
S
 A

R
E

 U
N

C
O

N
TR

O
LL

E
D

 E
X

C
E

P
T

W
H

E
N

 S
TA

M
P

E
D

 "
C

O
N

TR
O

LL
ED

 C
O

PY
"

IN
 R

E
D

DOCUMENT NUMBER
Debugger Capabilities
ColdFire Instruction Set Simulator
Software Development Tools, V1.4

Original Release Date: 11 Jun 1999; Revised: 11 May 2005

http://eps.sps.mot.com/~cf/products/cores/system/CFxInstSim_Dbg.pdf
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Freescale product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Freescale was negligent regarding the design or manufacture of the part. Freescale Semiconductor is an Equal Opportunity/Affirmative Action Employer.

P
R

IN
TE

D
 V

E
R

S
IO

N

Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

1

© Freescale Semiconductor, 2005

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
Software Development Tools — Debugger Capabilities V1.4
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

V1.1 11 Jun 1999 11 Jun 1999 Joe Circello,
Dave Cote,
Jim Lamerand

Initial release of proposed enhancements for ColdFire SW Dev
Tools

V1.2 17 Jun 1999 17 Jun 1999 Joe Circello Added +brcnt to br command and added four new commands: db,
ex, he, lb

V1.3 29 Mar 2004 29 Mar 2004 Joe Circello Simplification of document to reflect implemented capabilities in
CFxInstSim

V1.4 11 May 2005 11 May 2005 Joe Circello Copied the V1.3 document into the Freescale templates, added
Figure 1-1, the web reference to CFPRM in Section 1.2, and made
minor corrections to the br and re descriptions
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

2

Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
Table of Contents

Section 1 Introduction
1.1 CFxInstSim Overview. 5
1.2 CFxInstSim Summary. 7

Section 2 CFxInstSim Debugger Capabilities
2.1 bf. Block of Memory Fill 10
2.2 bm. Block of Memory Move 11
2.3 br . Breakpoint 12
2.4 db . Delete Breakpoints 14
2.5 di. Disassemble 15
2.6 ex . Execute Command File 16
2.7 go . Execute 17
2.8 he . Command Syntax Help 18
2.9 lb. .List Breakpoints 19
2.10 md. .Memory Display 20
2.11 mm . Memory Modify 21
2.12 qu . Quit 22
2.13 rd . Register Display 23
2.14 re . System Reset 24
2.15 rm . Register Modify 25
2.16 sb .Set Data Radix (Base) 26
2.17 st. Step Over 27
2.18 tr . Trace 28
2.19 ve . Show Program Version 29
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

3

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
Software Development Tools — Debugger Capabilities V1.4
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

4

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
Section 1 Introduction

As the promise of “system-on-a-chip” and platform-based designs advance, the time-to-market
pressures of most developments almost dictate that the hardware and software components are
developed concurrently. In an effort to facilitate this type of co-design, this document details the
rudimentary debugger support provided by the ColdFire instruction set simulator (CFxInstSim,
CFxISS). Internally, this program is known as asim.

It is very important to note the scope of the CFxInstSim development tools is limited to ColdFire
cores with attached local memories and external memory subsystems. Stated differently, the
peripherals typically included in integrated platform designs are not included in this development
tool.

1.1 CFxInstSim Overview

The origin of CFxInstSim was to provide a high-speed, C language software model of the
ColdFire instruction set architecture (ISA), specifically for use in the design verification process.
For all ColdFire developments, the CFxInstSim program serves as the “golden standard” and
defines the expected results on an instruction-by-instruction basis. In its simplest form,
CFxInstSim models the behavior of a ColdFire core connected to a memory. Specifically, a “hex”
memory image is loaded into the program, and CFxInstSim then executes the code, a single
instruction at a time, beginning with reset exception processing and continuing until a HALT
instruction is executed. In its most common use, the CFxInstSim program provides the expected
results for design verification. This typically includes the register programming model at the
completion of each instruction, and the final memory image.

Since it serves as the foundation for the ColdFire verification methodology, any and all changes
to the ISA are reflected in the CFxInstSim program. As a result, the program always supports the
most current specification of the instruction set architecture. As an example, as the Enhanced
Multiply-Accumulate (EMAC) module was being designed, the CFxInstSim program was
updated to support this new functionality. Stated differently, the CFxInstSim program always
provides a known-good implementation of the ISA before the corresponding hardware design is
available. This contrasts sharply with 3rd-party development tools, which generally lag the
availability of standard-product devices, often by many months. Additionally, tool support for
customer-specific designs from this developer community may not even be possible.

