
 freescale.com

Table of Contents

3 Standards,
Specifications and
Guidelines

4 Security Mechanisms

9 Crypto Algorithms

13 Authentication

14 Secrecy

16 Current Security
Implementations

17 Future Security
Implementations

18 Conclusion

Abstract

The increasingly interconnected nature of a vehicle’s control

modules means there is no safety without security. Security

features must include not just physical access and protection

of confidential information, but also critical safety systems.

Designers must anticipate every form of attack to prevent

access to embedded systems and data. At the same time,

the industry at large must develop standards, specifications

and guidelines for vehicle security that enable interoperability.

White Paper

Automotive Security:
From Standards to
Implementation
Richard Soja
Automotive SoC Systems Engineer, Freescale

2

Automotive Security: From Standards to Implementation

White Paper freescale.com

Introduction
There has been a steady increase in demand for improving the security of microcontrollers
in the automotive market. When car electronics were first introduced back in the 1970s, the
functions implemented were quite simple—they were discrete and unconnected to other
components in the vehicle. The component that controlled the spark plugs in the engine did
not communicate with the speedometer or tachometer in the dashboard. Long before the
days of Bluetooth® cell phone controls or integrated audio systems, a trip computer might be
the most cutting-edge feature found in a new vehicle.

Over time, the combination of increased electronic complexity and integration with other
fixed and portable components (e.g., keyless entry, audio systems, telematics, wireless
communications, etc.) has provided portals into the control systems that are deeply
embedded in the vehicle.

User-accessible systems potentially contain personal and private information, while the
embedded systems are inextricably tied into the fundamental physical behavior of the vehicle.
These two aspects mean that if any of the vehicle control and information systems are
compromised, the opportunity for theft or damage from external entities appears.

Today’s cars are also expected to hold even more private information as they become smart
cards on wheels to simplify financial transactions at gas pumps, charging stations, parking
lots, toll booths and drive-through establishments. The vehicle itself will be enabled to pay
fees and fares, sometimes automatically.

Security has come a long way since the initial introduction of simple features like car alarms
and keyless entry. In today’s vehicles, security features must include not just physical access
and protection of confidential information, but also critical safety systems such as drive-
by-wire braking and steering. The increasingly interconnected nature of a vehicle’s control
modules means there is no safety without security.

The nature of the automobile industry itself also introduces some additional interesting security
considerations. In order to support a very long and reliable operating life (which may be an
order of magnitude longer than most consumer products), the installation of counterfeit parts
and control units must be prevented. The vehicle’s security systems can provide a means to
do this using an authentication protocol.

Another factor that can affect system reliability is the practice of “chipping” or modifying the
operating parameters stored in memory. Security features can prevent “chipping” altogether
or can detect the presence of any unauthorized modification and take action to mitigate or
eliminate the effects of the modification so that the vehicle is still safe to drive, while indicating
the need for corrective attention.

Defining the architecture and implementation of secure microcontrollers requires a unique
mindset. The designer must think like a hacker and come up with bulletproof ways to
anticipate and prevent access to secure data.

The great range of available attack mechanisms (often referred to as the attack surface)
normally means that designers must make a trade-off between the developer’s cost of

3

Automotive Security: From Standards to Implementation

White Paper freescale.com

protecting against an attack (or a customer’s revenue lost as a result of an attack) versus the
hacker’s cost of mounting the attack. For example, if it is necessary to reverse engineer the
silicon to uncover security codes, it might not make commercial sense to attempt this on
something like a TV remote control.

There is also a great deal of activity in the industry at large to develop standards,
specifications and guidelines for vehicle security. Standardization allows for greater
interoperability between the various component suppliers to the auto industry. Having set
specifications means that all manufacturers have an opportunity to develop security-aware
products without compromise.

Being able to follow published guidelines allows the manufacturer implementation freedom while
adhering to the overall architectural requirements and specifications that enable interoperability.

Standards, Specifications and Guidelines
Antiquated methods of “security by obscurity” offer highly precarious and ineffective
approaches for protecting most modern environments. Today’s most robust forms of security
and encryption are those that survive scrutiny—in other words, security and cryptographic
algorithm specifications that themselves do not have to be kept secret but are instead
distributed in the public domain.

Within the automotive engineering community, a number of specification activities are either
ongoing or have reached sufficient maturity to be accepted as a standard. For example, the
Secure Hardware Extension (SHE) specification developed by Escrypt for Audi and BMW
via the HIS Working Group, with early cooperation from Freescale in 2008, has now been
accepted as an open and free standard.

