
JN51xx Core Utilities
User Guide

JN-UG-3116

Revision 1.1

6 July 2016

JN51xx Core Utilities
User Guide

2 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
Contents

Preface 7
Organisation 7

Conventions 8

Acronyms and Abbreviations 8

Related Documents 9

Support Resources 9

Trademarks 9

Chip Compatibility 9

Part I: Concept and Operational Information

1. Introduction 13
1.1 Modules and Architecture 13

1.1.1 JCU Modules 13

1.1.2 Software Architecture 14

2. Persistent Data Manager (PDM) 15
2.1 Overview 15

2.2 Initialising the PDM and Building a File System 16
2.2.1 Using PDM with IEEE802.15.4 16

2.2.2 Using PDM with JenNet-IP 16

2.3 Managing Data in EEPROM 17
2.3.1 Saving Data to EEPROM 18

2.3.2 Recovering Data from EEPROM 19

2.3.3 Deleting Data in EEPROM 19

2.4 Storing Counters in EEPROM 20
2.4.1 Creating a Counter 20

2.4.2 Incrementing a Counter 20

2.4.3 Reading a Counter 20

2.4.4 Deleting a Counter 21

2.5 PDM Features 21
2.5.1 Mutex in PDM 21

2.5.2 Event and Error Handler for EEPROM 21

2.5.3 EEPROM Capacity 22

2.5.4 EEPROM Wear Count 22

2.5.5 Ensuring Consistency of PDM Records 23
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 3

Contents
3. Power Manager (PWRM) 25
3.1 Low-Power Modes 25

3.1.1 Doze Mode 25

3.1.2 Sleep Mode with Memory Held 25

3.1.3 Sleep Mode without Memory Held 26

3.1.4 Deep Sleep Mode 26

3.2 Callback Functions for Power Manager 27
3.2.1 Essential Callback Function 27

3.2.2 Pre-sleep and Post-sleep Callback Functions 27

3.2.3 Wake Timer Callback Function 28

3.3 Initialising and Starting the Power Manager 28

3.4 Enabling Power-Saving 29

3.5 Non-interruptible Activities 29

3.6 Terminating Low-Power Mode 30

3.7 Scheduling Wake Events 31

3.8 Doze Mode 31
3.8.1 Circumstances that Lead to Doze Mode 32

3.8.2 Doze Mode Monitoring During Development 33

4. Protocol Data Unit Manager (PDUM) 35
4.1 Message Assembly and Disassembly 35

4.2 Preparing the PDU Manager 36

4.3 Inserting Data into Outgoing Message 37

4.4 Extracting Data from Incoming Message 38

5. Debug (DBG) Module 39
5.1 Overview 39

5.2 Enabling the Debug Module 40

5.3 Initialising and Configuring the Debug Module 40
5.3.1 Using JN51xx UART Input/Output 40

5.3.2 Using Alternative Serial Output 41

5.4 Debug Configuration Flags 42

5.5 Example Diagnostic Code 43
4 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
Part II: Reference Information

6. PDM API 47
6.1 EEPROM PDM Functions 48

PDM_eInitialise 49

PDM_eSaveRecordData 50

PDM_eReadDataFromRecord 51

PDM_eDeleteData 52

PDM_eDeleteAllData 53

PDM_u8GetSegmentCapacity 54

PDM_u8GetSegmentOccupancy 55

PDM_bDoesDataExist 56

6.2 EEPROM PDM Bitmap Counter Functions 57
PDM_eCreateBitmap 58

PDM_eIncrementBitmap 59

PDM_eGetBitmap 60

PDM_eDeleteBitmap 61

6.3 EEPROM PDM Miscellaneous Functions 62
PDM_vRegisterSystemCallback 63

PDM_vSetWearCountTriggerLevel 64

PDM_eGetSegmentWearCount 65

7. PWRM API 67
7.1 Core Functions 67

PWRM_vInit 68

PWRM_eStartActivity 69

PWRM_eFinishActivity 70

PWRM_u16GetActivityCount 71

PWRM_eScheduleActivity 72

PWRM_vManagePower 73

7.2 Callback Set-up Functions 74
vAppMain 75

PWRM_vRegisterPreSleepCallback 76

PWRM_vRegisterWakeupCallback 77

vAppRegisterPWRMCallbacks 78

PWRM_vWakeInterruptCallback 79

7.3 Debugging Function 80
PWRM_vSetupDozeMonitor 81