As the CFxInstSim program is used for all ColdFire core developments, it is completely unaware
of any underlying hardware microarchitecture. This means, by definition, that the CFxInstSim
program has no notion of machine cycles, or time. The “smallest” operation is the execution of a
single machine instruction. Note this basic approach means that certain asynchronous events,
most notably interrupts and external memory error terminations, simply cannot be handled by
CFxInstSim. This fundamental limitation to CFxInstSim does not impact the design verification
process, but the complication of these types of events and how they are handled is beyond the
scope of this document. Suffice it to say, these types of asynchronous events are exercised and
tested thoroughly as part of the standard ColdFire verification process.
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

5

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
Additionally, the CFxInstSim program is typically run in a “batch” environment, where the
beginning memory image is the input, and the program simulates the execution of every
instruction outputting the required programming model information and final memory image.
There is no notion of any type of interactive environment while operating in this mode. The
performance of CFxInstSim is roughly measured in the 100,000 - 200,000 instructions per
second, when running on a Sparc20-class workstation.

In addition to its use as the golden standard for verification purposes, CFxInstSim has been
enhanced to provide input data to a large collection of ColdFire performance analysis tools. This
set of tools includes memory address profilers, dynamic opcode analyzers, and a variety of
“architectural models” for exploring microarchitectural trade-offs, local memory effects, etc. For
this type of study, programs are “executed” using CFxInstSim with the appropriate outputs
enabled, and the resulting data piped into the given architectural model. Figure 1-1 depicts this
performance analysis process used to calculate the Effective Cycles per Instruction (CPI) metric.

Figure 1-1 ColdFire Performance Analysis

CFxISS

Pipeline
Models

HW Trace

Local Memory
ModelsProfile
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

6

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
1.2 CFxInstSim Summary

CFxInstSim is:

• C language model of the ColdFire ISA

• Primarily used for design verification

• Executes a memory image, instruction-by-instruction

• Starts with reset exception and continues until a HALT instruction

• Standard outputs are the register programming model after each instruction and final
memory image

• Optional outputs for ColdFire performance analysis tools

• Independent of underlying hardware microarchitecture, and therefore has no notion of time

• Cannot support asynchronous events like interrupts and memory error terminations

• Typically operates in a batch mode

• 100K - 200K instructions per second performance

The ColdFire instruction set architecture is detailed in the Programmer’s Reference Manual
(PRM), available on the Freescale public web site at:

http://www.freescale.com/files/dsp/doc/ref_manual/CFPRM.pdf
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

7

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
Section 2 CFxInstSim Debugger Capabilities

As detailed in the previous section, CFxInstSim is a C language implementation of the ColdFire
Instruction Set Architecture. In an effort to provide a basic set of debugger capabilities to this
program, a subset of the functionality supported by the standard 68K/ColdFire dBUG package
is included. It should be noted the information provided in the CFxInstSim Unix “man” page
supercedes the documentation provided in this paper. This document is intended to provide a
more detailed definition of the debugger support provided in the ISS.

The dBUG package is a firmware program included in all 68K/ColdFire Family evaluation boards.
The firmware provides a self-contained command line environment for monitor and debug
capabilities. This paper details the subset of dBUG commands implemented in the CFxInstSim
program. The set of dBUG commands implemented in the CFxInstSim program are:

Table 2-1 dBUG Commands Supported by CFxInstSim

Command Mnemonic Description

bf Block Fill

bm Block Move

br Breakpoint

db Delete Breakpoint

di Disassemble

ex Execute Command File

go Execute

he Command Syntax Help

lb List Breakpoints

md Memory Display

mm Memory Modify

qu Quit

rd Register Display

re System Reset

rm Register Modify

sb Set Number Base

st Step Over Subroutine

tr Trace

ve Show Current Version
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

8

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D

This rudimentary debugger functionality is built upon a set of 32 breakpoints and the basic run
control needed to support these types of operations. The breakpoints are organized as 31
user-defined values plus a temporary breakpoint used in conjunction with specific dBUG
commands.

The CFxInstSim program is executed from the system command line with the starting memory
hex image passed as an argument.

The user interface to dBUG is the command line. A number of features have been implemented
to create an easy and intuitive command line interface. The command line prompt is “dBUG> “.
Any valid command can be entered from this prompt. All commands begin with a 2-character
identifier and are not case-sensitive.

The following paragraphs define the specific dBUG commands implemented in the CFxInstSim
program. The descriptive material contained here makes liberal use of the existing
documentation, particularly M5206EC3 User’s Manual, Revision 1.3. In these descriptions,
optional fields are enclosed with braces {}.
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

9

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.1 bf Block of Memory Fill

Syntax: bf{.b|.w|.l} begin end data

The bf command fills a contiguous block of memory starting with address begin, stopping
immediately before address end with the value data. The width field {.b|.w|.l} is an optional
modifier that defines the size of the data being written, with the default being word (16-bit size).

