
Layerscape Architecture
A Look Inside the Next-Generation
QorIQ LS Series SoCs

freescale.com

2

Layerscape Architecture A Look Inside the Next-Generation QorIQ LS Series SoCs

The 18th-century inventor Charles Babbage had it right. Although his five-ton “difference engine”
had more than 20,000 moving parts, it was remarkable because it was reprogrammable. For all that
hardware, it was the software that made it extraordinary.

In modern times, surveys of engineering teams across the world show that they typically spend
more time writing software than they do creating hardware. Engineering firms also employ more
programmers than engineers, and developers overwhelmingly choose their software environment
before selecting the MPU chip(s) it will run on. Their colleagues in marketing know that software
provides the most direct path to product differentiation. Original code provides the “value add”: the
differentiator that sets one product apart in a crowded and fast-moving market.

This is not to say that hardware is not crucial: quite the opposite. The holy grail of hardware design has
become to actually make the hardware itself transparent. The hardware needs to be quick to bring up,
performance optimized out-of-the-box and software aware.

The Next Steps
If an MPU is just a means to an end—a gateway or a key to unlock an established base of software—
then it’s important to select the right key. A popular processor architecture, such as the Intel® x86, brings
with it an enormous backlog of x86 software, most of it developed for the personal computer market.
Likewise, Power Architecture®, ARM® or MIPS architectures come with an implied membership to their
respective software “clubs.” If the intention is to run PC software, an x86 processor is the mandatory
choice. For the embedded or industrial markets, a developer’s options are much more flexible.

Back when most programs were written in assembly language, the choice of processor also determined
the choice of programmers. Developers specialized in different CPU instruction sets and diligently stuck
to their preferred ISAs. The code itself was no more transportable than the talent; software written for one
processor family was useless on another, except perhaps as an example of how to structure the code
the next time. Coding aficionados would defend assembly-language software as efficient and fast, while
their business managers usually derided it as slow to develop, overly buggy, specific to one hardware

platform, difficult to port and inscrutable to anyone not involved in the original development effort.

Ideally software would be both fast and efficient and quick and easy to develop and maintain. No
technology has ever quite achieved that ideal, although a shift away from assembly-level programming
and toward higher level languages such as C has helped considerably. Nowadays, fewer than 10
percent of embedded developers use assembly language extensively; more than 70 percent use C or
C++ almost exclusively. Portable operating systems have helped, too. Linux® in particular is available
for almost any processor architecture and any hardware configuration, making it a near-universal
platform for embedded developers.

Between portable programming languages and ubiquitous platforms, the industry is closer than ever
to achieving the ideal balance of code efficiency (in terms of runtime performance) and development
efficiency (in terms of cost, time to market and maintainability). The balance of performance with
flexibility and ease of use has become the space race that embedded processor suppliers are working
towards. This is where the idea of software-aware architecture becomes crucial. A software-aware
architecture is a platform that enables customers to fully and easily exploit architectural capabilities and
features through performance-optimized libraries and (easy to implement) software.

Introducing Layerscape Architecture
Layerscape architecture is the underlying system architecture of the next-generation QorIQ LS series
SoCs. Designed from the outset to take advantage of the new realities of development, abstraction
and efficiency (in both senses of the word), Layerscape architecture was created to “expose” each
chip’s performance in a way that programmers find very accessible. The architecture extends the
current trend toward multicore chip design (both homogenous and heterogeneous) to achieve
maximum performance, while also abstracting away enough of the complex hardware to make
software development efficient, maintainable, neat, fast and relatively simple. In short, Layerscape
architecture balances the performance and efficiency of handwritten assembly-language code with the
ease of use of high-level languages and modern code maintainability.

Layerscape architecture can be viewed as an evolution of the Data Path Acceleration Architecture
(DPAA) found in the QorIQ P and T series—an infrastructure supporting the sharing of networking
interfaces and accelerators by multiple CPU cores, and the accelerators themselves.

A software-aware
architecture is a platform
that enables customers
to fully and easily exploit
architectural capabilities
and features through
performance-optimized
libraries and (easy to
implement) software.

3

Layerscape ArchitectureA Look Inside the Next-Generation QorIQ LS Series SoCs

Layerscape architecture extends the DPAA, in that separate layers of the ISO networking model are
accelerated separately and appropriately, depending on the specific chip. Some chips may handle
compression (for example) in software, while others have dedicated hardware accelerators. Either
way, the function is transparent to programmers, making it straightforward to switch from one chip
implementation to another without altering any code. Structured programming interfaces encapsulate
the compression (in this example), so that neither the code that calls it, nor is called by it, need know
how the compression is actually implemented. Here again, abstraction preserves efficiency and
performance, as well as the sanity of the developers.

In the QorIQ LS series, each communications processor is logically organized into three layers, as shown
in figure 1. The general-purpose processing layer (GPPL), accelerated packet processing layer (APPL) and
express packet input/output layer (EPIL) represent roughly the high, middle and low layers respectively
of the standard ISO model. Whether or not the chip is physically partitioned in this way is irrelevant; the
programmer perceives it this way, regardless of how an individual chip might be provisioned.