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 5

Contents
8. PDUM API 83
PDUM_vInit 84

PDUM_hAPduAllocateAPduInstance 85

PDUM_eAPduFreeAPduInstance 86

PDUM_u16APduInstanceReadNBO 87

PDUM_u16APduInstanceWriteNBO 88

PDUM_u16APduInstanceWriteStrNBO 89

PDUM_u16SizeNBO 90

PDUM_u16APduGetSize 91

PDUM_pvAPduInstanceGetPayload 92

PDUM_u16APduInstanceGetPayloadSize 93

PDUM_eAPduInstanceSetPayloadSize 94

PDUM_vDBGPrintAPduInstance 95

9. DBG API 97
DBG_vInit 98

DBG_vUartInit 99

DBG_vPrintf 100

DBG_vAssert 102

DBG_vDumpStack 103

DBG_vFlush 104

DBG_iGetChar 105

10.JCU Structures 107
10.1 PDM Structures 107

10.1.1 PDM_tpfvSystemEventCallback 107

10.1.2 tsReg128 107

10.1.3 PDM_eSystemEventCode 108

10.1.4 PDM_teStatus 110

10.1.5 PDM_tsHwFncTable 111

10.2 PWRM Structures 112
10.2.1 PWRM_teSleepMode 112

10.3 DBG Structures 112
10.3.1 DBG_tsFunctionTbl 112
6 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
Preface

This manual provides a single point of reference for information relating to the JN51xx
Core Utilities (JCU), for use with the NXP JN51xx family of wireless microcontrollers.
The manual provides both conceptual and practical information concerning the JCU,
and provides guidance on use of the JCU Application Programming Interfaces (APIs).
The API resources (functions and structures) are fully detailed.

The JN51xx Core Utilities are designed to be used when developing applications for
the JN51xx devices, such as ZigBee PRO wireless network applications. This manual
should be used throughout JN51xx application development.

Organisation

This manual is divided into two parts:

 Part I: Concept and Operational Information comprises five chapters:

 Chapter 1 introduces the JN51xx Core Utilities and associated APIs

 Chapter 2 describes how to use the Persistent Data Manager (PDM) for
EEPROM

 Chapter 3 describes how to use the Power Manager (PWRM)

 Chapter 4 describes how to use the Protocol Data Unit Manager (PDUM)

 Chapter 5 describes how to use the Debug (DBG) module

 Part II: Reference Information comprises five chapters:

 Chapter 6 describes the functions of the PDM API for EEPROM

 Chapter 7 describes the functions of the PWRM API

 Chapter 8 describes the functions of the PDUM API

 Chapter 9 describes the functions of the DBG API

 Chapter 10 details the structures used by the JCU
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 7

Preface
Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

APDU Application Protocol Data Unit

API Application Programming Interface

DBG Debug

EEPROM Electrically Erasable Programmable Read-Only Memory

MAC Media Access Control

PAN Personal Area Network

NPDU Network Protocol Data Unit

NVM Non-Volatile Memory

PDU Protocol Data Unit

PDUM Protocol Data Unit Manager

PDM Persistent Data Manager

PIC Programmable Interrupt Controller

PWRM Power Manager

SDK Software Developer’s Kit

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
8 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
UART Universal Asynchronous Receiver-Transmitter

ZPS ZigBee PRO Stack

Related Documents

JN-UG-3087 JN516x Integrated Peripherals API User Guide

JN-UG-3118 JN517x Integrated Peripherals API User Guide

JN-UG-3113 ZigBee 3.0 Stack User Guide

JN-DS-JN516x JN516x Data Sheet (for JN5168, JN5164 and JN5161)