The values for addresses begin and end are absolute hexadecimal values. The value for data
is a number converted from the user-defined radix, with the default being hexadecimal.

Examples:

To fill a memory block starting at address 0x1000 and ending at address 0x4000 with a value of
0x1234, the command is:

bf 1000 4000 1234

To fill a block of memory starting at 0x2000 and ending at 0x3000 with a byte value of 0xAB, the
command is:

bf.b 2000 3000 ab
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

10

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.2 bm Block of Memory Move

Syntax: bm begin end dest

The bm command moves a contiguous block of memory starting with address begin, stopping
immediately before address end to the new address dest. The bm command copies memory
as a series of bytes and does not alter the original block.

The values for addresses begin, end and dest are absolute hexadecimal values.

Example:

To copy a memory block starting at address 0x1000 and ending at address 0x2000 to location
0x8000, the command is:

bm 1000 2000 8000
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

11

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.3 br Breakpoint

Syntax: br{.b|.w|.l|.x} addr {-r|-w} {data} {+brcnt}

The CFxInstSim implementation of dBUG includes 32 breakpoints (31 user-defined plus one
temporary value used in conjunction with specific commands), which can be instruction
addresses (PC values) or operand addresses with an optional data value and reference type
specifier included. An optional breakpoint count allows brcnt occurrences of the breakpoint to
be ignored before triggering. The value for address addr is an absolute hexadecimal value.

If a PC breakpoint is desired, the command syntax is simply: br addr. When a PC breakpoint
triggers, control is returned to the dBUG prompt before the breakpointed instruction has
executed.

If an operand address breakpoint is desired, then the reference size specifier must be included.
These specifiers are defined as:

.b Byte-sized (8-bit) reference

.w Word-sized (16-bit) reference

.l Longword-sized (32-bit) reference

.x Any size reference

Additionally, an optional reference type specifier may be included. These specifiers are:

-r Breakpoint only if read reference
-w Breakpoint only if write reference

Thus, the resulting command syntax for an operand breakpoint is:

br.{b|w|l|x} addr {-r|-w}

Finally, an operand breakpoint can be further qualified to include a specific data value.

When an operand breakpoint triggers, control is returned to the dBUG prompt at the next
instruction boundary, i.e., immediately after the instruction has completed execution.

The operand address used in the breakpoint compare function is always the starting reference
address and size, independent of whether the address is aligned or misaligned. Addresses which
are 0-modulo-size values are said to be aligned, while all other references are misaligned. All
ColdFire cores and the CFxInstSim program “decompose” a misaligned operand reference into
a series of smaller, aligned accesses. For purposes of a misaligned breakpoint definition, the
starting address and size of any of the misaligned accesses may be specified. For this class of
operand accesses, the ColdFire processor cores and CFxInstSim behave in a same manner.

An optional count field (+brcnt) can be applied to any type of breakpoint. If included, this
decimal number defines the number of times the breakpoint is ignored before actually triggering
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

12

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D

and returning control to the dBUG prompt. The default is 0.

If the user attempts to set a 32nd breakpoint, an error message is returned.

Examples:

To enable a PC breakpoint at address 0x1000, the command is:

br 1000

To enable a PC breakpoint on the tenth execution of address 0x1000, the command is:

br 1000 +9

To enable an operand read (any size) breakpoint at address 0x2000, the command is:

br.x 2000 -r

To enable an operand breakpoint at address 0x3000 for any-sized, any-type data reference, the
command is:

br.x 3000

To enable an operand byte read breakpoint at address 0x2000 with a data value of 0xAB, the
command is:

br.b 2000 -r ab

To enable an operand longword write breakpoint at address 0x3000 with a data value of
0x12345678, the command is:

br.l 3000 -w 12345678

Finally, consider a misaligned longword operand reference to address 0x3001. The processor
converts this reference into 3 smaller, aligned accesses: a byte access at 0x3001, a word access
at 0x3002 and a byte access at 0x3004. To enable an operand breakpoint on the fifth misaligned
longword read at address 0x3001, any of the following commands can be used:

br.b 3001 -r +4
br.w 3002 -r +4
br.b 3004 -r +4

In general, the effects of operand misalignment can be ignored if the starting byte address of the
operand is always used in conjunction with the .x size specifier. For this example:

br.x 3001 -r +4
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

13

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.4 db Delete Breakpoints

Syntax: db number | “all”

The db command deletes a single breakpoint condition, specified by the decimal value, number,
or, if the argument is all, the complete set of breakpoints, including the temporary value.

