmd: trace_on().
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: enable_intr_level(0).
Level 1 and 2 interrupts now enabled.
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: set_trace_level(3).
Trace level is now set to 3 (SPI + general messages).
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: load_reg(0x1030,Ox09).

Chapter 7: Processor Models SmartModel Library User’s Manual

152 Synopsys, Inc. February 2001

�

(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: load_reg(0x1031,Ox07).
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: load_reg(0x1037,Ox00).
SPIBUF is read only, command ignored.
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: load_reg(0x1039,OxA0).
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: load_reg(0x103D,Ox02).
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: load_reg(0x103E,Ox22).
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: PCL Cmd: load_reg(0x103F,Ox40).
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Trace: End of main PCL program.
(n=u9) (comp=C010) (loc=?) (lai=TMS370C010), at t=10001 (1000.1 ns).

Running the PCL Compiler
In addition to compiling a PCL source file into a PCL program, the PCL compiler
checks for errors and issues error messages specifying the location and nature of any
errors it detects. You invoke the PCL compiler using compile_pcl.

For NT, invoke the compile_pcl program using the console command line. For more
information, refer to “Running Console Applications on NT Platforms” on page 44.

Syntax
% compile_pcl source_file new_program [switches]

Arguments
source_file Specify the name of the PCL source file that you want

to compile. If '-', the compiler reads the source file
from STDIN.

new_program Specify the name for compiled program. If '-', the
compiler writes the object file to STDOUT.

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 153

�

Switches
-C Write source file comments to output.

-D= Define a symbol with the given (optional) value.

-H Display a help message and exit.

-I Add a directory to the #include search list.

-M Specify the name of the model being compiled.

-N Do not predefine target-specific names.

-Stext Specify sizes for #if sizeof.

-Usymbol Undefine symbol.

-Xvalue Set internal debug flag.

Example
The following example compiles the MySrc.pl program into object code and puts the
output in the MyObj.pcl output file.

% compile_pcl MySrc.pcl MyObj.pcl

Note�
Note that compile_pcl is a model-versioned tool, meaning that the model
itself determines which version of the tool is used when you invoke the tool.
You only need to select the model version.

Example PCL Program
This section shows a sample PCL program written for the Intel 80186 HV model. The
program begins with the include statement that instructs the PCL compiler to include the
model's command header (.cmd) file. The command header file contains the processor
command definitions and #define directives. The program then defines a constant
called error_addr and declares the variables addr and data_out as integers.

The main function declares an integer variable named data_in and then writes to and
reads from successive memory locations. If the returned values do not equal the written
values, the program displays an error message.

The last section of code defines the interrupt routines, one maskable and one
nonmaskable.

#include “i80186.cmd”
#define error_addr 0xffff

Chapter 7: Processor Models SmartModel Library User’s Manual

154 Synopsys, Inc. February 2001

�

#define NMI 0x02
#define DMA0 0x0A
#define TIMER2 0x13

int addr, data_out;

main ()
{

int data_in;
addr= 0;
data_out = 1;

while (addr < 0x1000)
{

write_memory(4, addr, data_out);
data_in = read_memory(4, addr);
if (data_in != data_out)

write_io(4,error_addr,data_in);
data_out = data_out << 1;
if (data_out == 0)

data_out = 1;
addr += 4;

}
} /* End of Main */

interrupt (vector)
int vector;

{
switch (vector)

{
case NMI: /* NMI service */

write_memory(2, 0x20C08, 0xBBC4); /* push to stack */
write_memory(2, 0x20C0A, 0x58DE);
write_io(2, 0x00204, 0x20);
break;

case DMA0: /* DMA channel 0 interrupt service */
read_memory(2, 0x20C08); /* read from stack */
write_memory(2, 0x20C0A, 0x0070);
read_io(2, 0x00204);
break;

case TIMER2: /* timer 2 interrupt service */
write_memory(2, 0x20C08, 0xBBC4); /* push to stack */
write_memory(2, 0x20C0A, 0x58DE);
write_io(2, 0x00204, 0x20);
write_register(0x2A, 0x0006);

/* write Priority Mask Register; */

SmartModel Library User’s Manual Chapter 7: Processor Models

February 2001 Synopsys, Inc. 155

�

break; /* timer will be masked through priority */

default:
break;

}
}

Chapter 7: Processor Models SmartModel Library User’s Manual

156 Synopsys, Inc. February 2001

�

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 157

�

8
User-Defined Timing

Introduction
The SmartModel Library includes standard, component-based timing files that have
identical functionality, but different timing characteristics. (For example, the timing
characteristics of the 74LS00 component differ from those of the 74F00 component.) In
addition to these standard timing files, you can create custom, component-based timing
files through user-defined timing (UDT). UDT is possible because a model's timing file
is loaded at simulation startup. You can use UDT to:

● Create new timing versions that are not yet available in the SmartModel Library

● Develop a custom timing model using specifications from several possible
manufacturers

● Represent your own custom timing or a special binding

● Scale timing to accommodate different design requirements

● Modify models to turn off their timing checks

● Modify memory models to turn off the access delay feature

You can also use UDT for instance-based timing; that is, you can specify timing
characteristics for a single specific instance of a model. For example, you could use
instance-based timing to back-annotate interconnect delays into a simulation or to
specify a different interconnect delay for a model instance that is on the critical path.

Note�
FlexModels support component-based UDT, but not instance-based UDT.
For more information on FlexModels, refer to the FlexModel User’s
Manual.

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

158 Synopsys, Inc. February 2001

�

Timing Files
The SmartModel Library contains both source and compiled timing files. When you
want custom timing for models, you can either edit the source files supplied with the
SmartModel Library or create your own. In either case you should create your own
timing directory to keep your custom timing files in; otherwise, your work will be lost
when you update your SmartModel Library.

You can store your custom timing files in any arrangement of directories that suits your
needs. However, the models must know where to look for your custom timing files.
The search rules for locating timing files are explained in the next section.

If you create new timing versions, you must support these files as you would any other
library of simulation models. In particular, if the timing file format changes with time,
you might receive an error message about the format of your file. In that case, you
would need to rerun compile_timing.

Instance-Based Timing
Instance-based timing allows you to refine timing characteristics that might affect only a
particular instance of a model. For example, you could use instance-based timing to
back-annotate interconnect delays into a simulation.

As an example, consider a design that contains multiple ECL 10H101 gates, each with a
typical propagation delay of 2 ns. The interconnect delay (printed circuit board trace
length) may be 1.5 ns for instance U101 and 3.0 ns for instance U135. With
instance-based timing, you could add the interconnect delay into your simulation by
defining a U101 instance-based timing of 3.5 ns (2.0 ns from the gate, 1.5 ns from the
interconnect) typical propagation delay, and a U135 instance-based timing of 5.0 ns
delay.

Timing File Search Rules
Each model instance gets its timing information from a timing data file. Because you
can have many timing data files, models follow prescribed search rules for locating a
timing version. The rules are simple: a list of directories is searched until a match is
found. That is, timing data files in the first listed directory are searched before timing
data files in the second listed directory, and so on.

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 159

�

The timing information in any timing data file can be specified by component name and
by instance name (both can exist in the same file). This is specified by the case selector
in the timing data file (keyword is either COMP or INST). Timing data files are
searched first for instance name, then for component name. If you use instance-based
timing (case INST of), the value of the model's InstanceName parameter is compared
with the strings in the timing data file. Alternately, if you use component-based timing
(case COMP of), the value of the model's TimingVersion parameter is compared with
the strings in the timing data file.

Each model instance searches for a matching value in the timing data file independently
of all other model instances, and stops searching at the first match. Therefore, different
instances of the same model can get their timing version information from different
timing data files.

The timing data file search path can be set with the LMC_PATH environment variable.
This allows each user to define their own timing file search path.

To define your timing file search path, set the LMC_PATH environment variable in your
startup file. The syntax used to set this environment variable is the same as for the path
variable; that is, you set LMC_PATH to a list of directories, where each directory listing
is separated from others by a colon. For example, assuming you are using C shell:

% setenv LMC_PATH “/usr/home/dir1:
/usr/home/dir2:
/usr/home/dir2/subdir1”

You must explicitly specify each directory (and subdirectory) containing custom timing
files (the search is not recursive). For NT you must separate multiple entries for the
LMC_PATH environment variable using a semicolon-separated list, not a colon-
separated list as in UNIX.

Note that if you want to verify or diagnose where a model instance is getting its timing
data from, you can use the TraceTimeFile command (issued through the SWIFT
command channel). This command causes each model to display information about the
timing data files it has searched, and which file produced a match.

For information on how to set environment variables and how to use the console
application on the NT platform, refer to “Setting Environment Variables on NT
Platforms” on page 43 and “Running Console Applications on NT Platforms” on page
44.

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

160 Synopsys, Inc. February 2001

�

Creating New Timing Versions
To customize a model's timing, copy the supplied ASCII timing data file to your own
timing directory using the Browser’s Copy Timing File function. For instructions, refer
to “Creating Custom Timing Versions” on page 164. After you copy the file, you can
edit and compile it. Compiling the file builds the timing file the model uses in
simulation. Figure 16 illustrates this process.

Figure 16: User-Defined Timing Process

A model timing file is created with a timing data file, a timing template, and the
SmartModel Library timing compiler. You can use the timing data included with the
library, or you can use your own model timing. In any case, a timing file is only
generated once, and then (depending on the search rules) is available to the model in
every simulation.

OR
User-Defined
Timing Data

Model
Timing Data

Model
Timing Template

Model
Timing File

model.tf filesmodel.tt files

model.td file

Model
Timing

Compiler

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 161

�

Note�
Before you make significant changes to the timing data, you should be
familiar with both the format and grammar of timing data files. For details,
refer to “Timing Data File Format” on page 165 and “Timing Data File
Grammar” on page 174.

User-Defined Timing Examples
Two examples of creating new timing are described here. In the first case, a timing
version is added to reflect a new component that was not included in the standard
timings for the model. In the second example, a worst-case timing version is generated
from all the existing versions.

Example Timing Data File
Both examples are based on the timing data file for the am29520 model. Here is what
the timing data file for this model looks like before any modifications have been made.

Timing data file generated by Synopsys Logic Modeling, Inc.
for use with the Synopsys Logic Modeling compile_timing tool.
@(#) File generated: 8/19/93
@(#) Tool versions: [1.1, 3]

Timing descriptions:

th_I_CLK_lh -- Hold time for I(instruction) to CLK(high)
th_D_CLK_lh -- Hold time for D(inputs) to CLK(high)
ts_I_CLK_lh -- Setup time for I(instruction) to CLK(high)
ts_D_CLK_lh -- Setup time for D(inputs) to CLK(high)

Range: Min/Typ/Max
model AM29520
case comp

of “AM29520-COM”: # AMD, Bipolar Microprocessor Logic &
#Interface, AM29000...

Timing Label : Min Typ Max # Vendor Label
#---
pwmin_CLK : 10.0 ;# tpw
th_I_CLK_lh : 3.0 ;# th
th_D_CLK_lh : 3.0 ;# th
ts_I_CLK_lh : 10.0 ;# ts
ts_D_CLK_lh : 10.0 ;# ts
tpd_S_Y : {2.4}, 12.0, 20.0;# tpdsel
tpd_CLK_lh_Y(lh) : {2.4}, 12.0, 21.0;# tpd
tpd_CLK_lh_Y(hl) : {2.4}, 12.0, 22.0;# tpd

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

162 Synopsys, Inc. February 2001

�

tpd_OE_Y(hz) : {1.0}, 5.0, 13.0;# tdis
tpd_OE_Y(lz) : {1.2}, 6.0, 15.0;# tdis
tpd_OE_Y(zh) : {2.4}, 12.0, 20.0;# tena
tpd_OE_Y(zl) : {2.6}, 13.0, 21.0;# tena

. . .
of “L29C520M-1”: # Logic Devices, Fast CMOS Data Book (1989)
Timing Label : Min Typ Max # Vendor Label
#--
pwmin_CLK : 10.0 ;# tpw
th_I_CLK_lh : 3.0 ;# th
th_D_CLK_lh : 3.0 ;# th
ts_I_CLK_lh : 10.0 ;# ts
ts_D_CLK_lh : 10.0 ;# ts
tpd_S_Y : {2.9}, {14.7}, 22.0;# tpdsel
tpd_CLK_lh_Y(lh) : {3.2}, {16.0}, 24.0;# tpd
tpd_CLK_lh_Y(hl) : {3.2}, {16.0}, 24.0;# tpd
tpd_OE_Y(hz) : {2.1}, {10.7}, 16.0;# tdis
tpd_OE_Y(lz) : {2.1}, {10.7}, 16.0;# tdis
tpd_OE_Y(zh) : {2.9}, {14.7}, 22.0;# tena
tpd_OE_Y(zl) : {2.9}, {14.7}, 22.0;# tena

end case;
end model;

Adding a New Timing Version
In this example, you create a new timing version of a model. The modeled device is an
Integrated Device Technology part whose component name is IDT29FCT520A-COM.
To add a new timing version, follow these steps:

1. Create your own timing data directory. Do not store your modified timing files in
the SmartModel Library directory structure.