The SHE specification defines a set of functions and a programmer’s model (API) that allows
a secure zone to coexist within any electronic control unit installed in the vehicle. The secure
zone’s most significant features are the storage and management of security keys, plus
encapsulating authentication, encryption and decryption algorithms that application code
can access through the API. These features help maximize flexibility and minimize costs.
A later section of this white paper includes a description of the architecture of the SHE
implementation on Freescale’s MPC5646C single-chip microcontroller targeted at body control
applications, where the security functions can be used for vehicle and ECU theft protection
such as immobilizer activation.

The EVITA project, funded by the EU, has developed a set of guidelines that details the
design, verification and prototyping of a range of security architectures for automotive ECUs.
A number of companies have been active in the EVITA project, including BMW, Continental,
Fujitsu, Infineon and Bosch. EVITA defines the overall functionality of three different hardware
security module approaches: –full, medium and light. Moreover, it specifies an elaborate
set of functions and their parameters for managing security keys as well as encryption and
decryption operations.

A new European funded project called PRESERVE has emerged from the cooperating entities
involved in EVITA. The aim of this new project is to develop, implement and test a scalable

4

Automotive Security: From Standards to Implementation

White Paper freescale.com

security subsystem for Vehicle-to-Vehicle and Vehicle-to-Infrastructure (conflated to the acronym
V2X) applications. The ongoing work is expected to be completed by the end of 2014.

The efforts of the PRESERVE project are targeted at demonstrating the secure transmission
of data and control information for the future Intelligent Transportation System (ITS). The
hardware security module implementation will include Elliptic Curve Cryptography (ECC),
which is a form of public key cryptography.

Another good example of a security standard comes from the National Institute of Standards
and Technology (NIST), which has issued the FIPS (Federal Information Processing Standards)
140 standard for both software and hardware components. FIPS 140-2 defines four levels of
security ranging from Level 1 with a simple single security function and no physical security
requirements up to Level 4 that mandates physical tamper detection mechanisms and
protection against environmental attacks, such as voltage and temperature.

Freescale’s P2041 devices support several encryption and authentication keys that are
identified as being Critical Security Parameters (CSPs) in the FIPS 140-2 specification. An
overview of P2041 security capabilities is described later in this white paper.

Other somewhat proprietary specifications and guidelines exist to aid the development of
secure embedded systems. ARM® developed its TrustZone® security infrastructure, which
has been integrated into microcontrollers and microprocessors from various manufacturers,
including Freescale’s i.MX series and Vybrid family of devices.

Another standards organization is the Trusted Computing Group (TCG), which claims to provide
open, interoperable and international standards for trusted computing. One specification
released by this organization is their Trusted Platform Module (TPM)—published as ISO/IEC
11889 Parts 1-4. Like the SHE specification, TPM supports secure keys for authentication
and encryption functions. Developers generally implement TPM as an external peripheral with
a communication bus to another microcontroller in the system. TPM specifies non-volatile
memory, secret key storage, a random number generator, RSA, SHA-1, HMAC and Vernam
one-time pad algorithms. The Advanced Encryption Standard (AES) is optional for TPM devices.

Security Mechanisms
The mechanisms needed to manage the security of an application may be implemented in
software, hardware or a combination of both. In general, some form of software execution is
always needed. Hardware is usually provided to accelerate the execution of the cryptographic
algorithms to meet the performance requirements of the application. For example, an SHA-256
algorithm used to checksum the contents of memory could easily be two orders of magnitude
faster with hardware acceleration, in comparison to a purely software-based equivalent.

The benefits of hardware acceleration become even more compelling for asymmetric
cryptographic algorithms such as RSA and ECC, especially as the key size increases. Figure 1
shows the relative increase in computation time for software-based RSA authentication
using a public key. With a hardware accelerator, the same public key authentication operation
can be executed in under 100 microseconds.

5

Automotive Security: From Standards to Implementation

White Paper freescale.com

The partitioning between hardware and software implementations must also take in to
consideration the types of malicious attacks that must be protected against. Typically, an
attack will occur because malicious software has been allowed to execute during the boot
process or during normal run time.

One approach to detect and mitigate boot code infection would be to set up a root of trust
mechanism that authenticates the boot code before it executes. The authentication can be
performed by a dedicated security module implemented entirely in hardware or a combination
of hardware and software integrated in a security coprocessor. The challenge here is to
guarantee that the root of trust is itself not infected with malware. One example of such a
mechanism is the TPM specification mentioned in a previous section.