At the lowest level, the express packet I/O layer (figure 1, in brown) provides true deterministic wire-
rate performance between all network interfaces supporting L2+ switching capabilities and contains
the chip’s interfaces for network datagrams, such as Ethernet, Interlaken, Serial RapidIO®, HiGig and
PCI Express®. Important but unrelated interfaces, such as USB or SATA, would not be part of this
interface layer but would instead be part of the chip’s “system interface” block, as seen on the left of
the diagram (figure 1). Although, strictly speaking, PCI Express isn’t a network interface, it’s often used
as such between blades in a rack, hence its inclusion here.

The middle layer (figure 1, highlighted in blue) contains the chip’s packet-processing elements,
whether those be hardwired accelerators, programmable engines or some combination of the two.
The APPL provides customer-defined, autonomous and value-add capabilities through a traditional
sequential, synchronous, run to completion model and is fully programmable through embedded
C-based structured programming. Again, these elements will communicate with the general-purpose
processors over well-defined interfaces that abstract away the details of their (and the processors’)
implementation in such a way that preserves valuable developer code.

The general-purpose processors (figure 1, highlighted in green) are, obviously, general purpose in
nature and are free for users/developers to use for their operating system(s), applications, high-level
code and other value-added features. In keeping with Layerscape architecture’s values of abstraction,

Layerscape Architecture Block Diagram

System
Interfaces

System
Control

System
Visualization

(Debug/
Tuning)

Accelerated Packet Processing Layer (APPL)

General-Purpose Processing Layer (GPPL)

Express Packet I/O Layer (EPIL)

Coherent Interconnect

CPU(s) Caches Memory
Control

SerDes

Ethernet
Interlaken 100/40/10/1G RapidIO® PCI Express®

Accelerated Packet Processor

Decomp.
Engine

Security
Engine

Load
Balance
Engine

Pattern
Matching

Engine

Packet
Buffer

L2-L7
Switch
Engine

Figure 1. All LS series chips are logically, though not always physically, partitioned into three layers. The topmost
layer can include any type of processor, such as those based on Power Architecture or ARM technologies. Lower
layers are accessed through buffers, queues and APIs that abstract away the details of their implementation.

	�� Layerscape Architecture Block Diagram

Layerscape Architecture A Look Inside the Next-Generation QorIQ LS Series SoCs

efficiency and hardware independence, this layer can support both Power Architecture and ARM
cores. Of note is the fact that Power Architecture technology generally uses big-endian byte ordering,
while ARM technology is normally little-endian, yet Layerscape architecture happily supports both.

Clearly, the modular hardware architecture lends itself to many different chip configurations and
is a single architecture with consistent software across the platform. The modular and flexible
hardware framework includes independently scalable layers to maximize performance and power
efficiency across the QorIQ portfolio. As mentioned above, those configurations can even include
general-purpose processors from various instruction set families, thus allowing the developer to
leverage different code bases. Layerscape architecture’s modularity also allows performance up- and
downgrades—sometimes within the same physical socket—while preserving customer code.

A very basic chip implementation, for example, might include only the low-level interfaces (Ethernet,
for instance) and the top-level general-purpose processor (i.e., ARM or Power Architecture cores), with
no intermediate accelerators in between. In that case, the EPIL layer would perform packet parsing,
classification and distribution to frame queues (not shown). A general-purpose CPU (or perhaps
multiple CPUs) would then consume those packets from the queues.

Expanding this concept across multiple Ethernet ports, the same chip could act as a layer 2 switch
by taking advantage of Layerscape architecture’s built-in “link aggregation” feature. A more generously
provisioned chip might include hardware in the middle APPL for fine-grained packet classification,
IPsec, SSL, LRO/TSO and other advanced inline offloads. Similarly, the low-level EPIL might identify
certain packet types and reroute them directly to relevant accelerators in the middle APPL, bypassing
the general-purpose processors entirely.

The foundation of the solution is the software that allows the programmer to quickly and easily harness
the power of the architecture. The solution begins with optimized networking libraries for hardware
accelerated functions such as IPSec, deep packet inspection, IP forwarding, NAT/FW, etc., allowing
the embedded developer to focus on value-added software and not performance tuning. Well defined
datapath and control APIs are standard for many networking applications and are easily extendable
for custom applications using an imperative C programming model. Additionally, a software framework
providing standard services such as debug and profiling, resource management, virtualization and
initialization are provided to ensure ease of use. Finally, reference implementations for key applications
such as software-defined networking, wireless transport/backhaul, TCP termination and routing will be
provided to not only reduce your R&D investment but accelerate time to market.

Summary
Layerscape architecture combines the extreme performance of today’s most capable
communications processors with the familiar, modular, high-level programming models used
worldwide. It makes advanced communications engines accessible without requiring an advanced
degree in hardware engineering. More importantly, it doesn’t require relearning the details of each
chip implementation as one generation of QorIQ LS series devices gives way to its successor. The
bounded and well-defined programming model survives from chip to chip, generation to generation,
building upon the work of developers rather than discarding it as hardware implementations change.
In short, Layerscape architecture preserves the most important and most valuable aspect of any
development team: its differentiating software. Once again, the right hardware proves to be the key
to unlocking the right software.

For more information, visit freescale.com/QorIQ
Freescale, the Freescale logo and QorIQ, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is a
trademark of Freescale Semiconductor, Inc.. The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. ARM is the registered trademark of ARM Limited. All other
product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc.

Document Number: LAYARCHTECHOVWP REV 0

Layerscape architecture
combines the extreme
performance of
today’s most capable
communications
processors with the
familiar, modular,
high-level programming
models used worldwide.