2. Copy the original timing data file into your own timing data directory using the
Browser. For instructions, refer to “Creating Custom Timing Versions” on page 164.

3. Use an ASCII editor to open the new file and duplicate one of the existing case
statements. Edit the duplicated statement to make the new timing version you need,
then delete all other case statements. In this example, the first case statement in the
file was copied and edited to make the required Integrated Device Technology
version.

4. Document your modifications by citing the specification’s source in a comment
following the component name.

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 163

�

5. Compile your new timing data file so it can be used by the model. The timing
compiler creates an executable version of the timing file and checks your new file
against the timing template, as described in “Using the Timing Compiler” on page
178. The compiler catches any typographical errors you might have made. Use the
following command to invoke the timing compiler:

% compile_timing am29520.td

This command creates a timing file named am29520.tf. Move your new file to your
user-defined timing directory. Now any “am29520” model in your design
automatically finds the correct timing file at simulation startup.

6. Change the value of the SWIFT TimingVersion parameter in your model
instantiating to the name you are using for your new timing version.

Example Timing Data File with New Timing Version
The following example shows a timing data file for the am29520 model that includes the
new timing version.

Timing data file generated by Synopsys Logic Modeling, Inc.
for use with the Synopsys Logic Modeling compile_timing tool.
@(#) File generated: 8/19/93
@(#) Tool versions: [1.1, 3]
added a component to support IDT -Bob/Rich, 8/19/93
Timing descriptions:

th_I_CLK_lh -- Hold time for I(instruction) to CLK(high)
th_D_CLK_lh -- Hold time for D(inputs) to CLK(high)
ts_I_CLK_lh -- Setup time for I(instruction) to CLK(high)
ts_D_CLK_lh -- Setup time for D(inputs) to CLK(high)
Range: Min/Typ/Max
model AM29520
case comp

of “IDT29FCT520A-COM”: # IDT, High Performance CMOS
#Data Book (1988)

Timing Label : Min Typ Max # Vendor Label
#---
pwmin_CLK : 7.0 ;# tpw
th_DIN_CLK_lh : 1.0 ;# th
th_I_CLK_lh : 1.0 ;# th
tpd_CLK_lh_Y(lh) : {2.4}, 12.0, 21.0;# tpd
tpd_CLK_lh_Y(hl) : {2.4}, 12.0, 22.0;# tpd
tpd_OE_Y(hz) : {2.4}, 6.0, 12.0;# tdis
tpd_OE_Y(lz) : {2.4}, 6.0, 12.0;# tdis
tpd_OE_Y(zh) : {2.4}, 9.0, 15.0;# tena

tpd_OE_Y(zl) : {2.6}, 9.0, 15.0; tena
tpd_S_Y : {2.4}, 7.0, 13.0;# tpdsel

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

164 Synopsys, Inc. February 2001

�

ts_DIN_CLK_lh : 5.0 ;# ts
ts_I_CLK_lh : 5.0 ;# ts

end case;
end model

Creating Custom Timing Versions
In this example, a custom timing version of a model is created and placed in its own
timing data file. This new file removes all specific component cases, replacing them
with a single set of values. These values represent the minimums and maximums for all
“commercial” timing in the timing data file created in the preceding example (that is, the
original timing plus the Integrated Device Technology timing).

The timing component case in this file is named “29520” to differentiate it from any
specific manufacturer’s values. As before, the process is: copy the file to the
user-defined timing directory, edit it, compile it, and place it in a directory for use by the
“am29520” model at simulation time. The directory where you place the file must be in
the timing file search path.

Example Timing Data File with Custom Component
The following example shows a timing data file for the am29520 model that includes a
custom component.

Timing data file generated by Synopsys Logic Modeling, Inc.
for use with the Synopsys Logic Modeling compile_timing tool.
@(#) File generated: 8/19/93
@(#) Tool versions: [1.1, 3]
modified 8/19/93 to create custom min-of-min and max-of-max
cmpnt-Bob.
model AM29520

case comp
of “29520”: # Custom min-of-min/max-of-max component
Timing Label :MinTypMax# Vendor Label
#--

pwmin_CLK : 7.0 ;# tpw
th_DIN_CLK_lh : 3.0 ;# th
th_I_CLK_lh : 3.0 ;# th
tpd_CLK_lh_Y(lh) : 2.4,11.3,25.0;# tpd
tpd_CLK_lh_Y(hl) : 2.4,11.3,24.0;# tpd
tpd_OE_Y(hz) : 1.0,13.0,25.0;# tdis
tpd_OE_Y(lz) : 1.2,11.9,25.0;# tdis
tpd_OE_Y(zh) : 2.4,11.3,25.0;# tena
tpd_OE_Y(zl) : 2.6,11.2,25.0;# tena
tpd_S_Y : 2.4,11.3,25.0;# tpdsel
ts_DIN_CLK_lh :13.0 ;# ts
ts_I_CLK_lh :13.0 ;# ts

end case;
end model;

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 165

�

Timing Data File Format
Timing data files are in ASCII format. The timing data files that come with the
SmartModel Library are named model.td. You can access these timing data files using
the Browser tool. Timing data files normally consist of comments and a model block,
as shown in Figure 17.

Figure 17: Timing Data File Elements

Timing data file generated by Logic Modeling, Inc.
for use with Logic Modeling’s compile_timing tool.
@(#) File generated: 10/19/90
@(#) Tool versions: [1.1, 0]

Range: Min/Typ/Max

model tms320c15_hv
case comp
of ”TMS320C15”, #TI, First Generation TMS320 User’s Guide

#(SPRU013A,Apr 88)
”TMS320E15”: #TI, First Generation TMS320 User’s Guide

#(SPRU013A,Apr 88)
Timing Label : Min Max # Vendor Label
#---

permax_X2_lh : 150.0; # tcmc
.
.
.

of ”TMS320C15-25”:#TI, First Generation TMS320 User’s Guide
#(SPRU013A,Apr 88)

Timing Label : Min Max # Vendor Label
#---

permax_X2_lh : 150.0; # tcmc
.
.
.

end case;

case inst
of ”U101”: #TI, First Generation TMS320 User’s Guide

#(SPRU013A,Apr 88)
Timing Label : Min Max # Vendor Label

#---
permax_X2_lh : 150.0; # tcmc

.

.

Model Block

Comments

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

166 Synopsys, Inc. February 2001

�

Assumed Propagation Delays
All models in the SmartModel Library support a range of timing delays, but
manufacturers often supply only a single value for device delay parameters. Memories,
for example, are often specified with only maximum delay values. In such cases, Logic
Modeling duplicates the MAX delay value for the MIN and TYP fields of the timing
data file. In this way, if you change the delay mode of your simulation, the delay value
remains true to the manufacturer’s specifications. Figure 18 shows what the timing data
file for such a model would look like.

Figure 18: Assumed Propagation Delays

You can change any of the delay values by creating a custom timing version of the
model.

Models With Vendor-Supplied Delay Ranges
When an IC manufacturer specifies a delay range for a part, the data is always modeled.
Occasionally a manufacturer does not supply all three delay values for every parameter,
in which case, the model uses derived values as shown in Table 15. If a manufacturer
specifies a single propagation delay, then the specification is entered for all three values
in the model.

Table 15: Derived Propagation Delay Values

Given MIN TYP MAX

ALL MIN TYP MAX

MIN & TYP MIN TYP 3/2 TYP

TYP & MAX 1/5 TYP TYP MAX

.

.

.
ts_A_E_hl : 0.0 ; # tAVEL
ts_A_E_lh : 35.0 ; # tAVEH
acc_tpd_W_hl_DQ : 0.0, 0.0, 0.0; # tWLQZ
tpd_W_hl_DQ : 20.0, 20.0, 20.0; # tWLQZ
tpd_W_lh_DQ : 6.0, 6.0, 6.0; # tWHQX
acc_tpd_E_hl_DQ : 5.0, 5.0, 5.0; # tELQX
tpd_E_hl_DQ : 45.0, 45.0, 45.0; # tELQV
acc_tpd_E_lh_DQ : 0.0, 0.0, 0.0; # tEHQZ
tpd_E_lh_DQ : 20.0, 20.0, 20.0; # tEHQZ
acc_tpd_A_DQ : 5.0, 5.0, 5.0; # tAXQX
tpd_A_DQ : 40.0, 40.0, 40.0; # tAVQV

The minimum,
typical, and
maximum

propagation delays

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 167

�

Note�
A device is never specified with just a MIN spec, so that case does not
appear in the table.

Calculated Propagation Delays
Occasionally, device manufacturers do not supply all three propagation delay values for
every delay parameter. In such cases, Logic Modeling calculates the missing values.
Figure 19 shows that calculated values are used for the TYP propagation delay (denoted
by the braces).

Figure 19: Calculated Propagation Delays

You can change any of the delay values by creating a custom timing version of the
model.

MIN & MAX MIN 2/3 MAX MAX

TYP 1/5 TYP TYP 3/2 TYP

MAX 1/5 TYP 2/3 MAX MAX

Table 15: Derived Propagation Delay Values (Continued)

Given MIN TYP MAX

Timing Label : Min Typ Max # Vendor Label
#--

tpd_I2_O1(hl) : 1.8, {4.9}, 7.3;
tpd_I2_O1(lh) : 1.8, {4.9}, 7.3;
tpd_I1_O1(hl) : 1.8, {4.9}, 7.3;
tpd_I1_O1(lh) : 1.8, {4.9}, 7.3;

.

.

.

end case;
end model;

The braces denote
that the timing

values are
calculated and did
not come from the

manufacturer’s
specifications.

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

168 Synopsys, Inc. February 2001

�

Timing Data File Comments
Figure 20 illustrates the different types of comments that can appear in the timing data
file header.

Figure 20: Timing Data File Comments

General Comments
General comments note the date the file was generated and the tool versions used.

Timing Description Comments
Timing descriptions provide information about the labels used in timing statements. If a
label does not clearly describe the particular timing statement, a comment is included at
the top of the timing data file that further describes it. The following example shows
how comments are used to distinguish between timing descriptions that appear nearly
identical.

Timing descriptions:

tpd_X2_lh_WE_1 -- WE(lh) delay time from X2(lh) with RS(hl)
tpd_X2_lh_WE_2 -- Delay time X2(lh) to WE, (CLKOUT(hl) to WE(hl))

Timing data file generated by Logic Modeling, Inc.
for use with Logic Modeling’s compile_timing tool.
@(#) File generated: 5/1/90
@(#) Tool versions: [1.0, 0]

Timing descriptions:

permax_X2_lh -- Maximum on master clock(X2) cycle time
permin_X2_lh -- Minimum on master clock(x2) cycle time
.
.
.

Timing expressions:

pwmin_X2 -- (permin_X2_lh * pwmin_X2)
pwmax_X2 -- (permax_X2_lh * pwmax_X2)
tpd_RS_hl_WE -- ((0.5 * permin_CLKOUT_lh) + tpd_RS_hl_WE)
.
.
.

Range: Min/Typ/Max Range Comments

Timing Expressions

Timing Descriptions

Comments

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 169

�

Timing Expression Comments
Timing expressions list the timing statement values that are calculated by substituting
timing data numbers in an expression. These expressions are included as comments at
the top of the timing data file. The following is an example of a delay that is half the
period of a clock plus some constant:

Timing expressions:

tpd_RS_hl_WE -- ((0.5 * permin_CLKOUT_lh) + tpd_RS_hl_WE)

This means that the delay from RS(hl) to WE is calculated by substituting the timing
data numbers into the expression. For example, you can supply the following numbers:

permin_CLKOUT_lh: 200.0;
tpd_RS_hl_WE: 50.0;

As a result, the actual number for the delay is:

((0.5 * 200.0) + 50.0) = 150.0

Do not change the text in a timing expression comment. Timing expression comments
serve only to document how calculations are performed.

There are several predefined functions that can appear in timing expressions:

MIN(value1, value2)
Returns the minimum of value1 and value2.

MAX(value1, value2)
Returns the maximum of value1 and value2.

ACTUAL(timing-name)
Evaluated during simulation.

The ACTUAL() expression is used to supply a value that is based on the actual clock
period being used during the simulation. Before the simulation runs and the clock
period can be used, the expression is evaluated to be equal to the value of timing-name.

Internal Pin Comments
Some manufacturers specify timing with respect to internal pins. This is often true for
PLDs. All timing names dealing with internal pins are highlighted as comments at the
top of the associated timing data file. The following example is for a PLD that has
internal feedback pins:

Timing with internal pins:

tpd_CLK_lh_FB

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

170 Synopsys, Inc. February 2001

�

Range Comments
Range comments describe the propagation delays used in the model: Min/Typ/Max.

Timing Data File Model Block
Figure 21 shows an annotated example of a model block in a timing data file.