If the root of trust is based on software executing from embedded flash memory, then one
way to ensure it is indeed uninfected is to use a secure, authenticated method of flash
reprogramming. This practice is already implemented by some embedded control systems
manufacturers.

Figure 2 shows an example of a flash programming protocol that relies on opening a channel
between an external (offline) programming tool and the microcontroller. The example shown
uses an RSA private/public key pair to sign and verify that the code is authentic and has not
been modified by an attack during the programming process. In the secure offline environment,
a hash is made of the software image, perhaps using SHA-256. The hash value, which uniquely
represents the software image, is then signed with a private key that uniquely identifies the
owner of the software. The resulting signature plus software image is then transmitted to the
embedded memory system, which performs its own hash on the software image.

The embedded system also authenticates the signature received from the offline environment
using the public key associated with the private key that produced the signature. The
authentication procedure results in a hash value that must match the value from hashing the
software image. If they match, it means the software image has not been modified, and it was

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500

E
xe

cu
ti

o
n

ti
m

e
(m

s)

Key Size (bits)

FIGURE 1. Example of Relative Software Execution Times for Different Public Key Sizes

6

Automotive Security: From Standards to Implementation

White Paper freescale.com

received from the entity that used the corresponding private key. This confirms both that the
software is good and where it came from.

This methodology does not encrypt the software that is being programmed, nor does it need
to hide the signature or public key. Instead, the private key (which is stored “offline”) must
be kept secret because it defines the identity of the provider of the software image. The
advantage of the private/public key authentication mechanism is that only one private key is
needed and it is not embedded in the application device. Therefore, its exposure to attacks
can be quite low and extensive measures can be adopted to maintain its secrecy because it
is essentially kept in “offline” storage.

At the same time, the single public key that matches the private key can be proliferated in all
embedded devices and does not need to be hidden nor encrypted. The only provision is that
a secure method must be enforced to restrict how the public key is changed, to allow for the
case where the private key has been stolen. For example, an authentication or password-
protected protocol could be used to allow the existing key to be replaced with a new one
supplied by a certified entity. An alternative mechanism would be to revoke the existing public
key and replace it with another key from a list of preprogrammed keys or keychain.

The signature could equally well be created and verified using symmetric cryptography, in
which case the same key is used to create and verify the signature. Unlike asymmetric keys,
the symmetric protocol relies on the embedded system and external entity both being able to
secretly store the same key. A successful attack on either the microcontroller or external entity
will compromise the security of the system.

The SHE specification defines a protocol for securely changing secret keys. The protocol
uses a symmetric AES-128 CMAC for signing and authentication and an AES-128 CBC for
encrypting and decrypting the message associated with key updates. This prevents attackers
from obtaining the key by snooping the update process. AES-128 offers the advantage
of encrypting and authentication algorithms that are typically much faster than the RSA
algorithms used with public/private key pairs.

Private
Key

SW
Image

Sign
(RSA)

Hash

Verify
(RSA)

Compare

Hash
S

ignature

SW Image
+ Signature

G
enerated

H
ash

S
W

 Im
ag

e

R
ef

er
en

ce
H

as
h

Public
Key

Run OS

Report Error

Secure Off-line
Environment

SW Image
+ Signature

Device
Boot

FIGURE 2. Secure Flash Programming Example

7

Automotive Security: From Standards to Implementation

White Paper freescale.com

Flash programming authentication determines the trustworthiness of the code image prior
to placing the microcontroller in an application. Once installed in the final system, however,
further measures are needed to ensure the integrity of the code (which is expected to remain
unchanged) is not modified by malware (such as a Trojan) while the application is running.

Checking the integrity can be done prior to running the application using a secure boot
technique that executes the integrity checker from a root of trust. This eliminates the
opportunity for code to execute if it or the data image in memory appears to be corrupted.

Alternatively, if no known software root of trust can be guaranteed, configuration and
enablement of a run time integrity checker can be achieved solely in hardware and could
execute prior to the application code starting. This technique also avoids the integrity process
vying for memory bus bandwidth with the application process. If the resultant additional delay
in start-up time is not acceptable, then another option might be to implement a run time
integrity checker that executes in parallel with the application code, sharing memory bus
bandwidth with the application.

The trade-offs between the two techniques are start-up time and memory bus bandwidth
sharing, but there are mitigations for both these effects. Secure boot time could be shortened
by using a chain of trust strategy which splits up the memory space into multiple partitions,
each of which is checked in sequence as the application software progresses through its flow.
Figure 3 shows an example of this strategy.