The association between a breakpoint condition and the corresponding number can be displayed
using the lb command (list breakpoints). The temporary breakpoint register is always #0.

Examples:

To delete breakpoint #2, the command is:

db 2

To delete all breakpoints, the command is:

db all
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

14

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.5 di Disassemble

Syntax: di {addr}

The di command disassembles the next 16 instructions of the target code starting at address
addr. The value for address addr is an absolute hexadecimal value. If the optional addr value
is not specified, the di command uses the current value of the program counter as the starting
address.

This command can be repeated, displaying the next 16 instructions, by simply pressing the
RETURN key.

Example:

To disassemble code starting at address 0x1000, the command is:

di 1000
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

15

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.6 ex Execute Command File

Syntax: ex filename

The ex command causes the CFxInstSim program to read the file defined by filename, and
execute the dBUG commands contained in that file.

Example:

To execute the series of commands in the file named setup, the command is:

ex setup
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

16

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.7 go Execute

Syntax: go {addr}

The go command executes the target code starting at address addr. The value for address
addr is an absolute hexadecimal value. If the optional addr value is not specified, the go
command begins execution at the value currently defined by the program counter.

When the go command is executed, all user-defined breakpoints are enabled as the application
is executed. Command line control is returned to the dBUG prompt when a breakpoint is
triggered, or the code encounters a halt condition, either from the execution of a HALT
instruction, or the occurrence of the catastrophic fault-on-fault error condition. In all cases, the
exit cause is reported before the dBUG prompt is displayed.

This command can be repeated by simply pressing the RETURN key.

Examples:

To execute code starting at the current program counter, the command is:

go

To execute code starting at address 0x1000, the command is:

go 1000
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

17

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.8 he Command Syntax Help

Syntax: he

The he command displays a one-line syntax summary for every dBUG command supported by
CFxInstSim.

Example:

To display the one-line syntax summary, the command is:

he
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

18

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.9 lb List Breakpoints

Syntax: lb

The lb command displays a list of all active breakpoints. The temporary breakpoint always is
defined as breakpoint #0, while the 31 user-defined breakpoints are numbers #1-31. This
command can be used in conjunction with the db command to delete specific breakpoint
conditions.

Example:

To display all active breakpoints, the command is:

lb
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

19

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.10 md Memory Display

Syntax: md{.b|.w|.l} {begin} {end}

The md command displays a contiguous block of memory starting with address begin, and
stopping with address end. The width field {.b|.w|.l} is an optional modifier that defines the
size of the data being displayed, with the default being word (16-bit size).

The values for addresses begin and end are absolute hexadecimal values. If no beginning
address is specified, the md command uses the last displayed address as the starting point. If no
ending address is specified, the md command displays 128 bytes of data.

This command can be repeated by simply pressing the RETURN key. It continues with the last
displayed address.

Examples:

To display memory at address 0x1000, the command is:

md 1000

To display a range of longwords from address 0x2000 to address 0x3000, the command is:

md.l 2000 3000
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

20

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.11 mm Memory Modify

Syntax: mm{.b|.w|.l} addr {data}

The mm command modifies memory at address addr. The width field {.b|.w|.l} is an
optional modifier that defines the size of the data being modified, with the default being word
(16-bit size).

The value for address addr is an absolute hexadecimal value. The value for data is a number
converted from the user-defined radix, with the default being hexadecimal.

If the data value is included in the command line, the mm command immediately writes the 8-,
16- or 32-bit value into the given memory location. If the optional data value is not provided in the
command line, the mm command enters a loop. This interactive loop obtains a data value from
the user, writes it into the memory address, increments the address by the data size and repeats.
The loop terminates when the user input is a “.”, i.e., a period.

Examples:

To write a byte into memory at address 0x1000, the command is:

mm.b 1000 ab

To write a longword at address 0x2000, the command is:

mm.l 2000 12345678

To interactively modify memory beginning at address 0x3000 with longword data values, the
command is:

mm.l 3000
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

21

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.12 qu Quit

Syntax: qu

The qu command terminates the execution of CFxInstSim.

Examples:

To exit the simulator, the command is:

qu
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

22

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.13 rd Register Display

Syntax: rd {core}

The rd command displays the ColdFire core’s register set. The default display includes the
processor’s basic registers including the program counter, the general-purpose An/Dn registers,
the {E}MAC registers along with the 16-bit Status Register. If the optional core specifier is
included, the processor’s registers plus the various memory configuration registers, including the
Vector Base Register (VBR), the Cache Control Register (CACR), the Access Control Registers
(ACR*) and all local-memory base address registers (RAMBAR*, ROMBAR*), are displayed.