Figure 21: Annotated Timing Data File Model Block

Timing data file generated by Logic Modeling, Inc.
.
.
.

model ttl00
case comp

of ”74AC00-FAI”: # Fairchild, FACT Fairchild Advanced CMOS Technology
Logic Data Book (605003 25M, October 1985)

Timing Label : Min Typ Max # Vendor Label
#--

tpd_I2_O1(hl) : 1.0, 4.0, 7.5;
tpd_I2_O1(lh) : 1.0, 5.0, 8.5;
tpd_I1_O1(hl) : 1.0, 4.0, 7.5;
tpd_I1_O1(lh) : 1.0, 5.0, 8.5;

of ”CD74AC00”: # Harris/RCA, Advanced CMOS Logic Integrated
Circuits (SSD-283A, 1988)

Timing Label : Min Typ Max # Vendor Label
#--

tpd_I2_O1(hl) : 1.9, {4.4}, 6.6;
tpd_I2_O1(lh) : 1.9, {4.4}, 6.6;
tpd_I1_O1(hl) : 1.9, {4.4}, 6.6;
tpd_I1_O1(lh) : 1.9, {4.4}, 6.6;

of ”CD74AC00-EXT”: # Harris/RCA, Advanced CMOS Logic Integrated
Circuits (SSD-283A, 1988)

Timing Label : Min Typ Max # Vendor Label
#--

tpd_I2_O1(hl) : 1.8, {4.9}, 7.3;
tpd_I2_O1(lh) : 1.8, {4.9}, 7.3;
tpd_I1_O1(hl) : 1.8, {4.9}, 7.3;
tpd_I1_O1(lh) : 1.8, {4.9}, 7.3;

.

.

.

end case;
end model;

Model name (must not be changed)

Component name (identifies timing)

Component source
information

Timing statement

Braces denotes that the
timing data is calculated, and

did not come from the
manufacturer’s
specifications

Edge qualifier
(selects the output

edge for the
specification)

Case selector

Timing statement label

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 171

�

Timing Statement Format
Timing statements usually appear one to a line. When the same timing values apply to
several timing labels, a list format can be used. There are two types of labels: delay
labels and timing check labels. Both types are described below.

Delay Label Format
Delay labels have the following syntax:

Label = Type_FromPin[_FromEdge]_ToPin[_ToEdge][_Integer]

Delay Label Syntax Elements
Delay labels have the following syntax elements:

Type
One of the following values:

❍ tpd—Specifies a delay.

❍ acc_tpd—Specifies an access delay, meaning that the output goes to unknown
after the delay.

❍ trigger—Specifies that the output makes the ToEdge transition after the delay.

FromPin
Specifies the input pin or bus that causes the delay.

FromEdge
Optional element whose value can be either lh (low-to-high) or hl (high-to-low). If
you include a FromEdge value, the delay only occurs when the FromPin has the
specified edge.

ToPin
Specifies the output pin or bus that changes as a result of the delay.

ToEdge
Optional element only used for triggers. The value of this element can be either al
(any-to-low), ah (any-to-high), or az (any-to-Z).

Integer
Determines the correct timing parameter based on the internal state condition of the
model. For example, transitions from high-to-Z may have different timings than
transitions from high-to-low. Using this element you can differentiate between the
timing values.

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

172 Synopsys, Inc. February 2001

�

Timing Check Label Format
Labels for timing checks have the following syntax:

label = Type_Pin1[_Edge][_Pin2][_Edge][_Integer]

Timing Check Label Syntax Elements
Timing check labels have the following syntax elements:

Type
Specifies one of the following types of timing checks:

❍ ts—Setup check, where Pin1 before Pin2 must be greater than or equal to the
specified value.

❍ recovery—Same as ts, but the error message is different.

❍ th—Hold, where Pin1 after Pin2 must be greater than or equal to the specified
value.

❍ skewmin—Minimum skew, where Pin1 must come before Pin2

❍ skewmax—Maximum skew. This is the same as ts, but the error message is
different.

❍ pwmin—Minimum pulse width, where Pin1 pulse width high or low must be
greater than or equal to the specified value.

❍ pwlmin—Minimum pulse width low, where Pin1 pulse width low must be
greater than or equal to the specified value.

❍ pwhmin—Minimum pulse width high, where Pin1 pulse width high must be
greater than or equal to the specified value.

❍ pwmax—Maximum pulse width, where Pin1 pulse width high or low must be
less than the specified value.

❍ pwlmax—Maximum pulse width low, where Pin1 pulse width low must be less
than the specified value.

❍ pwhmax—Maximum pulse width high, where Pin1 pulse width high must be
less than the specified value.

❍ fmin—Minimum frequency, where Pin1 frequency must be greater than or
equal to the specified value.

❍ fmax—Maximum frequency, where Pin1 frequency must be less than the
specified value.

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 173

�

❍ permin—Minimum period, where Pin1 period must be greater than or equal to
the specified value.

❍ permax—Maximum period, where Pin1 period must be less than the specified
value.

Pin1
Specifies the input pin or bus.

Edge
Optional element whose value can be either lh (low-to-high) or hl (high-to-low).
The timing check occurs only if the pin makes the specified transition.

Pin2
Same as Pin1, except that it is used only for timing checks involving two pins.

Integer
Determines the correct timing parameter based on the internal state condition of the
model. For example, transitions from high-to-Z may have different timing than
transitions from high-to-low. Using this element allows you to differentiate
between the timing values.

Timing Statement Format
Timing statements can appear one to a line, or when the same timing values apply to
several timing labels, you can use a list to combine them, as shown in the following
example. For the 74AC00-FAI component of the ttl00 model, a comma and new line
separate the two timing labels from their mutual timing values. For the CD74AC00
component, all the timing labels use the same values, so they are listed with a comma
and new line separating the four labels.

. . .
model ttl00

case comp
of “74AC00-FAI”:
Fairchild, FACT Fairchild Advanced CMOS Technology
Timing Label :MinTypMax# Vendor Label
#--

tpd_I2_O1(hl) ,
tpd_I1_O1(hl) :1.0,4.0,7.5;
tpd_I2_O1(lh) ,
tpd_I1_O1(lh) :1.0,5.0,8.5;

of “CD74AC00”: # Harris/RCA, Advanced
CMOS Logic Integrated

Circuits
Timing Label :MinTypMax Vendor Label
#--

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

174 Synopsys, Inc. February 2001

�

tpd_I2_O1(hl) ,
tpd_I2_O1(lh) ,
tpd_I1_O1(hl) ,
tpd_I1_O1(lh) :1.9,{4.4},6.6;
. . .

end case;
end model;

Timing Data File Grammar
The information in timing data files conforms to a formal grammar that is documented
in this section. In the descriptions below, terminals and reserved words are shown in
roman type, non-terminals in italic type. The := symbol can be read as “is defined as.”
The vertical bar | delimits items in a list from which one item must be chosen. Square
brackets [] enclose optional items. Braces enclose constructions that appear zero or
more times. Left and right parentheses must enclose edge identifiers.

udt-data-file
udt-data-file := model-block

model-block
model-block := model model-name

case-statement
{ case-statement }

end model;

There can be one or more case statements within the model block. Case statements
cannot be nested.

model-name
model-name := identifier

The model name is an identifier; it must match the name of the model that is using the
timing data.

identifier
identifier := letter { letter | digit | _ }

letter := a-z | A-Z

digit := 0-9

Timing data files are not case-sensitive; either uppercase or lowercase letters can be
used.

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 175

�

case-statement
case-statement := case case-selector

of
case-tag { , case-tag } : timing-statement ;

{ timing-statement ; }
end case ;

case-selector
case-selector := comp | inst

The value comp allows grouping of timing statements by manufacturer, speed version,
and technology. The value inst identifies a specific instance of a model.

case-tag
case-tag := string-identifier

A case-tag is a text string identifying a specific value of the case selector.

string-identifier
string-identifier := “ { letter | digit | general_symbols } “

All strings are quoted. Nonprintable characters (such as new line) are not allowed.

general_symbols := _ | ! | @ | # | $ | % | ^ | & | * | ~ |
. | , | ? | / | \ | < | > | : | - | +

timing-statement
timing-statement := timing-label { , timing-label } : timing-values

If an output edge is used—and they are permitted only on delays—it must be surrounded
by parentheses.

timing-label
timing-label := identifier [(output-edge{ output-edge})]

The timing-label is a required name used to identify the timing statement. Its value is
fixed by the model and must be used.

output-edge
output-edge := lh | lz | hl | hz | zl | zh | la | nl | ha |

nh | za | nz | al | ah | az | aa | av | vv

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

176 Synopsys, Inc. February 2001

�

The output-edge format requires parentheses. More than one edge can be specified.
Use a space between elements of the list, as shown below:

. . .
of “CD74AC00”: # Harris/RCA, Advanced CMOS Logic Integrated Circuits
Timing Label : Min Typ Max # Vendor Label
#--
tpd_I2_O1(hl lh) : 1.9, {4.4}, 6.6;
tpd_I1_O1(hl lh) : 1.9, {4.4}, 6.6;

. . .

The output-edge is an optional identifier used to further qualify timing variations in
propagation delays by denoting the output edge transition. If no edge is specified, then
the timing values apply to all possible transitions on the output pin for the particular
delay. Table 16 provides definitions for all of the possible output-edge values.

Table 16: Output-edge Values

Output-edge Value Definition

lh low-to-high

lz low-to-high impedance

hl high-to-low

hz high-to-high impedance

zl high impedance-to-low

zh high impedance-to-high

la low-to-any (lh, lz)

nl any-to-not low (lh, lz, hz, zh)

ha high-to-any (hl, hz)

nh any-to-not high (hl, hz, lz, zl)

za high impedance-to-any (zl, zh)

nz any-to-not high impedance (lh, hl,
zl, zh)

al any-to-low (hl, zl)

ah any-to-high (lh, zh)

az any-to-high impedance (lz, hz)

aa any-to-any (lh, lz, hl, hz, zl, zh)

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 177

�

timing-values
timing-values := timing-value [, timing-value , timing-value]

[timing-unit] | NULL

Timing-values is a list of one or three timing values, or the identifier NULL. The values
represent timing for the minimum (min), typical (typ), and maximum (max) operating
ranges. If a single value is used, it is assumed that it represents all three (min, typ, and
max). If three values are specified, they represent min, typ, and max in that order. You
can use the NULL identifier to disable timing checks and access delays.

timing-value
timing-value := numeric-value

The timing-value is either a number representing the delay or a timing check, depending
on the statement.

numeric-value
numeric-value := [{] [-] integer | real [}]

The numeric-value can be a positive or negative integer or real. The value can also be
scaled, using an optional timing-unit. The default unit for frequency timing statements
is mhz, and ns is the default for all other timing statements. The minus sign denotes
negative values. The braces used here are only found in files generated by Logic
Modeling—they signify that the specifications were derived (not found on the
manufacturer's datasheet).

real := integer.integer

integer := digit { digit }

timing-unit
timing-unit := fs | ps | ns | us | ms | khz | mhz | ghz

av any-to-not high impedance (lh, hl,
zl, zh)

vv not high impedance-to-not high
impedance (lh, hl)

Table 16: Output-edge Values (Continued)

Output-edge Value Definition

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

178 Synopsys, Inc. February 2001

�

Table 17 provides definitions for all possible timing unit values.

comments

comments := { # | @ } [comment_text]

Comments begin with # or @ and continue to the end of the line.

Using the Timing Compiler
You use the timing compiler to compile timing data files for models. The timing
compiler produces a timing file named model.tf in the current working directory. The
tool also looks for the specified timing data file in the current directory. If the timing
data file that you want to compile is not in the current working directory you must
specify a full path name to the file.

In addition to producing a model.tf file that a model reads at simulator startup, the
timing compiler also performs a series of checks on your timing data file.

Timing Compiler Checks
The timing compiler performs the following checks on the specified input source file:

● Source Grammar Checks. Verifies that the source file is written correctly.
Ensures sensible source organization. For example, nested cases are not allowed.

Table 17: Timing Unit Values

Timing Unit Definition

fs femtoseconds

ps picoseconds

ns nanoseconds

us microseconds

ms milliseconds

khz kilohertz

mhz megahertz

ghz gigahertz

SmartModel Library User’s Manual Chapter 8: User-Defined Timing

February 2001 Synopsys, Inc. 179

�

● Complete Source Checks. Verifies that the timing source for a given model is
completely specified. Partial timing specifications are not allowed. The timing
statements in the source file must exactly match the template.

● Global Value Checks. Checks timing source values. While negative values are
allowed in the timing source, they are not manageable in the model. Because
negative propagation delays are not supported, they are identified as errors.
Negative timing checks are not supported in the model runtime environment. They
are identified and mapped to “0”.

● Valid Edge Checks. Uses the timing template to verify correct output edge
assignment in the timing source. If the model's output pin cannot be put into a
high-impedance state, no Z-related edges are allowed in timing associated with that
pin.

● Tool and File Version Checks. Checks tool versions and file format versions.

Running the Timing Compiler
The compile_timing tool takes an input timing data (.td) file as its only required
argument and generates a compiled timing (.tf) file in the current working directory.
You can optionally specify several switches, as shown in the following syntax
description.

For NT, invoke the compile_timing program using the console command line. For more
information, refer to “Running Console Applications on NT Platforms” on page 44.

Syntax
compile_timing [-Help] [-Messages] [-TTemplate template-path] model.td

Argument
model.td Name of the input timing data file.