To minimize the impact that run time integrity checking has on the bandwidth loading for the
application, some rudimentary Direct Memory Access (DMA) capability offering burst mode
access to multi-ported system memory, plus local caching of data, can be implemented.

Another approach which may add to the security of software execution is the TrustZone
architecture implemented on ARM-based products, such as the i.MX6 applications processor.
TrustZone architecture provides partitioning of hardware that allows a single core to be
operated in either a secure or unsecure “world.” The selection of worlds is orchestrated by

Application CPU Security Module

Host
Boot ROM

Check Stage 1
(App Boot)

Stage 1
(App Boot)

Check Stage 2
(App Step 1)

Stage 2
(App Step 1) Check Stage 3

Enable

Enable

FIGURE 3. Chain of Trust

8

Automotive Security: From Standards to Implementation

White Paper freescale.com

software called the Secure Monitor, which has the attributes of a root of trust. To switch
worlds, application code must make a call to the Secure Monitor to request the switch.
Memory is partitioned into secure and non-secure regions, and the non-secure world is
unable to access memory that is tagged as secure. This architecture could be considered
an extension of the user/supervisor model that is implemented on a number of existing
microprocessor architectures and has similar attributes to a hypervisor.

The previous security examples assume the use of internal flash memory and that there is no
external visibility of the flash memory bus activity. There are, however, many security applications
that rely on external memory—so some method of robust security must be provided for
applications that expose the transfer of data and instructions on an external memory bus.

One way to achieve this is to encrypt all content that is stored in external memory, and
implement a cryptographic engine on the microprocessor, between the external bus interface
and the CPU. Code and data fetched from external memory must now be decrypted before
being processed by the CPU. Likewise, data stored back to external memory must first be
encrypted to prevent successful snooping attacks on the external bus.

The main challenges in this architecture are how to prevent reduction in CPU performance
and how to support random access fetches from external memory. The attributes of a block
cipher operating in counter mode make it suitable for on-the-fly decryption without impacting
performance. Figure 4 shows the general architecture of such a secure system. The attributes of
a block cipher operating in counter mode are described in a later section of this white paper.

Other forms of software-based attacks include snooping and interfering with external
I/O communications via Controller Area Network (CAN) or other industry-standard serial
ports. These can also include physical attacks on the hardware, such as monitoring power
fluctuations and EMI to determine the values of cryptographic keys.

Secret
Key

Decrypt
(AES)

Encrypted
SW Image

Decrypt
(AES)

OTP
Key

Decrypted
SW Image

Device
Boot

K
ey

 B
lo

b

FIGURE 4. Block Cipher Engine for External Memory Security

9

Automotive Security: From Standards to Implementation

White Paper freescale.com

If the financial benefit to the attacker is sufficiently high, then laboratory techniques such as
decapping, electron microscopes, microprobing or noise injection using laser light may be
employed to attack a device. Protecting against these types of attacks can take the form of
physical meshes applied to the dies themselves or adding random noise to the power profile
using on-chip logic.

The level of security applied to the device must take account of the value of the asset
versus the cost to the attacker. If the attack takes too long or costs too much, then the
countermeasure is sufficient.

Crypto Algorithms
Crypto(graphic) algorithms are essentially mathematical computations designed to perform
encryption and decryption of a message. The two main categories of algorithms are
symmetric and asymmetric.

Symmetric cryptography algorithms use the same key for encryption and decryption. The key
must therefore be kept secret by all entities that use the key for secure communications. This
may pose a problem with distributing the key to new entities, unless a method such as Diffie-
Hellman is used, as described in the Secret Key Exchange section below.

The main advantage of symmetric algorithms is their efficiency and speed of execution. For
example, Freescale’s AES-128 hardware accelerator on the MPC5646C device can execute
at the rate of 70 MB/s. In addition to enabling encryption and decryption, symmetric keys are
also used for digital signing and authentication.

Encryption is often categorized as being implemented as a stream cipher or a block cipher.
The main operational differences between ciphers called “stream” and those called “block” is
how the plaintext is encrypted.

A stream cipher operates by combining the digits of the plain text message with a stream
of random and indeterministic cipher values, known as the keystream. Figure 5 shows the
basic operation, using an exclusive-OR (XOR) operation to perform encryption of the message
“HELLO” into the encrypted “DTMEY” using the randomly generated sequence of numbers
shown as the keystream. The keystream’s initial value is determined by a starting seed value.