Examples:

To display the entire register set of the ColdFire core, the command is:

rd core

To display the processor’s basic register set, the command is:

rd
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

23

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.14 re System Reset

Syntax: re

The re command performs a “system reset” on the CFxInstSim program. The program loads
the stack pointer (A7) with the contents of memory address 0x0 and loads the program counter
(PC) with the contents of memory address 0x4. Control is then passed back to the dBUG prompt.
The system memory image is not affected.

Example:

To reset the simulator, the command is:

re
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

24

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.15 rm Register Modify

Syntax: rm register data

The rm command modifies the contents of a register from the ColdFire core’s register set. The
allowable values of the register specifier are:

pc, d[0-7], a[0-7], sr
acc, macsr, mask (if MAC)
acc[0-3], accext01, accext23, macsr, mask (if EMAC)

 vbr, cacr, acr[0-3], rambar[0-1], rombar[0-1]

The value for data is a longword number converted from the user-defined radix, with the default
being hexadecimal.

Example:

To modify the contents of the d0 register to a value of 0x12345678, the command is:

rm d0 12345678
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

25

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.16 sb Set Data Radix (Base)

Syntax: sb base

The sb command allows the user to define the setting of any user-configurable options. The
single option of this type is the default radix used for converting data values associated with the
bf, br, mm, and rm commands.

The default is hexadecimal (base 16), and the other choices are binary (base 2), octal (base 8),
and decimal (base10). Thus, the set of allowable values for base are the decimal values
[2,8,10,16].

Example:

To configure the simulator to use decimal representation for data, the command is:

sb 10
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

26

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.17 st Step Over

Syntax: st

The st command allows the user to “step over” the execution of an entire subroutine rather than
trace every instruction within the function. The st command sets a temporary breakpoint on the
next instruction (past the instruction currently defined by the program counter), and is typically
used when breakpointed on a JSR or BSR instruction. For this case, a go command causes the
target function to be completely executed before breakpointing on the instruction following the
subroutine call.

The st command can be used while breakpointed on instructions other than the subroutine calls,
but special care must be used as the temporary breakpoint may never be encountered.

Example:

To step over the execution of a subroutine, the command is:

st
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

27

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
2.18 tr Trace

Syntax: tr {number}

The tr command allows the user to single-step through the application code. If {number} is
provided, then “number” instructions are executed before control is returned to the dBUG
prompt. If {number} is not provided, a single instruction is executed. The value of number is a
decimal specifier.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace twenty instructions from the program counter, the command is:

tr 20
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

28

ColdFire Software Development Tools — Debugger Capabilities V1.4

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
2.19 ve Show Program Version

Syntax: ve

The ve command displays the current source code version of the CFxInstSim program. It
represents the specific version number of the simulator which is maintained under change
control as part of a configuration management system.

Examples:

To display the version number of CFxInstSim, the command is:

ve
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

29

P
R

IN
TE

D
 V

E
R

S
IO

N
S

 A
R

E
 U

N
C

O
N

TR
O

LL
E

D
 E

X
C

E
P

T
W

H
E

N
 S

TA
M

P
E

D
 "

C
O

N
TR

O
LL

ED
 C

O
PY

"
IN

 R
E

D
ColdFire Software Development Tools — Debugger Capabilities V1.4
Freescale Semiconductor Confidential Proprietary
NONDISCLOSURE AGREEMENT REQUIRED

30

	Table of Contents
	Section 1 Introduction
	Section 2 CFxInstSim Debugger Capabilities
	Section 1 Introduction
	1.1 CFxInstSim Overview
	Figure 1-1 ColdFire Performance Analysis

	1.2 CFxInstSim Summary

	Section 2 CFxInstSim Debugger Capabilities
	Table 2-1 dBUG Commands Supported by CFxInstSim
	2.1 bf Block of Memory Fill
	2.2 bm Block of Memory Move
	2.3 br Breakpoint
	2.4 db Delete Breakpoints
	2.5 di Disassemble
	2.6 ex Execute Command File
	2.7 go Execute
	2.8 he Command Syntax Help
	2.9 lb List Breakpoints
	2.10 md Memory Display
	2.11 mm Memory Modify
	2.12 qu Quit
	2.13 rd Register Display
	2.14 re System Reset
	2.15 rm Register Modify
	2.16 sb Set Data Radix (Base)
	2.17 st Step Over
	2.18 tr Trace
	2.19 ve Show Program Version