Switches
-H[elp] Specify this switch for help using the compile_timing

tool.

-M[essages] Turn on user-defined timing messages in the model.

-TT[emplate] template_path Used to specify a full path to a timing template input
file. Do not use this switch. The tool automatically
determines the correct version of the timing template to
use.

Chapter 8: User-Defined Timing SmartModel Library User’s Manual

180 Synopsys, Inc. February 2001

�

Example
The following example invocation of compile_timing causes the tool to read a timing
data file for the ttl00 model and generate a compiled timing file:

% compile_timing ttl00.td

You can use the -Messages switch to aid debugging efforts. When you compile a timing
file specifying this switch, you enable generation of runtime messages. At simulation
startup, each model compiled with messages enabled issues a message indicating the
model.tf file being read and the instance or component being used.

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

February 2001 Synopsys, Inc. 181

�

9
Back-Annotating Timing Files

What is Backanno?
Different simulators back-annotate timing values from Standard Delay Format (SDF)
files in different ways. To solve this problem for model users the Backanno tool extracts
the relevant timing components from an SDF file and annotates SmartModel binary
timing files with that information to normalize the model’s behavior with different
simulators.

This chapter describes how to use the Backanno tool to extract back-annotation timing
data from SDF files and annotate them to a SmartModel format that the model can read.
As part of this process, the Backanno tool creates:

● New SDF files that have the extracted timing commented out so that the delays are
not back-annotated twice.

● Compiled time files (.tf) that contains the delays for the model.

The Backanno tool is controlled by a configuration file which:

● Identifies all the SmartModel instances to be back-annotated.

● Maps ports and delays.

● Identifies the SDF files and the hierarchical scope to which the data should be
applied.

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

182 Synopsys, Inc. February 2001

�

Process Overview
Figure 22 illustrates the process of back-annotating SmartModel timing files (.tf).

t

Figure 22: SmartModel Back-Annotation Process

Creating a Configuration File
You can create a configuration file to control the back-annotation process so that it is
compatible with your simulator.

File Format
The configuration file format is similar in principle to Standard Delay Format. It allows
C++ style comments and has the following general format:

{MODEL Section}* // 0 or more MODEL Sections

{ANNOTATE Section}* // 0 or more ANNOTATE Sections

{LMC_PATH Section} // Optional LMC_PATH Section

Both Verilog- and VHDL-style hierarchy syntax are supported. For example, both
“top.inst” and “/top/inst” are valid.

Creating a Configuration File

Setting Environment Variables

Running Backanno

Copying the Resulting Timing Files (.tf)

Replacing the Original SDF Files

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

February 2001 Synopsys, Inc. 183

�

Both Verilog- and VHDL-style identifier syntax are supported. By default, the
identifiers in the configuration file are treated as case-sensitive. However, the “-i”
command line option causes the backanno tool to treat the identifiers as case-insensitive.
Also, escape identifiers are allowed in both Verilog format – such as
“\MY_MODULE,” and VHDL format – such as “\MY_MODULE\”.

Sample Configuration File
The following is an example of a configuration file. To see how the sections in the file
tie together, you can refer back to this example as you read further.

This file is for a simulation session containing two SmartModel instances (I$1, I$4) of
the ttl08. The model was generated from compiled Verilog with a vector input IN split
into scalar ports I1 and I2.

(MODEL TTL08
(PORTMAP (I1 IN[1])

(I2 IN[2]))
(INSTLIST (I$1 CD74AC08)

(I$4 SN74LS08)))

(LMC_PATH ./run16)

(ANNOTATE new.sdf Top_Level
(DELAYSCALE MTM 1.0, 1.0, 1.0)
(DELAYRANGE MTM)
(INTERCONNECT RCVR MAX)
(LOGFILE sdf.log))

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

184 Synopsys, Inc. February 2001

�

MODEL Section
The Model section consists of one or more model entries. There must be a model entry
for each model in the design that is to be back-annotated. Each model entry can define
optional port mapping and must declare one or more model instances.

Syntax
(MODEL modelName [port_map] instance_list)

Arguments
modelName

The SWIFT model name.

port_map
Consists of one or more port name mapping statements. It maps SWIFT port names
to port names in the SDF file. The syntax for a port_map is:

(PORTMAP {(SWIFTName DesignName)})

SWIFTName
The model’s SWIFT port name.

DesignName
The port name used by the delay calculator to generate the SDF. Unspecified ports
are assumed to have identical names. In the case of duplicate entries, the last entry
is used.

The DesignName is used when the model’s port name doesn’t match the SDF
generated by the IC vendor’s delay calculator. This can occur when:

❍ HDL compiler technology is used to generate a model.

❍ The design’s port name is changed to create an HDL-independent model.

❍ The delay calculator has not been updated.

instance_list
Enumerates each model instance to have timing annotated and consists of one or
more entries. The syntax is:

(INSTLIST {(Instance Component)})

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

February 2001 Synopsys, Inc. 185

�

Instance
The full hierarchical instance name of the model instance in the circuit.

Component
The SWIFT “TimingVersion” attribute; selects the base (unannotated) timing
values shipped with the model.

ANNOTATE Section
The Annotate section consists of one or more individual SDF annotator entries. There is
an SDF annotator entry for each SDF file that is to be parsed and applied to the timing of
the simulation.

Verilog HDL implements this operation as $sdf_annotate task, while at least one VHDL
implementation uses command line arguments. It appears that VHDL is less
configurable and is a subset of the Verilog implementation. Most Verilog and VHDL
capabilities are addressed.

Syntax
(ANNOTATE SDFFile InstScope custom_parameters)

Arguments
SDFFile

The complete path to the SDFFile.

InstScope
The hierarchical reference specifying the module instance (Verilog) or design
region (VHDL) scope for application of the SDF file.

custom_parameters
Optional settings that customize the handling of timing values in the SDF file.
These are:

❍ delay_scaling

❍ delay_selection

❍ delay_application

❍ process_reporting

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

186 Synopsys, Inc. February 2001

�

The SDF format can contain either one or three (minimum, typical, and maximum)
values. The model’s compiled time files contain min, typ, and max values. Models can
be configured by the simulator to use either min, typ, max, or a combination version
(MTM) during simulation. As shown in Figure 23, delay scaling is applied to the SDF
delay values prior to their usage. The scaled delay selection is applied to create the
model’s compiled time file. The model’s DelayRange parameter selects the model’s use
of minimum, typical, or maximum timing delays during simulation.

Figure 23: Delay Scaling Example

Delay_scaling
Delay_scaling allows a scale factor to be applied to the SDF value prior to its usage. The
basic algorithm is:

Any value that is mapped to a “min” scaled delay is multiplied by MinFactor, “typ”
by TypFactor, and “max” by MaxFactor.

A separate scale factor is specified for each individual SDF delay range value. You
must separate MIN, TYP, and MAX values with commas.

Syntax
(DELAYSCALE {MIN, | TYP, | MAX | MTM } MinFactor TypFactor MaxFactor)

Three-SDF-value case

Single-SDF-value case

Selected
SDF

Specified by
Delay scaling

min

max
typ

min

max
typ

min

max
typ

SDF Source
Compiled
Time File

Specified by
Delay scaling

Selected by
Simulator at
Model Init

Compiled
Time File

min

max
typ

Selected by
Simulator at
Model Init

Mode

Mode

MinFactor

TypFactor

MaxFactor

SDF Source
MinFactor

TypFactor

MaxFactor

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

February 2001 Synopsys, Inc. 187

�

Arguments

MinFactor
Floating point multiplier applied to minimum values.

TypFactor
Floating point multiplier applied to typical values.

MaxFactor
Floating point multiplier applied to maximum values.

All three delay scale factors must be specified. If the entire delay_scaling is unspecified,
then the following is assumed:

(DELAYSCALE MTM 1.0, 1.0, 1.0)

The application of the scale factors works such that the {MIN | TYP | MAX | MTM }
construct specifies the selected SDF source and the scale factor triplet specifies the
scaling that occurs for each SDF destination.

The mapping of SDF source to selected SDF in Figure 23 is controlled by the MIN,
TYP, MAX, and MTM arguments as shown below.

Interconnect Statement
The Interconnect statement specifies where to place the SDF interconnect delay on the
model. From the model’s perspective, there are three possibilities: interconnect delays
can be placed on model inputs, model outputs, or can be ignored.

Syntax
(INTERCONNECT { RCVR | DRVR [MIN | MAX])

Arguments
RCVR | DRVR

Specifies whether the interconnect delay is placed on the receiving (RCVR) or
driving (DRVR) port.

RCVR MIN
Use the shortest path to any receiver, adding the delay to all receiving input ports.

RCVR MAX
Use the longest path to any receiver, adding the delay to all receiving input ports.

MIN TYP MAX MTM

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

188 Synopsys, Inc. February 2001

�

DRVR MIN
Use the shortest path from any driver, adding the delay to all driving output ports.

DRVR MAX
Use the longest path from any driver, adding the delay to all driving output ports.

If you omit the Interconnect statement, all interconnect delays will be ignored. This is
the setting that is used when the simulator is configured to accurately simulate all
interconnect delays.

For example, Figure 24 illustrates where InstC and InstD are SmartModels.

Figure 24: Interconnect Example

RCVR MIN. Places the shortest delay of d11 and d21 on InstC.I port and the shortest
delay of d12 and d22 on InstD.I.

RCVR MAX. Places the longest delay of d11 and d21 on InstC.I port and the longest
delay of d12 and d22 on InstD.I.

DRVR MIN. Places the shortest delay of d33 and d34 on InstC.O port and the shortest
delay of d34 and d44 on InstD.O.

DRVR MAX. Places the longest delay of d33 and d34 on InstC.O port and the longest
delay of d43 and d44 on InstD.O.

Process Output

Error Message Log
As delay values are annotated onto the model’s timing, a log containing error messages
from the annotator is written to a file you specify. By default, the log file is named
./ba.log. If more than one SDF file is used the messages are concatenated. The statement
syntax is:

(LOGFILE FileName)

InstA

InstB

InstC

InstD

InstE

I

I
O

O
O

O

I

InstF
I

d11

d12

d21

d22

d33

d34

d43

d44

SmartModel Library User’s Manual Chapter 9: Back-Annotating Timing Files

February 2001 Synopsys, Inc. 189

�

Model Time Files Location
As each model’s timing is processed, compiled model time files are created. By default
these files are placed in the current directory. You can specify a different destination
directory with the following statement:

(LMC_PATH pathname_1:pathname_2: . . . :pathname_x)

Setting Environment Variables
Set the $LMC_HOME environment variable to point to the directory that is the root of
the SmartModel Library installation. You can use the $LMC_PATH variable to
reference alternate locations to search for .td and .tt files for the compilation of
SmartModel timing files (.tf).

Backanno Command Syntax
The syntax for the backanno command is as follows:

$LMC_HOME/bin/backanno config_file -ow -i

The following are the various sets of arguments for the backanno command:

-ow
Overwrites SDF files in the current directory when creating new SDF files.

-i
Causes case insensitivity. By default, backanno treats identifiers as case-sensitive,
just like Verilog syntax, but the -i switch causes them to be case-insensitive, just
like VHDL.

Running Backanno
Run the Backanno tool as shown in the following example:

% $LMC_HOME/bin/backanno configFile

Backanno creates the following files in the current working directory:

● The BAMODELS.LST file lists the back-annotated models.

● One .tf file for each model. Note that if you set the $LMC_PATH construct in the
configuration file, the .tf files are written instead to the specified directory.

● An SDFFILES.LST file that maps the original SDF file name to the new SDF file
name. Note that the new SDF file may have certain SDF constructs commented out
to account for timing data that was extracted and back-annotated to the .tf files.

Chapter 9: Back-Annotating Timing Files SmartModel Library User’s Manual

190 Synopsys, Inc. February 2001

�

● SDF files that have the extracted timing values commented out.

Copying the Resulting Timing Files (.tf)
You can copy the new .tf files to the appropriate model directories or change your
$LMC_PATH environment variable so that the correct .tf files are picked up by the
simulator.

Note�
If you copy back-annotated .tf files into the model directories, all users of
the models will be using the back-annotated .tf files, whether that is their
intent or not. If instead you place your back-annotated .tf files into a
directory that you then reference with $LMC_PATH, only you are affected.

Replacing the Original SDF Files
To run your simulation with the back-annotated .tf files, replace the original SDF files in
your design with the new SDF files (listed in the SDFFILES.LST).