Stream ciphers are often faster than block ciphers and operate on small pieces of data
typically using bit or byte-wise XOR operations. Examples of stream ciphers include RC4,
SEAL and the Vernam, or one-time pad (OTP), cipher. While stream ciphers can execute at
very high speed with simple hardware, they can be prone to security problems. The starting
seed is also used to decrypt the message. To avoid security problems, the starting seed must
never be used more than once.

Plain Text H E L L O

Cipher
Text

D T M E Y

Keystream 12 17 1 9 22

FIGURE 5. Stream Cipher Encoding

10

Automotive Security: From Standards to Implementation

White Paper freescale.com

One advantage of stream ciphers is that there is no dependency in encryption between
any of the characters in the stream. This means they are relatively immune to noise in the
transmission channel because any corruption of part of the transmitted cipher text does not
prevent decryption of the part that was unaffected by noise. For this reason, stream ciphers
such as RC4 are used in WEP and WPA Wi-Fi® security algorithms, although WEP is now
deprecated due to its security flaws.

A block cipher operates on larger chunks of data than stream ciphers, and each block
usually incorporates values from previous blocks. This sometimes means more hardware
memory is required than for stream ciphers.

Block ciphers have many operating modes, offering different trade-offs. The simplest form
is Electronic Code Book (ECB) mode, which is the exception because each block of data
is encrypted and decrypted independently of other blocks. This means that patterns in the
plain text appear as similar patterns in the cipher text, which makes the encrypted message
somewhat insecure. Figure 6 shows the effect of ECB encryption on an image.

To overcome this insecurity, a number of industry standards have introduced alternative block
cipher modes of operation. The Cipher Block Chaining (CBC) mode uses the concept of
applying an input variable to each block of plaintext to be encrypted. The input variable to the
first block is a pseudo random initialization vector (IV). The input variable to subsequent blocks
is the output of the preceding block, hence the chaining in the mode name. The result is that
there is no correlation between input and output as shown graphically in Figure 6 and thus
provides superior security to ECB.

Figure 7 shows the general operation of a block cipher operating in ECB and CBC mode.
Both encryption and decryption involved applying the crypto algorithm to the entire plaintext.
One disadvantage of this method is latency of the cipher text output.

FIGURE 6. Visual Representation of Differences between ECB and CBC

Original ECB CBC

11

Automotive Security: From Standards to Implementation

White Paper freescale.com

There are alternative block cipher modes that eliminate this latency by operating in a
streaming mode. That is, the plaintext is simply XOR’ed with a keystream, much in the same
way as the stream cipher described previously. The streaming modes of operation are Output
Feed Back (OFB), Cipher Feed Back (CFB) and Counter (CTR) modes. Their implementation
differences lie in how their keystream is generated. Figure 8 shows the general data flow for
encryption with these three modes.

The Counter mode (CTR) is particularly interesting because its keystream is independent
of the input plaintext (xi) and output ciphertext (yi), much like ECB mode. This means the
keystream can be calculated while the input data (xi) is being fetched, and encryption can be
parallelized. Unlike ECB, the CTR mode has an initialization vector (IV) and counter value that
prevents patterns in the plaintext from being replicated in the ciphertext, which is the main
vulnerability of ECB. Of course, to ensure the security, all data that is encrypted with the same
key must allocate a different counter value for each block.

All the aforementioned block cipher modes can be used for encryption and decryption or can
additionally be used to perform message authentication, creating a Message Authentication
Code (or MAC, detailed in the next section). A security vulnerability exists, however, if the
same block cipher and key are used to both encrypt a message and generate its MAC.

Several solutions exist for this problem: using different starting keys derived from one key,
different block ciphers modes for encryption and authentication or some hybrid mode using a
keyed hash function or asymmetric digital signature (described in the next sections).

FIGURE 7. ECB and CBC Mode Encryption

ECB Mode CBC Mode

FIGURE 8. OFB, CFB and CTR Mode Encryption

OFB Mode CFB Mode CTR Mode

12

Automotive Security: From Standards to Implementation

White Paper freescale.com

Another alternative is to use a variant of the block cipher counter (CTR) mode known as
Galois Counter Mode (GCM) shown in Figure 9. This algorithm can perform authentication in
parallel with encryption and thus offers significant performance improvement for applications
that need both. Encryption is performed by the CTR mode algorithm described previously,
while authentication requires a Galois field multiplier that adds complexity to hardware and
software implementations.

