Description of DBMX1 AITC TEMPLATE
Utilizing the MMU to re-map the ARM vector table to SDRAM

Overview:

The point of this template is to help the user get started and become familiar with the interrupts on the DBMX1/L chips and how to write code to use interrupts. This code is merely provided as an example of how to use interrupts. Also included is an example on how to remap the first 1MB of memory to SDRAM.
DBMX1 _AITC_TEMPLATE.mcp

This is the Metrowerks project file for the AITC template. Please go through the settings in this project file to familiarize yourself with the settings needed for the project.

DBMX1 _AITC_TEMPLATE_MAIN.c
This is the “C” file containing the “main” function call.

int_handler.c
This is the interrupt handler for DBMX1. When an interrupt occurs, the core fetches the address of the ISR from the vector table (vectors.s). Depending on interrupt type (normal or fast), either IRQ_Handler(void) or FIQ_Handler(void) will be called. In these routines, the NIVECSR or FIVECSR will be read to determine the source number of the interrupt. Then, this number will be passed to a function that invokes a "look-up" table to determine which ISR will be exectued. Upon completion of the specific ISR, the code will return to the int_handler routine, and thus return to the main program. This is made possible by preceding the name of the interrupt handlers with the keyword "__irq".

DBMX1 _retarget.c

This is example code from ARM. System programmers will use this to define the heap section. This is needed to ensure that the heap does not corrupt your IRQ or FIQ stack. In this code the heap is currently located at:
· config.heap_base = 0x08010000;
Which is in SDRAM. This will also need to be changed depending on your system needs.
vectors.s

Example code from ARM; tailored for the DBMX1

NOTE: the placing of this vector table is done so via the scatter file "scat_c.scf". Please refer to this file when re-locating the vector table. Also, in the project settings, under ARM Linker choose this file as the "Scatter description file". This code is used in conjunction with int_handler.c.

init.s

Example code from ARM; tailored for the DBMX1

This assembly code is used to initialize the stack pointers of the ARM core for its different modes (i.e. SVC mode, FIQ mode, IRQ mode, etc...).

Depending on your target memory, some of the values given in this file may need changing to suit your system. These values and variables are:

· RAM_Limit EQU 0x08020000; This is the start of the stack region and is currently pointing to SDRAM. May need to modify depending on your system.

· Variables SVC_Stack, IRQ_Stack, FIQ_Stack, and USR_Stack may need modifying to increase or decrease the stack size for these modes depending on your system needs.
· MMUTranslationTable function: Currently this is where the first 1MB of memory including the ARM vector table starting at address 0x0 is re-mapped to address 0x08000000 (see below code example) for the vector location. You may modify this further to tag regions cacheable and bufferable or NCNB, etc.
The following table can be found on the init.s file.

;// DBMX1 translation table
XCount
SETA
(0x0800007E)
;// re-map address 0x0 (1MB) to 0x08000000 (SDRAM)

DCD
XCount
XCount
SETA
(0x0010007E)

DCD
XCount
XCount
SETA
(0x00200072)

DCD
XCount

XCount
SETA
(0x0030007A) ; Use 0x7A for cacheable only

WHILE XCount < (0x10000000)

 DCD
XCount

XCount
SETA
(XCount + 0x00100000)

WEND

XCount
SETA
(0x1000007A) ; Use 0x7A for cacheable only

WHILE XCount < (0xFFF00000)

DCD
XCount

XCount
SETA
(XCount + 0x00100000)

WEND

XCount
SETA
(0xFFF0007E)
; Use 0x7E for both cacheable and bufferable.

DCD
XCount

EndOfTables

· MMU_Setup: There are two places in this function where the MMU translation table resides in system memory. Currently the MMU translation table resides in 0x0B004000, the fourth bank of the ADS SDRAM. Make sure to not over-write this location or re-map this to another location in memory.
DBMX1_AITC.h

This is a header file for the DBMX1 AITC test code. It contains the function prototypes for the normal and fast interrupt service routines. It should be included in those files that contain calls to these functions.