If you use Verilog-XL HDL you can use Verilog-XL preprocessor directives to switch
between your original SDF file and the new SDF file as follows:

‘ifdef USE_BA
$sdf_annotate(“mySdf.sdf.new”);

‘else
$sdf_annotate(“mySdf.sdf”);

‘endif

When you want the new “mySdf.sdf.new” to be active, add the following to your
original simulation command line:

+define+USE_BA

SmartModel Library User’s Manual Chapter 10: Library Tools

February 2001 Synopsys, Inc. 191

�

10
Library Tools

Introduction
Many users will find that the only tools they need to make effective use of the
SmartModel Library are the sl_admin and sl_browser tools, both available in
$LMC_HOME/bin. Together, the Admin and Browser tools constitute the primary user
interface to the SmartModel Library. That said, there remain some tasks that can only be
accomplished using the command-line tools that are also provided with the library in the
$LMC_HOME/bin directory. This chapter describes some of the command-line tools,
what they are good for, and how to use them. Other command-line tools such as
compile_timing are discussed in the context of broader discussions. For example, you
can find more information about the compile_timing tool in the chapter about
“User-Defined Timing” on page 157. Here’s a preview of the miscellaneous tool topics
that are covered in this chapter:

● Creating PortMap Files

● Copying Customizable Files with sl_copy

● Translating Memory Image Files

● Adding Back-Annotation

● Checking SmartModel Installation Integrity

For more information on the Admin tool, refer to the SmartModel Library
Administrator’s Manual. Detailed information about the Browser tool is provided in
“Browser Tool” on page 43. Refer to “Browsing Your Design Using SmartBrowser” on
page 106 for information on using the SmartBrowser command-line tool.

For information on setting environment variables and running command-line tools on
NT, refer to “Setting Environment Variables on NT Platforms” on page 43 and “Running
Console Applications on NT Platforms” on page 44.

Chapter 10: Library Tools SmartModel Library User’s Manual

192 Synopsys, Inc. February 2001

�

Creating PortMap Files
A PortMap is an ASCII file that describes a SmartModel’s interface requirements (for
example, the pin porting between a symbol and the model it represents). PortMap files
simplify the task of interfacing SmartModels with custom symbols. They are structured
for easy parsing, thus providing a convenient source of information you can use in
scripts or programs to create or verify custom symbols for use with SmartModels.

You can generate PortMap files using the ptm_make tool that comes with the
SmartModel Library in $LMC_HOME/bin. Before running ptm_make, however,
please note the following limitations. PortMap files generated from Synopsys data:

● Do not contain all of the data required to produce a high-quality visual symbol
representation—they are not useful as a symbol generation database.

● Include only the pins that are used to define the functional description of the model.

● Do not contain printed circuit board (PCB) interface information such as data to
drive a physical design system.

Note�
The ptm_make tool is not supported for FlexModels.

Using the ptm_make Tool
The ptm_make tool generates PortMap files based on ModelMap data contained in the
individual model directories. The tool uses the $LMC_HOME environment variable to
locate the models. Models are user-versioned. The ptm_make tool selects model
versions based on information in the default or custom .lmc file.

Syntax
PortMap files generated by the ptm_make tool are named model.ptm. Run ptm_make
from the command line using the following syntax:

% ptm_make [model, ...] [-d , path_name] [-h]

Arguments
model Use this optional argument to specify one or more

model names. If you do not specify any model names,
ptm_make generates PortMap files for all installed
models.

SmartModel Library User’s Manual Chapter 10: Library Tools

February 2001 Synopsys, Inc. 193

�

Switches
-h[elp] Specify this switch for help using the ptm_make tool.

-d[ir] Use this switch to specify a destination directory for the
generated PortMap file. If you do not use this switch,
ptm_make puts the PortMap file output in the current
working directory.

Examples
The following example generates a PortMap file for all models in the library:

% ptm_make

The following example generates specific PortMap files for the ttl00 and ttl821 models:

% ptm_make ttl00 ttl821

The following example places the generated PortMap files in the existing directory
/user/drj/portmaps:

% ptm_make ttl00 ttl821 -d /user/drj/portmaps

PortMap File Format
A PortMap file contains a cross-reference of manufacturer pin-to-model signal names
for all supported package types, and other data needed for a model to function with a
custom symbol. You can use this data to provide the data link between a custom symbol
and the corresponding SmartModel. In some environments you might use this data as
an interface between a custom symbol and the model, or you could merge the data with
your own symbol data to create new symbols.

PortMap files provide data in a format that can be parsed with UNIX tools such as awk
and grep if you need to systematically extract information. File names for PortMap files
consist of the model name and a .ptm extension. For example, the PortMap file of the
ttl2151 model has the name ttl2151.ptm.

A PortMap file consists of a set of records that contain keywords and one or more value
fields. Keywords and value fields are separated by vertical bars (|). Legal values for
value fields depend on the keyword.

Chapter 10: Library Tools SmartModel Library User’s Manual

194 Synopsys, Inc. February 2001

�

The following illustration shows the general format of a PortMap file. Brackets indicate
that the enclosed item is optional; ellipses indicate that the preceding item can be
repeated.

MODEL | model_name
VERSION | version
FUNCTION | function
SUBFUNCTION | subfunction
RANGE | range
MODELFILE | type [| type]
. . .
PACKAGE | package_type

PIN_COUNT | pin_count
DEVICE/COMP | device | comp
MODEL_PORT | pin_name | pin_type | pin_number [| pin_number]

. . .

The MODEL, VERSION, FUNCTION, SUBFUNCTION, RANGE, and MODELFILE
records can appear only once in a PortMap file. The PACKAGE, PIN_COUNT,
DEVICE/COMP, and MODEL_PORT records can appear multiple times depending on
how many packages are defined for the associated model. Note that the PIN_COUNT,
DEVICE/COMP, and MODEL_PORT records are indented to indicate that they are
subordinate to the PACKAGE record. Following are definitions for each of the PortMap
file records:

MODEL | model_name
Specifies the model to which the data corresponds. The model_name value is the
name of a model (for example, ttl00).

VERSION | version
Specifies the version number for the PortMap file. Note that PortMap files
generated by the ptm_make utility do not have valid version records.

FUNCTION | function
Specifies the name of a functional category for a model (for example, processor or
memory).

SUBFUNCTION | subfunction
Specifies the name of a subfunctional category for a model (for example, dram or
sram).

RANGE | range
Specifies the default timing range. Values for range can be MIN, TYP, MAX, or
blank (no value). However, the ptm_make tool only generates range values of
MAX.

SmartModel Library User’s Manual Chapter 10: Library Tools

February 2001 Synopsys, Inc. 195

�

MODELFILE | type [| type] ...
Specifies the type of additional configuration information the associated model
requires. Models that require more than one type of configuration information are
listed with multiple type values. Accepted values include PLD (JEDECFile), HVM
(PCLFile), MEMORY (MemoryFile), and FPGA (SCFFile).

PACKAGE | package_type
Specifies the definition of a package. Accepted values include DIP, SOP, LCC,
FLP, PGA, SMT, ZIP, RCC, SDP, and SOJ. The package type has a numeral
appended to it to distinguish multiple descriptions of the same basic package type.

PIN_COUNT | pin_count
Specifies the total number of physical pins (including VCC, GND, NC, and so on)
for the current PACKAGE description.

DEVICE/COMP | device | comp

device
Specifies the semiconductor vendor's device name (order number) as given in the
manufacturer's data book. The device field may contain a vendor-specific
extension if two or more vendors have identical ordering information.

comp
Specifies the timing version name. The value corresponds to one of the CASE
statement values in the model's timing file.

MODEL_PORT | pin_name | pin_type | pin_number [| pin_number] ...

pin_name
Specifies the pin name used by the model to communicate with the simulator about
the pin.

pin_type
Specifies the pin type. Accepted values include IN (input), OUT (output), IXO
(bidirectional), and IYO (an output pin that must be seen as bidirectional). If the
pin_type is IYO, it must be defined on the symbol as an IXO pin. Note that the
ptm_make tool labels all IYO pins as IXO pins.

pin_number
Specifies the physical pin number for the current package type. Multiple
pin_number values indicate a gate description where the values represent the pin
numbers of each gate of the physical package.

Chapter 10: Library Tools SmartModel Library User’s Manual

196 Synopsys, Inc. February 2001

�

Example PortMap File
The following sample shows part of a PortMap file generated by the ptm_make tool for
the pal22v10 model. Ellipses (...) indicate places where information has been removed
to conserve space. .

MODEL|pal22v10
VERSION|...
FUNCTION|prog_logic_devices
SUBFUNCTION|pal24
RANGE|MAX
MODELFILE|PLD
PACKAGE|DIP0
PIN_COUNT|24
DEVICE/COMP|AMPAL22V10-15DC|AmPAL22V10-15
DEVICE/COMP|AMPAL22V10-15DCB|AmPAL22V10-15
. . .
DEVICE/COMP|TICPAL22V10MJT|TICPAL22V10M
DEVICE/COMP|TICPAL22V10MNT|TICPAL22V10M
MODEL_PORT|COFB0|IXO|23
MODEL_PORT|COFB0|IXO|22
. . .
MODEL_PORT|IN8|IN|10
MODEL_PORT|IN9|IN|11
PACKAGE|FLP0
PIN_COUNT|24
DEVICE/COMP|AMPAL22V10-20BKA|AmPAL22V10-20
. . .
DEVICE/COMP|PALCE22V10H-30/BKA|PALCE22V10H-30
MODEL_PORT|COFB0|IXO|23
. . .
MODEL_PORT|IN9|IN|11
PACKAGE|LCC0
PIN_COUNT|28
DEVICE/COMP|AMPAL22V10-15JC|AmPAL22V10-15
. . .
DEVICE/COMP|TIBPAL22V10MFK|TIBPAL22V10M
MODEL_PORT|COFB0|IXO|27
. . .
MODEL_PORT|IN9|IN|13

SmartModel Library User’s Manual Chapter 10: Library Tools

February 2001 Synopsys, Inc. 197

�

Copying Customizable Files with sl_copy
You can use the Browser tool to copy customizable model source files such as model
timing data files one at a time and then modify them to suit your needs. This method is
explained in “Copy Customizable Files Dialog Box” on page 67. When you need to
copy multiple model source files, you can use the sl_copy tool to do the job. Ordinarily,
you could use a UNIX cp command to copy files and then modify them. But with the
SmartModel Library, more than one version of the same model can exist in the same
installed library ($LMC_HOME). It is therefore easy to inadvertently pick up the wrong
version of a model source file. To solve this problem, Synopsys provides the Copy
Customizable Files function with the Browser tool and the sl_copy tool for use on the
command line.

By default, the sl_copy tool copies model.td files that you can then edit to create custom
timing versions of models. For more information on creating custom timing versions,
refer to “User-Defined Timing” on page 157. You can also use sl_copy to copy
command header files (model.cmd) for Hardware Verification (HV) models. For more
information on HV models, refer to “Processor Models” on page 129.

Syntax
You can run the sl_copy tool from the command line in two different ways, as shown in
the following examples:

% sl_copy [switches] model_name new_file_name

% sl_copy [switches] model_name [model_name] directory_name

Arguments
model_name Specify a model name whose source file you want to

copy. If you specify an output directory using the
directory_name argument, you can also specify
multiple model names on the same command line.

new_file_name Specify a full path and file name for the new file to be
created if you are copying the source file from just one
model.

directory_name Specify a directory name where you want the copied
source files from multiple models to be created if you
list more than one model. The directory must already
exist for this to work.

Chapter 10: Library Tools SmartModel Library User’s Manual

198 Synopsys, Inc. February 2001

�

Switches
-td Use this switch if you want to copy a model’s timing

data (.td) file. This is the file that the tool copies by
default if you do not specify otherwise.

-cmd Use this switch if you want to copy a Hardware
Verification (HV) model’s command header file (.cmd).

-v This switch puts the tool in verbose mode, causing it to
display the name of each copied file as it is being
created.

-h Use this switch to get a help message about using the
tool.

Translating Memory Image Files
SmartModel Library memory models read memory image files (MIF) to configure
themselves at simulation startup. The MIF file format does not match other memory
image formats created by third parties; specifically, Intel Hex and Motorloa S-record
formats.

As a convenience, Synopsys supplies a command-line tool called mi_trans (memory
image translator) that you can use to convert Intel Hex and Motorola S-record memory
image files into the MIF format. The mi_trans tool replaces an earlier translator that you
may have used in the past called mkmemimage. The mi_trans tool offers the following
enhancements:

● Intel Hex—For Intel Hex translations, mi_trans handles both extended segment
address records and extended linear address records.

● Motorola S-record—For Motorola S-record translations, mi_trans can process input
files containing mixed data lengths in different records. The tool recognizes S0, S5,
S7, S8, and S9 records anywhere in the file.

Syntax
Run the mi_trans tool from the command line as shown in the following example:

% mi_trans input_file output_image_width [-be] [-single] [-h]

Arguments
input_file Specify a single input file either in Intel Hex or

Motorola S-record format.

SmartModel Library User’s Manual Chapter 10: Library Tools

February 2001 Synopsys, Inc. 199

�

output_ image_width Specify the desired width of data in the output file in
terms of the number of nibbles, where each nibble
equals four bits. The output data width must be less
than or equal to the input data width.

Switches
-be Use this switch if you want your output to be

big-endian. If you do not set this switch, mi_trans
creates little-endian output.

-single Use this switch if you want to create a single output file
with data in consecutive addresses. (This only applies
to the Motorola S-record input format.)

-h Specify this switch for help using the mi_trans tool.

The mi_trans tool generates one or more SmartModel MIF files named mem.1, mem.2,
mem3, and so on. The first MIF file (mem.1) contains the most significant bits of the
data. If the input file data width is not a multiple of the output data width, mi_trans
pads the MSB with zeros to make it fit.