The crypto algorithms described thus far are AES symmetric functions. The other category
of crypto algorithms is referred to as asymmetric, where the encryption key and decryption
key are different. The pair of keys is mathematically related and unique. One key is called the
“private” key while the other is called the “public” key.

The power of this type of cryptography is that the private key cannot be determined from
the public key. Therefore, the public key generally can be distributed and stored in non-
secure storage, while only the private key must be kept secret. This potentially reduces the
opportunity for attacks on data protected by asymmetric cryptography. One common use of a
public key is to encrypt data so that it can be sent securely to the owner of the corresponding
private key. The public key cannot be used to decrypt the data, thus allowing anyone with the
same public key to securely transmit data to the same entity.

Some examples of asymmetric crypto algorithms include RSA and ECC (Elliptic Curve
Cryptography—not to be confused with Error Correcting Codes).

While asymmetric algorithms potentially provide more enhanced security than symmetric
algorithms, they do so at a cost. To achieve the same level of security, asymmetric algorithms

FIGURE 9. GCM Mode Encryption and Authentication

13

Automotive Security: From Standards to Implementation

White Paper freescale.com

(such as RSA) require larger keys than symmetric algorithms (such as AES). Moreover, the
computational requirements for asymmetric keys are greater.

For this reason, many security systems use a hybrid approach, where a symmetric secret key is
distributed using asymmetric cryptography. The symmetric key is then employed as a “session
key” for further secure communications using the faster symmetric algorithms provided by AES.

Authentication
Cryptographic authentication is the process of verifying the identity of the sender of the
data. In an embedded application, authentication can be used to verify the source of data
transmitted on external interfaces between different control units. It can also be used to
verify the trustworthiness of a software image prior to it being executed at run time, or during
download from an external tool prior to the image being programmed into on-chip flash.

Authentication usually also provides data integrity if the entire data or software image is
used to create the authentication code (more commonly known as a digital signature). Any
modification of the data or software image will result in the authentication process failing.

Both symmetric and asymmetric cryptography support authentication algorithms. Symmetric
cryptographic authentication uses a shared secret key. The sender creates a message
authentication code (MAC) using the secret key as a seed. There are a number of forms of
symmetric MAC functions, usually based on block cipher algorithms described in an earlier
section. Some examples are CBC-MAC, CMAC, and PMAC. The Freescale Cryptographic
Security Engine (CSE) and Hardware Security Module (HSM) modules provide a CMAC
function which fixes vulnerabilities that exist in the CBC-MAC function that predates it.

Asymmetric cryptography uses a public key to authenticate data received from the owner
of the private key. This digital signature scheme relies on the sender generating a unique
signature that is formed from some combination of the message and the sender’s private
key, transmitting both the message and the signature to the recipient. The signature is often
formed by generating a “checksum” of the entire message and then by encrypting only the
checksum with the private key. The receiver of the message and signature can then perform
the same checksum operation on the message and compare it with the checksum that was
decrypted from the signature using the public key. If they do not match, then the data was
either corrupted during transmission or the sender is not the expected entity.

An alternative method of authentication is based on hashing algorithms and has the generic
name HMAC, which is normally prepended to the name of the underlying crypto algorithm.
For example, the HMAC-SHA-256 is a hash-based message authentication code constructed
from the SHA-256 algorithm. The code is referred to as a keyed-hash message authentication
code and relies on the use of a shared secret key. The key is incorporated in the message
in a manner that makes it resistant to attack. The resultant HMAC is transmitted with the
message, and checked by the recipient using the same shared secret key. This means HMAC
authentication has symmetric cryptography attributes.

An interesting difference between symmetric and asymmetric key authentication is that the
former does not provide non-repudiation. This could be a problem in a network of nodes that
all share the same secret key. It means that the receiver of data authenticated by a shared
secret key cannot be sure which entity in the network sent the data. Obviously, there are
other measures that can identify the sender of the message—such as adding a sender ID to

14

Automotive Security: From Standards to Implementation

White Paper freescale.com

the message. This could easily be subverted, however, by a simple man-in-the-middle attack,
which changes the ID. Encrypting the sender ID is a solution, but adds complexity which
might make the asymmetric private/public key approach more desirable. Another approach is
to restrict certain entities to MAC verification and disallow them to generate MACs.

Secrecy
There are two main forms of secrecy that apply to embedded microcontrollers. One is the
secret storage of information directly on the microcontroller. This could be passwords, keys,
manufacturing information and product identity codes. The second is the secret storage of
information remotely from the microcontroller, such as secret keys and passwords required for
reprogramming the microcontroller with an external tool.

These secret assets are often used in conjunction with crypto algorithms and authentication
procedures, but can also be used to directly unlock access to the microcontroller by an external tool.

Secret Storage: In the context of an embedded microcontroller, there is a dilemma between the
engineer’s desire to access all memory and functions on the microcontroller and the demands
of the end customer to deny access to embedded confidential information or certain operating
modes of the application. Fortunately, both can be accommodated if the notion of a security
lifecycle is considered, where the level of security of the microcontroller can be adapted to
satisfy the differing needs during the development, manufacture, and use of the application.

Examples of products that incorporate a security lifecycle are Freescale’s Qorivva MPC5746M
and MPC5777M MCUs. Figure 10 shows the increased levels of security that are applied
during product development through the application of the security lifecycle state variable.

The security lifecycle provides a method to irrevocably increase the security level of the MCU
as it progresses from the chip manufacturer, through the Tier 1 manufacturing process, then
on to the OEM production line, and finally the end customer who drives the vehicle. In addition,
the security lifecycle is extended to support failure analysis of any suspect device, without
compromising OEM and Tier 1 software investment or any customer’s confidential material.

S
ec

ur
ity

 L
ev

el

Out of
Fab

Application
Development

In
Field

Vehicle
Production

Field
Return

Development Lifecycle Over Time

FIGURE 10. Security Level Increases as Product is Developed

15

Automotive Security: From Standards to Implementation

White Paper freescale.com

There are a number of objectives for the security lifecycle:

• It prevents compromising silicon device production test times when no security measures
are required on unprogrammed devices.

• It allows ease of use during the earliest stages of product development when security
measures can be tested and adapted.

• It provides the maximum level of security when the device is in the field to prevent theft or
unauthorized tampering and modification of software installed in the device.

• It allows devices to be returned from the field for factory inspection without allowing access
to confidential or proprietary code and data.

The security lifecycle affects the interaction between the debug interface, application code and
the hardware security module—as well as flash program, erase and read interfaces. Debug
access can be allowed or denied based on a combination of Security Lifecycle State and
various passwords. Moreover, flash memory regions can be hardware configured to prevent
reading during debug or during failure analysis. Flash erasure and programming can be controlled
by user-defined hardware configurations that can be temporarily overridden by passwords.

Secret Key Exchange: Key exchange can be used to create a one-time shared secret
between two entities such as the microcontroller and a programming device or between a
powertrain controller and a braking controller. One implementation of such an exchange is the
Diffie-Hellman key exchange method. It allows two entities that have no prior knowledge of
each other to jointly establish a shared secret key over an insecure communications channel
such as a CAN network.

Another advantage of this method is that the shared secret key is never transmitted across
the communication channel. Even if it is discovered by a successful attack on either entity, the
entities can renegotiate a new secret key using the key exchange protocol at any time.

While this secret key could be used to perform secure communications, usually the key
encrypts a symmetric key that is then distributed to each entity. The symmetric key is then
used for subsequent secure communications. Rather than just use the one-time shared secret
for secure communications, the symmetric key approach is preferred as it performs encryption
and decryption considerably faster. The one-time secret created by the Diffie-Hellman
algorithm is essentially an asymmetric key, which makes it unsuitable for use in encrypting
and decrypting large quantities of data in a timely manner.

The Diffie-Hellman protocol relies on each entity being able to generate its own secret integer
and a public integer derived from the secret integer. The algorithm used to calculate each public
integer is based on a shared prime number (p) and number base (g), as shown in Figure 11.

Each entity (referred to as Alice and Bob) then transmits its public integer (A, B) to the other
entity. Each entity then applies the Diffie-Hellman algorithm using its own secret integer
and the other’s public integer, resulting in a secret key. The secret key is the same for both
entities. The public integers transmitted between legitimate entities have no value to an
attacker that snoops the communication channel. The asymmetric algorithms used to create
the public integers make it unfeasible for the attacker to calculate the corresponding secret
integers retained by each legitimate entity.

16

Automotive Security: From Standards to Implementation

White Paper freescale.com

Current Security Implementations
Figure 12 shows the Freescale MPC564xB/C family of microcontrollers that include a module
designed to implement the SHE specification. SHE is implemented as a dedicated but securely
firewalled microcontroller architecture called the CSE1 that coexists on the same silicon as the
main microcontroller CPU, memory and peripherals used for traditional application use. Secure
cryptographic keys are stored in embedded flash memory that is restricted to the CSE module
alone. An AES-128 hardware accelerator is included to provide support for fast ECB and CBC
encryption and decryption and CMAC generation and verification.