Example #1—Input and output data widths match
Input data width:

8 bits per address
Output data width:

8 bits per address (2 nibbles)
% mi_trans input.data 2

In this case, the mem.1 output file data width corresponds exactly to the input data.

Example #2—Input data width a multiple of output data
width

Input data width:
16 bits per address

Output data width:
4 bits per address (1 nibble)

% mi_trans input.data 1

In this case, mi_trans generates four files (mem.1 through mem.4). For each memory
address, the tool writes out the most significant four bits in mem.1 and the least
significant bits in mem.4.

Chapter 10: Library Tools SmartModel Library User’s Manual

200 Synopsys, Inc. February 2001

�

Example #3—Input data width not a multiple of output data
width

Input data width:
18 bits per address

Output data width:
16 bits per address (4 nibbles)

% mi_trans input.data 4

In this case, mi_trans generates a mem.1 file that holds the two MSBs padded with
zeros. The mem.2 file contains the lower 16 bits of data.

Adding Back-Annotation
You can extract back-annotation timing data from Standard Delay Format (SDF) files
using the Backanno tool and annotate them to the SmartModel timing data format. The
Backanno tool creates new user SDF files and compiled timing files (.tf).

Syntax
Run the backanno tool from the command line as shown in the following example:

% $LMC_HOME/bin/backanno configFile

Argument
configFile Specifies the configuration file that controls the

back-annotation process.

For more information on using Backanno, including details about the configuration file
format, refer to “Back-Annotating Timing Files” on page 181.

Checking SmartModel Installation Integrity
If you encounter unexplained problems while working with SmartModel Library
models, it could be that the underlying cause is a faulty installation. To help diagnose
such problems, Synopsys provides a tool called swiftcheck. The swiftcheck tool can
identify many common installation problems by:

● Verifying that environment variables are properly set

● Checking that the SmartModel Library is properly installed

● Loading a user-specified model and exercising basic functionality

SmartModel Library User’s Manual Chapter 10: Library Tools

February 2001 Synopsys, Inc. 201

�

The swiftcheck tool reports the values of these environment variables:

● $LMC_HOME (required)

● $LMC_PATH

● $LMC_COMMAND

● $LM_LICENSE_FILE

● $LD_LIBRARY_PATH (SunOS only)

The swiftcheck tool verifies the values of these environment variables and produces an
error message if it cannot find any of them. In particular, you will get a fatal error if the
required variable $LMC_HOME is not set.

To verify the installation of your SmartModel product, swiftcheck searches for the
necessary runtime utilities, using the $LMC_HOME environment variable for the path.

The swiftcheck tool enables you to specify a model that it will load and attempt to
exercise. The swiftcheck tool loads all of the specified model’s timing files and, if
specified, custom configuration file(s). By loading and initializing the model,
swiftcheck effectively tests the value of the $LMC_PATH environment variable and
provides you with a simple way to test configuration files.

Because SmartModels do not require a configuration for initialization, swiftcheck loads
and exercises the selected model even if you do not specify a configuration file.
However, if swiftcheck cannot find the timing files for a model, it will not load or
initialize that model.

The swiftcheck tool displays important messages (such as fatal errors) on your screen
when the errors occur. In addition, swiftcheck places all messages, regardless of
severity, in a log file named swiftcheck.out.

Syntax
Run the swiftcheck tool from the command line as shown in the following example:

% swiftcheck model [-switches]

Argument
model Specify the installed model that you want the tool to

load and exercise as a test of basic installation integrity.

Switches
-e[rrorlog] filename Use this switch to a specify an output file for the error

log other than the default of swiftcheck.out.

Chapter 10: Library Tools SmartModel Library User’s Manual

202 Synopsys, Inc. February 2001

�

-h[elp] Specify this switch for help using the swiftcheck tool.

-hh[elp] Specify this switch to print a more detailed message
about using the swiftcheck tool.

-j[edecfile] filename Load the specified configuration file for the JEDEC
model.

-m[emoryfile] filename Load the specified configuration file for the memory
model.

-n[omodels] Use this switch if you want to run swiftcheck but do not
want the tool to load and exercise a model.

-p[clfile] filename Load the specified configuration file for the HV model.

-t timing_version Load a particular timing version for the specified
model.

-u[sage] Another switch that you can specify for help using the
swiftcheck tool.

Examples
The following example invocations show how to invoke the swiftcheck tool in several
different ways. The first example causes swiftcheck to load and exercise the ttl00 model,
which does not require a configuration file:

% swiftcheck ttl00

This next example causes swiftcheck to load and exercise the am2168 memory model
using the MIF file called my_memfile to configure the model:

% swiftcheck -m my_memfile am2168

The next example causes swiftcheck to load and exercise the mc68332_hv hardware
verification model using the MIF file called my_memfile and the PCL file called
my_pclfile to configure the model:

% swiftcheck -m my_memfile -p my_pclfile mc68332_hv

SmartModel Library User’s Manual Appendix A: Reporting Problems

February 2001 Synopsys, Inc. 203

�

A
Reporting Problems

Introduction
If you think a SmartModel is not working correctly, check with your System
Administrator to see if you are using the latest version. It is possible that a more recent
version of a model has the fix you need. Significant model changes are documented in
the model history section at the end of each model’s datasheet.

First, verify the version number of the model using the Browser tool
($LMC_HOME/bin/sl_browser) to access the model datasheet. The title banner at the
top of all SmartModel datasheets lists the model’s MDL version number. Then compare
reported fixes for subsequent versions of that model by reading the model history
section at the end of the latest datasheet on the Model Directory:

http://www.synopsys.com/products/lm/modelDir.html

For more information on model history, refer to “Model History and Fixed Bugs” on
page 205.

If you cannot find a more recent model version that solves the problem, contact
Customer Support. For details on how to get in touch with Synopsys, refer to “Getting
Help” on page 13.

Using Model Logging
Before you contact Technical Support, create a model logging file (mlog.cfg). Model
logging captures all of a model’s activity during simulation (that is, stimulus and
response) in ASCII text format. Transmitting an mlog.cfg file to Technical Support will
help ensure accurate diagnosis of the problem. Only one instance of one model can be
logged at any one time and system performance degrades when you use model logging.

http://www.synopsys.com/products/lm/modelDir.html
mailto: sw_support@synopsys.com

Appendix A: Reporting Problems SmartModel Library User’s Manual

204 Synopsys, Inc. February 2001

�

Note�
FlexModels with a name that ends in “_fx” use a different method for model
logging. For details, refer to the FlexModel User’s Manual. For
FlexModels that end in an “_fz” extension and all other SmartModels, use
the procedures that follow.

To enable model logging, create a file called mlog.cfg in the directory where you run the
simulator. All models look for this file and, if it exists, read its contents to determine
which model to log. You can select a model for model logging in any of the following
ways:

1. Create an empty mlog.cfg file. If you do not specify a particular model, the first
SmartModel loaded in a circuit is logged. This is handy if you have only one model
in the design.

2. Specify a model by its model name. Put a line in the mlog.cfg file that follows this
case-sensitive convention:

%m model_name

For example:

%m mc68030_hv

This causes the first model of that name to be logged. This is a good method to use
when the design has only one instance of a particular model type.

3. Specify a model by its instance name. Put a line in the mlog.cfg file that follows
this case-sensitive convention:

%i instance_name

For example:

%i u100

The instance with instance name u100 is logged.

During simulation, the specified model creates a file named mlog.log. This file contains
all of the stimulus and response recorded at the model’s ports during simulation.

Logging Multiple Instances
If you need to log more than one instance of a model in the design, reset the instance
name specified in the mlog.cfg file and rerun the simulator for each instance you want to
log. Remember to save the mlog.log output file to another location prior to running the
simulator.

SmartModel Library User’s Manual Appendix A: Reporting Problems

February 2001 Synopsys, Inc. 205

�

Transmitting the Log File
Before copying the log file, call the Synopsys Technical Support Center to make sure
you have an acceptable media type. When you contact the Technical Support Center
your request is assigned an issue number. If you need to contact Technical Support later,
please have this issue number available.

Other Diagnostic Information
Depending on the type of model, the following information may be required in addition
to the mlog.cfg file:

● Hardware verification models. Send the PCL source program, and any other files
required for compilation.

● PLD models. Send the source JEDEC program files.

● Memory models. Send the memory image files.

● SmartCircuit models. Send the netlist description files necessary to create a CCN
file, and your MCF file. Also provide the version numbers of any third-party tools
you used, and the version number of smartccn.

Please use e-mail to send the test data described above for the type of model you are
using. In all communications to the Synopsys Technical Support Center, please include
a phone number where we can reach you.

Model History and Fixed Bugs
At the end of each SmartModel datasheet is a model history section detailing significant
model changes that occurred during the past year. If the model has not changed
significantly in a year, its datasheet does not contain any model history entries.
Significant changes cause the model to behave differently in simulation. Of course, this
includes all model bug fixes. For information about gaps in model version numbers,
refer to “MDL Version Numbers and Model History” on page 26.

Each change entry in the model history includes the:

● Reference number

● MDL version of the model after the change

● MDL date of the change

● Problem and resolution descriptions

Appendix A: Reporting Problems SmartModel Library User’s Manual

206 Synopsys, Inc. February 2001

�

Model history entries look like the following example.

--
Reference:: 41087

MDL Version:: 01002
MDL Date:: 13-June-1996

SRC Version:: v1.1

Problem:: The minimum high/low pulse width for CCLK in
synchronous peripheral mode did not conform to revised
vendor specifications.

Resolution:: Corrected the model.
--

Model History Entry Field Descriptions

The “Reference::” Field
The “Reference::” field contains the internal number assigned to the specific change.

The “MDL Version::” Field
The “MDL Version::” field contains the model version after the change. Not all MDL
version number changes are significant. Only changes such as bug fixes that affect
model behavior are considered significant and generate model history entries. That’s
why the model MDL version number listed in the title banner on the first page of a
datasheet can be a higher number than the MDL version number listed in the latest
model history entry for a model.

The “MDL Date::” Field
The “MDL Date::” field contains the publication date for the corresponding MDL
Version of a model.

The “SRC Version::” Field
The “SRC Version::” field contains the internal model source code version after the
change. Because not all MDL Version changes for a model involve changes to the
source code, the same SRC Version number can appear in multiple model history entries
for different MDL Version numbers.

The “Problem::” and “Resolution::” Fields
The “Problem::” and “Resolution::” fields briefly describe the user-visible symptoms of
the problem and, if appropriate, what was changed to correct it.

SmartModel Library User’s Manual Appendix B: Glossary

February 2001 Synopsys, Inc. 207

�

B
Glossary

Introduction
Following are definitions of some terms that have special meaning in the context of
using the SmartModel Library.

Configuration. A platform-specific set of SmartModel Library models and user-
versioned tools, with one version number specified for each.

Configuration (LMC) File. A file that contains a configuration; that is, a platform-
specific set of SmartModel Library models and user-versioned tools, with one version
number specified for each. Configuration files have .lmc extensions.

Custom Configuration. A user-specified, platform-specific set of SmartModel Library
models and user-versioned tools, with one version number specified for each.
Overrides model and tool versions specified in the default configuration.

Custom Configuration (LMC) File. A file that contains a custom configuration; that
is, a user-specified, platform-specific set of SmartModel Library models and user-
versioned tools, with one version number specified for each. Custom configuration files
have .lmc extensions.

Datasheet. A document that describes a model in the SmartModel Library, including
its sources, supported hardware components and devices, programming, use, timing
parameters, and any differences between the model and the corresponding hardware
part.

Default Configuration. A system-specified, platform-specific set of SmartModel
Library models and user-versioned tools, with one version number specified for each;
used if no other user-specified configuration exists.

Appendix B: Glossary SmartModel Library User’s Manual

208 Synopsys, Inc. February 2001

�

Default Configuration (LMC) File. The file that contains the default configuration;
that is, a system-specified, platform-specific set of SmartModel Library models and
user-versioned tools, with one version number specified for each. Supplied with the
SmartModel Library.

LD_LIBRARY_PATH . For Sun operating system only. An environment variable that
contains the path to Sun libraries that are to be executed.

LMC_COMMAND. An environment variable that contains a semicolon-separated list
of session commands to be used during simulation.

LMC_CONFIG. An environment variable that contains a colon-separated list of paths
to user-specified configuration (LMC) files. For NT, path entries must be separated by
semicolons.

LMC_HOME. An environment variable that contains the path to the SmartModel
installation tree.

LMC_PATH. An environment variable that contains a colon-separated list of paths to
user-specified model timing files. For NT. path entries must be separated by
semicolons.

LM_LICENSE_FILE. An environment variable that contains the path to a FLEXlm
license file. For NT, path entries must be separated by semicolons.

LMC or .lmc file. A configuration file. “LMC” stands for “List of Model
Configurations”. An LMC file must have the .lmc extension.

Model. A behavioral software representation of a standard integrated circuit.

Model Name. A string of alphanumeric characters that identifies a specific model in
the SmartModel Library (for example, am2168, dflipflop, or i80c31).