The family of QorIQ processing platform trust architecture microprocessors (such as the P2041)
contains the SEC 4.2 security engine that implements block encryption algorithms, stream cipher
algorithms, hashing algorithms, public key algorithms, hardware random number generator and
run time integrity checking. A block diagram of the security engine is shown in Figure 13.

Vybrid VF3xx devices incorporate a variety of data integrity and security hardware features
for safeguarding memory, communication and system data. An optional tamper detection

1 Freescale’s CSE should not be confused with the Communications Security Establishment (CSE) for the Canadian government.

Alice Bob
Secret Public Calculates Sends Calculates Public Secret

a p, g p,g b

a p, g, A ga mod p = A A p, g b

a p, g, A B gb mod p = B p, g, A, B b

a, s p, g, A, B Ba mod p = s Ab mod p = s p, g, A, B b, s

FIGURE 11. Diffie-Hellman Key Exchange

Qorivva MPC564xB/C

System

VReg

Interrupt Controller

RTC/API

4–40 MHz Osc.

FMPLL

Debug

JTAG

Security

CSENexus Class 3+

Nexus Class 3+

e200z0 Core

Crossbar Switch

Memory Protection Unit (MPU)

e200z4d
Core

32-ch.
eDMA

128 KB
SRAM

(with ECC)

Ethernet
(FEC) FlexRay

3 MB
Flash
(ECC)

64 KB
DFlash
(ECC)

FPU
MMU

32 kHz Osc.

16 MHz IRC

128 kHz IRC

Crossbar Masters

Crossbar Slaves

128 KB
SRAM

(with ECC)

Communications I/O System

10x
FlexCANI2C8x

DSPI
ATD

12-bit
ATD

10-bit

I/O
Bridge

Boot
Assist

Module
(BAM)

CTU 10x
LINFlexeMIOS

FIGURE 12. MPC564xB/C Block Diagram

17

Automotive Security: From Standards to Implementation

White Paper freescale.com

system includes integrated sensors for voltage, frequency and temperature as well as external
sensing for physical attack detection.

Future Security Implementations
The very physical properties that theoretically might be used to crack the most robust security
keys might also provide the answers to creating unbreakable keys. The technique harnesses the
laws of quantum mechanics to create keys that can be proven invulnerable to eavesdropping.
These unbreakable keys can then be distributed with the knowledge that they are 100% secure.

This type of cryptography is known as Quantum Key Distribution (QKD) and relies on the
quantum properties of light. This means the key must be sent through a medium that
supports light—such as a laser, optical fiber or even free space.

The security of a distributed key relies on the Heisenberg uncertainty principle. Reading
the quantum states of the key causes state values to change and errors produced in the
key sequence, which are subsequently detected by the legitimate receiver of the key. If the
legitimate receiver detects a high error rate when reading the key, it means the key has been
intercepted during its transmission and can be discarded. QKD is not a complete solution and
must be used in tandem with classical security methods, so there is an overhead associated
with this technique that may be difficult to justify.

FIGURE 13. P2041 SEC 4.2 Security Engine

 freescale.com

For more information, please visit freescale.com/security
Freescale, the Freescale logo, QorIQ and Qorivva are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
Vybrid is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective
owners. ARM and TrustZone are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved. © 2014 Freescale Semiconductor, Inc.

Document Number: AUTOSECURITYWP REV 1

January 2014

Conclusion
In the future, it is conceivable to imagine that robust vehicle security could potentially reduce
insurance rates and even lower vehicle depreciation. Integrated security design also offers the
added benefit of allowing higher dollar value feature options to be delivered as an option in all
vehicles, enabled by a software switch as an after-market purchase.

The continued growth in automotive security will be driven by a combination of factors. The
added connectivity to the external world through entertainment portals such as Bluetooth
and USB introduces an attack surface for installing malicious software or unauthorized
modifications to existing software.

Another factor is the increase in safety-aware applications such as HEV and advanced driver
assistance systems in the form of collision avoidance and self-parking. Moreover, emerging
markets introduce a new world order to product development and manufacture. The
embedded security measures described in this paper provide a way to ensure that safety is
not compromised while also providing the features necessary to ease product development—
as well as protecting manufacturers’ investment and drivers’ privacy.