Model Report. One of the three different reports that you can generate using the
Browser tool.

Model Version. A string of numbers that identifies a specific version of a model in the
SmartModel Library (for example, 01000, 01003, or 01012).

Model-versioned Tool. A tool whose version number is specified by the model and
cannot be specified by the user. Examples of model-versioned tools include
compile_pcl and compile_timing.

Platform. The workstation on which the SmartModel Library is to be installed (for
example, hp700, sunSunOS, or pcnt).

Predefined Window Element. A window element created by Synopsys and supplied
with a specific model.

SmartModel Library User’s Manual Appendix B: Glossary

February 2001 Synopsys, Inc. 209

�

SmartModel Library. A collection of behavioral simulation models of standard
integrated circuits, designed to be used in EDA simulation environments that use the
SWIFT interface.

.td file. A source timing version file.

.tf file. A timing version file that has been compiled and is ready for simulation.

Timing File. A file that contains timing parameters for a SmartModel.

Timing Version. A SmartModel representation that specifies model timing parameters.
Each timing version has a unique name.

User-defined Window Element. A window element created by a user.

User-versioned Tool. A tool whose version number can be specified by the user,
usually by placing it and its version number in a custom configuration file. Examples of
user-versioned tools include ptm_make, mi_trans, and swiftcheck.

Window. A view through which you can access one or more of a model’s internal
registers.

Window Element. A window with a specific name, created to monitor a specific
register or memory array.

Appendix B: Glossary SmartModel Library User’s Manual

210 Synopsys, Inc. February 2001

�

SmartModel Library User’s Manual Index

February 2001 Synopsys, Inc. 211

Index

Symbols
#define directive 145
#include directive 145, 146
#undef directive 145
%EXE command 49
%MOD command 49
%PLT command 48

Numerics
64-bit time 29

A
Address mapping

MIF files 75
alias command 118
Aliasing commands 111
Analyses

causal tracing 92
analyze cell command 112
analyze design command 112
analyze hierarchy command 112
Areas

status 66
assign monitor instance command 112
assign monitor net command 112
assign monitor state command 113
assign timing 113
assign timing command 113
assign window auto command 113
assign window instance command 113
assign window net command 113
assign window state command 113
Assignment statements 147
Associativity

operators 142
Assumptions

modeling 34
AutoWindows 128

B
backanno tool, running 189
Back-annotation

timing files 181
Back-annotation process

finishing 189
Blocks

model, timing data file 170
Boundary scan

features in models 36
break statement 148
Browser

actions menu 62
docs menu 63
file menu 61
help menu 63
menu bar 61
SmartModel Library 43
starting 46
tool bar 64
tool, using 45
toolbar 64
user menu 63
view menu 62
window 59
window on NT 60

bus command 119
Buses

creating 96

C
Causal tracing

analysis reports 92
commands 92

ccn_report command 20, 45, 88, 90, 96
ccn_report tool 90
Checking

error 31
Checks 81

control, timing 33

Index SmartModel Library User’s Manual

212 Synopsys, Inc. February 2001

format, MIF files 76
PCL file 131
read cycle 35
timing 32
timing compiler 178
timing, setup and hold 35
usage 31

Command
completion 111
header file 136

Commands 110, 113, 118
%EXE 49
%MOD 49
%PLT 48
alias 118
aliasing 111
analyze cell 112
analyze design 112
analyze hierarchy 112
assign monitor instance 112
assign monitor net 112
assign monitor state 113
assign window auto 113
assign window instance 113
assign window net 113
assign window state 113
bus 119
ccn_report 20, 45, 88, 90, 96
compile_pcl 131, 132, 152, 153
compile_timing 20, 45, 158, 161, 163,

165, 168, 179
do 120
echo 120
examine instance 113
examine net 114
examine port 114
examine state 114
examine timing 114
help 120
list all 114
list cells 114
list instances 114
list mcf 114
list nets 114
list pin Interface 114

list ports 114
list states 114
list timing 115
load 120
log 118
mi_trans 45, 48, 49, 75, 198
ptm_make 45, 48, 49, 192, 196
quit 118
report cause 92, 94
report effect 92, 93
rerun 118
run 118
save design 118
save mcf 118
set bus bitOrder 115
set bus delimiter 115
set cause 92, 94
set help completion 115
set illegalchars 115
set listAll 115
set range 121
set saveMcf 115
set scope 116
set timing range 116
set timing unit 116
show bus bitOrder 115
show bus delimiter 115
show doc 116
show help completion 115
show illegalchars 115
show saveMcf 115
show scope 116
show timing range 116
show timing unit 116
show version 116
sl_browser 46, 47, 63
sl_copy 197
smartbrowse 107
smartbrowser 20, 45, 88, 90, 119, 121,

125, 205
smartccn 20, 45, 88, 90, 99, 119, 121,

123, 125, 205
swiftcheck 45, 48, 49, 57, 201
trace fin 117
trace fout 117

SmartModel Library User’s Manual Index

February 2001 Synopsys, Inc. 213

trace instances 117
trace nets 117
trace objs 117
trace pkgPin 117
trace ports 117
trace scvInstances 118
trace symbolPin 118
unalias 118
vsb 45
window 122

Comments
general, in timing files 168
PCL 140
range 170
timing data files 168
timing description 168
timing expression 169

compile_pcl command 131, 132, 152, 153
compile_timing command 20, 45, 158,

161, 163, 165, 168, 179
Compiler

timing, checks 178
timing, running 179
timing, using 178

Compound statements 147
Configuration

files, custom 49
models 21

Configuration files
custom, loading 56
LMC 48
open, dialog box 69
syntax 48

Configuration files, ANNOTATE section
185

Configuration files, creating 182
Configuration files, file format 182
Configuration files, Interconnect statement

187
Configuration files, MODEL section 184
Configuration files, sample 183
Configurations

memory, models 71
PLD models 79

Constants
PCL 139

Constraints
violations, scope 95

Constructs
PCL 138

continue statement 148
Control statements

PCL, program 148
Controls

timing check 33
Copying 197
Custom

model filters 51
timing versions 51

Custom files
configuration 49
configuration, loading 56

Custom menus
user, creating 46

D
Data

flow, SmartCircuit models 87
memory, dumping 77
types, PCL 139

Data files
model blocks, timing 170
timing, comments 168
timing, format 165

Datasheets
model, displaying 53
model, getting 27
via Model Directory 27

Debugging
design with trace messages 151

delay label 171
Delay label format 171
Delays

propagation 166
propagation, calculated 167
ranges 166

Designs

Index SmartModel Library User’s Manual

214 Synopsys, Inc. February 2001

partial, processor models in 35
Details

model, dialog box 68
Devices

unsupported, using 98
Diagnostic information 205
Dialog boxes

configuration files, open 69
customizable file, copying 67
model detail 68
model filters 66
model reports 68
Save As 69

Directives
#define 145
#include 145, 146
#undef 145
preprocessor 145

do command 120
do statement 148

E
echo command 120
Elements

window, predefined 23
window, using 25

Environment
settings (LMC) 56

Environment variables
setting on NT 43

Error checking 31
timing 32
usage 31

Errors
repairing 58

examine instance command 113
examine net command 114
examine port command 114
examine state command 114
examine timing command 114
Exceptions 135
Expressions

PCL 143

F
Fault simulation 33
Features

boundary scan 36
model, implementation-specific 33

FF models
see also Models, full-functional 129

Files
checks, PCL 131
command header 136
configuration (LMC) 48
configuration, ANNOTATE section 185
configuration, creating 182
configuration, custom - loading 56
configuration, custom LMC 49
configuration, file format 182
configuration, Interconnect statement

187
configuration, MODEL section 184
configuration, sample 183
configuration, syntax 48
customizable, dialog box 67
interface, format 100
interface, managing multiple 100
JEDEC, format checks 81
LMC, configuration 48
LMC, environment settings 56
log, transmitting 205
MCF, naming conventions 122
memory image (MIF) 72
MIF 72
MIF, address mapping 75
MIF, format 73
MIF, format checks 76
MIF, translating 198
open configuration, dialog box 69
PortMap, creating 192
PortMap, generated 193
SDF 190
SMTF (.tf) 190
timing 158
timing data, comments 168
timing data, example 161
timing data, format 165
timing data, model blocks 170

SmartModel Library User’s Manual Index

February 2001 Synopsys, Inc. 215

timing, back-annotation 181
timing, disabling display 47
timing, user-defined, compiling 106
UDT, disabling display 47
WDF, creating with SmartBrowser 96
WDF, using 96
window definition 96

Filters
custom, models 51
model, dialog box 66
models, custom 51

FlexModels 21
datasheets 26
model logging 204
SmartModel Windows 22
user-defined timing 157

for statement 149
Format checks

JEDEC files 81
MIF files 76

format, JEDEC files 81
Formats 171

interface file 100
timing check label 172
timing statement 173

Functions
displaying models with same 55
PCL 143
printf() 143

G
GUI

Browser graphical user interface 59

H
Header files

command 136
help command 120
HV models

PCL, using to configure 132
see also Models, hardware verification

129

I
Identifiers

PCL 138
if statement 149
Initial state

resetting to 33
Installation

integrity, checking 200
Interface files

formats 100
Interfaces

Browser, graphical user 59
graphical user, Browser 59
SWIFT, connection for SmartModels 17

Interrupts 135

J
JEDEC files

format checks 81
JEDEC standard

fields, table of 80

K
Keywords

PCL 138

L
LD_LIBRARY_PATH

for SunOS 208
on SunOS 201

Libraries
SmartModel, browser 43

list all command 114
list cells command 114
list instances command 114
list mcf command 114
list nets command 114
list pin Interface command 114
list ports command 114
list states command 114
list timing command 115
Lists

Index SmartModel Library User’s Manual

216 Synopsys, Inc. February 2001

model, locating in 53
LM_LICENSE_FILE

checking with swiftcheck 201
glossary definition 208
setting on NT 208

LMC files
configuration 48
custom configuration 49
environment settings 56

LMC_COMMAND
checking with swiftcheck 201
glossary definition 208
setting message verbosity 57

LMC_CONFIG
defining configuration files 56
glossary definition 208
loading custom configuration files 56
multiple entries on NT 50, 56
selecting model versions 44
setting on NT 208
using custom LMC files 50

LMC_HOME
checking with swiftcheck 201
glossary definition 208
installing models on NT 44
locating CMD files 136
locating default LMC files 56
locating installation directory 45
model installation directory 18
path to model .v files 127
selecting model versions 44
with backanno 189

LMC_PATH
checking with swiftcheck 201
displaying user-defined timing files 47
glossary definition 208
locating custom timing files 65
selecting custom timing files 52
setting on NT 159, 208
timing file search path 159
with backanno 189, 190

load command 120
log command 118
Log files

transmitting 205

Logging models 203
Logic values 30

table of 30

M
Mapping

address, MIF files 75
MCF files

command descriptions 119
naming conventions 122

MDL Version Numbers 26, 206
Memory

configuration, models 71
data, dumping 77
image files 72

Memory Address window 24
Memory Array window 24
Memory arrays

windows 23
Memory image files 72

format 73
see also MIF files 72
translating 198

Memory models 71
unprogrammed states 35

Memory Read/Write window 24
Memory windows 23

in VSS 198
Menus

actions 62
bar 61
custom user, creating 46
docs 63
file 61
help 63
user 63
view 62

Messages
trace, debugging with 151

mi_trans command 45, 48, 49, 75, 198
MIF files 72

address mapping 75
format 73
format checks 76

SmartModel Library User’s Manual Index

February 2001 Synopsys, Inc. 217

record syntax 74
translating 198

Model
history 205
history, descriptions 206
name, displayed in Browser at startup 47

Model Directory
getting model datasheets 27
Web site 17

Model types
FlexModel 21
full-functional 20, 129
hardware verification 20, 129

Model Versions
significant changes 26, 206

Model versions
determining most recent 52

Modeling
assumptions 34
changing states 40
timing relationships 34
uncertain 40

Models
behavioral 17
boundary scan features 36
configuration 21
custom, filters 51
datasheets, displaying 53
datasheets, getting 27
detail, dialog box 68
details, finding 55
features, implementation-specific 33
FF, see also Model, full-functional 129
filters, dialog box 66
full-functional 20, 129
functions, same - displaying 55
hardware verification 20, 129
history, for problem reports 205
HV, see also Models, hardware

verification 129
HV, using PCL to configure 132
list, locating model in 53
locating in model list 53
logging 203
memory 71

memory configuration 71
memory configuration, using 71
memory, unprogrammed states 35
PLD 79
PLD, programming 80
PLD, using 82
processor 71, 129
processor, in partial designs 35
reconfiguration 34
reports, dialog box 68
reports, repairing errors from 58
reports, saving 69
reset 33
SmartCircuit, pin mapping 90
SmartCircuit, using 84, 85
SmartModel behavioral simulation 17
status reports 30
timing relationships 34
vendor, displaying 54
versions, finding 55
versions, selecting 20

Monitors
SmartCircuit signal values 97

N
Names

conventions, MCF files 122
Nested statements 147
Netlists

compiling for SmartCircuit models 202
newlink Model Command File (MCF)

Reference 119
NT

browser help menu 63
browser navigation tools 70
invoking smartbrowser tool 107
running console applications 44
running programs from command line 44
running the PCL compiler 152
setting environment variables 43
setting LMC_CONFIG 50
setting LMC_PATH 159

Null statements 146

Index SmartModel Library User’s Manual

218 Synopsys, Inc. February 2001

O
Operations

save and restore 33
Operators

associativity 142
PCL 140
precedence 142

P
Panes

selection 65
Partial designs

processor models in 35
PCL

comments 140
compiler 152
constants 139
constructs 138
data types 139
expressions 143
file checks 131
functions 143
HV models, using to configure 132
identifiers 138
keywords 138
operators 140
processor control language 132
program control statements 148
program example 153
program structure 133
statement types 146
variables 139

Pins
mapping for SmartCircuit models 90
names, deriving 91

PLD models 79
configuration 79
programming 80
using 82

PortMap files 193
Precedence

operators 142
Preprocessors

directives 145

printf() function 143
Problem reports 203
Process, back-annotation -- finishing 189
Processor control language

see also PCL 132
Processor models 71, 129

FlexModels 129
simulating in partial designs 35

Program structure
PCL 133

Programmable logic devices
see PLD models 79

Propagation delays
assumed 166
calculated 167
selectable 33

ptm_make command 45, 48, 49, 192, 196

Q
quit command 118

R
Read cycle check

in SRAMs 35
Reconfiguration

model 34
report cause command 92, 94
report effect command 92, 93
Reports

causal tracing analysis 92
model, repairing errors from 58
models, dialog box 68
problem 203
saving, dialog box 69
status for models 30

rerun command 118
Reset

models 33
return statement 149
run command 118

SmartModel Library User’s Manual Index

February 2001 Synopsys, Inc. 219

S
Save and restore operations 33
save design command 118
save mcf command 118
Scaling timing in SmartCircuit models 120
Scopes

constraint violation 95
SmartBrowser tool 110

SDF files 190
Selection pane 65
set bus bitOrder command 115
set bus delimiter command 115
set cause command 92, 94
set help completion command 115
set illegalchars command 115
set listAll command 115
set range command 121
set saveMcf command 115
set scope command 116
set timing range command 116
set timing unit command 116
Settings

environment (LMC) 56
Setup and hold

timing checks 35
show bus bitOrder command 115
show bus delimiter command 115
show doc command 116
show help completion command 115
show illegalchars command 115
show saveMcf command 115
show scope command 116
show timing range command 116
show timing unit command 116
show version command 116
Signals

values, SmartCircuit monitor 97
Simulations

fault 33
processor models in partial designs 35

Simulator timing resolution 29
sl_browser command 46, 47, 63

sl_copy tool 197
smartbrowse command 107
smartbrowser command 20, 45, 88, 90,

119, 121, 125, 205
SmartBrowser tool 110

creating WDFs 96
interactive 106
interactive commands 110
scope of commands 110

smartccn command 20, 45, 88, 90, 99,
119, 121, 123, 125, 205

SmartCircuit models
data flow 87
netlists, compiling 202
pin mapping 90
scaling timing 120
using 85
using unsupported devices 101

SmartCircuit monitor
signal values 97

SmartCircuit technology 86
SmartModel Library

browser 43
features 17
overview 17
SWIFT interface, connection through 17

SmartModel Library Browser 43
starting 46

SmartModels
browser 43
configuration 21
datasheets, displaying 53
installation integrity, checking 200
library features 17
listed in Model Directory Web site 17
types 20
windows 22, 33

SRAMs
read cycle check 35

Startup
displaying model name in Browser 47

Statements
assignment 147
break 148

Index SmartModel Library User’s Manual

220 Synopsys, Inc. February 2001

compound 147
continue 148
do 148
for 149
if 149
nested 147
null 146
PCL, program control 148
PCL, types 146
return 149
switch 150
while 151

States
changing, diagram 41
changing, modeling 40
initial, resetting to 33
TAP, diagram of 37
uncertain, modeling 40
unprogrammed in memory models 35

Status area 66
Status reports

models 30
SWIFT interface

connection between SmartModels and
simulators 17

swiftcheck command 45, 48, 49, 57, 201
switch statement 150
Syntax

configuration file 48
MIF file record 74

T
TAP states

diagram of 37
Timing

changing states, diagram 41
check control 33
checks 32
checks, setup and hold 35
data files comments 168
data files, format 165
files 158
files, back-annotating 181
files, disabling display 47

instance-based 158
relationships, modeling 34
scaling SmartCircuit models 120
statement, format 171, 173
user-defined 32, 157
user-defined, examples 161
versions 21, 162
versions, custom 51

Timing check label format 172
Timing compiler

checks 178
running 179
using 178

Timing files 190
user-defined, compiling 106

Timing resolution 29
Timing scale

Changing in SmartCircuit models 120
Timing versions 21

adding new 162
creating new 160
custom 51
custom, creating 164
one model, displaying 53

Tools
backanno, running 189
Browser, GUI 59
Browser, using 45
ccn_report 20, 45, 88, 90, 96
compile_pcl 131, 132, 152, 153
compile_timing 20, 45, 158, 161, 163,

165, 168, 179
interactive, SmartBrowser 106
mi_trans 45, 48, 49, 75, 198
ptm_make 45, 48, 49, 192, 196
sl_browser 46, 47, 63
sl_copy 197
smartbrowse 107
SmartBrowser 20, 45, 88
SmartBrowser interactive 106
SmartBrowser, creating WDFs 96
smartccn 20, 45, 88, 90, 119, 121, 123,

125, 205
SmartModel browser 43
swiftcheck 45, 48, 49, 57, 200, 201

SmartModel Library User’s Manual Index

February 2001 Synopsys, Inc. 221

versions, selecting 45
VSB (Virtual SmartBrowser) 45
VSB (Visual SmartBrowser) 88

trace fin command 117
trace fout command 117
trace instances command 117
Trace messages

debugging designs with 151
trace nets command 117
trace objs command 117
trace pkgPin command 117
trace ports command 117
trace scvInstances command 118
trace symbolPin command 118
trace topNet 118
trace topNet command 118
Tracing

causal, analysis reports 92
causal, commands 92

Types
SmartModels 20

U
UDT

see also User-defined timing files 47
unalias command 118
Unknowns 32

approaches for using 38
Unprogrammed states

in memory models 35
Unsupported devices

using 98
Usage

error checking 31
User-defined timing files

disabling display 47

V
Values

logic 30
returned 136
unknown 137

Variables
PCL 139

Vendor models
displaying 54

Versions
MDL version numbers 26, 206
model, determining most recent 52
model, finding 55
model, selecting 20
timing 21
timing, adding new 162
timing, creating new 160
timing, custom 51
timing, displaying for one model 53
tool, selecting 45

Violations
constraints, scope 95

vsb command 45

W
WDF

window definition files 96
while statement 151
window command 122
Windows

AutoWindows 128
Browser 59
Browser, displaying model name 47
creating 96
definition files 96
elements, using 25
memory 23
Memory Address 24
Memory Array 24
Memory Read/Write 24
memory, in VSS 198
predefined elements 23
SmartModel 22, 33

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website
	Synopsys Common Licensing (SCL) Document Set

	Comments?

	1 SmartModel Library Features
	SmartModel Library Overview
	SmartModel Library Versioning
	Model Versions
	Tool Versions

	SmartModel Types
	Model Timing Versions
	Model Configuration
	SmartModel Windows
	Predefined Window Elements
	Memory Windows
	Using Window Elements

	SmartModel Datasheets
	Title Banner
	Supported Components and Devices
	Sources
	Model History
	Getting SmartModel Datasheets

	2 About the Models
	Introduction
	Features Common to Most Models
	64-Bit Time
	Logic Values

	Implementation-Specific Model Features
	Fault Simulation
	Save and Restore Operations
	Timing Check Control
	Model Reset
	Model Reconfiguration
	Modeling Certain Timing Relationships

	Modeling Assumptions
	Setup and Hold Timing Checks
	Unprogrammed States in Memory Models
	Read Cycle Checks in SRAMs
	Simulating Processor Models in Partial Designs
	Models with Boundary Scan Features
	Approaches for Using Unknowns

	Modeling Changing or Uncertain States

	3 Browser Tool
	Introduction
	Selecting Models in $LMC_HOME
	Selecting Tool Versions
	Default Configuration (LMC) File
	Using the Browser Tool
	Starting the Browser
	Creating a Custom User Menu
	Displaying by Model Name at Startup
	Disabling the Display of User-Defined Timing (UDT) Files

	Configuration (LMC) Files
	Configuration File Syntax

	Custom Configuration (LMC) Files
	Creating a Custom Configuration (LMC) File
	Creating a Custom Model Filter
	Creating a Custom Timing Version
	Determining the Most Recent Model Version
	Displaying Model Datasheets
	Displaying All Timing Versions of One Model
	Locating a Model in the Model List
	Displaying a Specific Vendor's Models
	Displaying All Models That Have the Same Function
	Finding Out More Details About a Model
	Finding Out What Model Version You Have
	Loading a Custom Configuration File
	Use Environment Settings (LMCs)
	Repairing Errors Reported by a Model Report

	Browser Tool GUI
	Browser Window
	Menu Bar
	File Menu
	View Menu
	Actions Menu
	User Menu
	Docs Menu
	Help Menu
	Toolbar
	Selection Pane
	Status Area
	Model Filters Dialog Box
	Copy Customizable Files Dialog Box
	Model Detail Dialog Box
	Model Report Dialog Box
	Save As... Dialog Box
	Open Configuration File Dialog Box

	4 Memory Models
	Configuring Memory Models
	Using Memory Models
	The Memory Image File (MIF)
	Creating a Memory Image File (MIF)
	Using a Memory Image File (MIF)
	Memory Image File (MIF) Format

	Memory Image File (MIF) Address Mapping
	Memory Image File (MIF) Format Checks
	Dumping Memory Data

	5 PLD Models
	Configuring PLD Models
	Programming PLD Models
	JEDEC File Format Checks
	Using PLD Models

	6 SmartCircuit FPGA Models
	Introduction
	Using SmartCircuit Models
	Quick Start for SmartCircuit Models

	SmartCircuit Technology Overview
	User-Defined Timing for JEDEC-based Models

	Debugging Tools Overview
	Sample Circuit
	SmartCircuit Model Pin Mapping

	Tracing Events In Your Design
	Causal Tracing Command Descriptions

	Viewing Internal Nodes During Simulation
	SmartModel Windows
	SmartCircuit Monitor
	Using Unsupported Devices

	Browsing Your Design Using SmartBrowser
	Issuing SmartBrowser Commands Interactively
	Using the SmartBrowser Tool in Standalone Mode
	Using the SmartBrowser Tool to Create a Windows Definition File
	Using SmartBrowser Commands

	SmartBrowser Command Reference
	Model Command File (MCF) Reference
	MCF Command Descriptions

	smartccn Command Reference
	CCN Output Files

	ccn_report Command Reference
	AutoWindows

	7 Processor Models
	Configuring Processor Models
	Simulating with HV Models
	PCL File Checks

	Processor Control Language (PCL)
	Using PCL to Configure HV Models
	PCL Program Structure
	Interrupts and Exceptions
	The Command Header File
	Returned Values
	Unknown Values
	PCL Constructs
	PCL Statement Types
	PCL Program Control Statements

	Debugging Designs with Trace Messages
	Running the PCL Compiler
	Example PCL Program

	8 User�Defined Timing
	Introduction
	Timing Files
	Instance�Based Timing
	Timing File Search Rules

	Creating New Timing Versions
	User�Defined Timing Examples
	Adding a New Timing Version
	Creating Custom Timing Versions

	Timing Data File Format
	Assumed Propagation Delays
	Models With Vendor�Supplied Delay Ranges
	Calculated Propagation Delays

	Timing Data File Comments
	General Comments
	Timing Description Comments
	Timing Expression Comments
	Internal Pin Comments
	Range Comments

	Timing Data File Model Block
	Timing Statement Format
	Timing Statement Format

	Timing Data File Grammar
	Using the Timing Compiler
	Timing Compiler Checks

	Running the Timing Compiler

	9 Back-Annotating Timing Files
	What is Backanno?
	Process Overview
	Creating a Configuration File
	File Format
	Sample Configuration File
	MODEL Section
	ANNOTATE Section
	Interconnect Statement

	Setting Environment Variables
	Backanno Command Syntax
	Running Backanno
	Copying the Resulting Timing Files (.tf)
	Replacing the Original SDF Files

	10 Library Tools
	Introduction
	Creating PortMap Files
	Using the ptm_make Tool
	PortMap File Format

	Copying Customizable Files with sl_copy
	Translating Memory Image Files
	Adding Back-Annotation
	Checking SmartModel Installation Integrity

	A Reporting Problems
	Introduction
	Using Model Logging
	Transmitting the Log File

	Other Diagnostic Information
	Model History and Fixed Bugs
	Model History Entry Field Descriptions

	B Glossary
	Introduction

	Index