JN5169 JN5169 Data Sheet

JN517X JN517x Data Sheet

Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:

www.nxp.com/products/interface-and-connectivity/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The software described in this manual can currently be used on the NXP JN516x and
JN517x families of wireless microcontrollers. However, for future compatibility, the
compatible microcontrollers are referred to as JN51xx devices in this manual.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 9

Preface
10 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
Part I:
Concept and Operational

Information
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 11

12 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
1. Introduction

The JN51xx Core Utilities (JCU) are designed for use in wireless network applications
for the NXP JN51xx devices, providing an interface which simplifies the programming
of a range of operations that are not specific to wireless networking.

1.1 Modules and Architecture

The JN51xx Core Utilities comprise four utilities/modules, each with a dedicated
Application Programming Interface (API) to facilitate easy interaction between the
application and the corresponding JCU module. Each module’s API consists of a set
of C functions and associated resources.

1.1.1 JCU Modules

The JCU modules are briefly described below:

 Persistent Data Manager (PDM): This module handles the storage of context
and application data in Non-Volatile Memory (NVM), and the retrieval of this
data. It provides a mechanism by which the JN51xx device can resume
operation without loss of continuity following a power loss. For the JN516x and
JN517x devices, this NVM is internal EEPROM. The PDM module is described
in Chapter 2.

 Power Manager (PWRM): This module manages the transitions of the JN51xx
device into and out of low-power modes, such as sleep mode. The PWRM
module is described in Chapter 3.

 Protocol Data Unit Manager (PDUM): This module is concerned with
managing memory, as well as inserting data into messages to be transmitted
and extracting data from messages that have been received. The PDUM
module is described in Chapter 4.

 Debug (DBG): This module allows diagnostic messages to be output when the
application runs, as an aid to debugging the application code. The DBG module
is described in Chapter 5.

Note 1: The JCU modules are supplied in the NXP
Software Developer’s Kit (SDK) for the wireless
networking protocols. Not all of the JCU modules are
provided in every SDK - for details of the supplied
modules, refer to the Release Notes of your SDK.

Note 2: Not all of the supplied JCU modules need to be
used in the JN51xx application. The modules can be
individually enabled for use by the application - for
details, refer to the chapters for the modules.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 13

Chapter 1
Introduction

1.1.2 Software Architecture

On a JN51xx-based node in a wireless network, the JCU interacts with the following
software blocks:

 User application (through use of the JCU APIs in the application code)

 Wireless networking stack (e.g. ZigBee PRO stack)

 JN51xx integrated peripherals

The JCU can be envisaged as sitting alongside the wireless networking stack and the
JN51xx Integrated Peripherals API, as depicted in the diagram below.

Figure 1: Basic Software Architecture

JCU

JN51xx
Integrated
Peripherals

API

Networking Stack

Application

PDM

PWRM

PDUM

DBG
14 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
2. Persistent Data Manager (PDM)

This chapter describes the Persistent Data Manager (PDM) module which handles the
storage of stack context data and application data in Non-Volatile Memory (NVM). For
the JN516x and JN517x devices, this memory is internal EEPROM and this chapter
will therefore refer to EEPROM.

2.1 Overview

If the data needed for the operation of a network node is stored only in on-chip RAM,
this data is maintained in memory only while the node is powered and will be lost
during an interruption to the power supply (e.g. power failure or battery replacement).
This data includes context data for the network stack and application data.

In order for the node to recover from a power interruption with continuity of service,
provision must be made for storing essential operational data in Non-Volatile Memory
(NVM), such as EEPROM. This data can then be recovered during a re-boot following
power loss, allowing the node to resume its role in the network.

The storage and recovery of operational data in JN516x/7x EEPROM can be handled
using the Persistent Data Manager (PDM) module, as described in the rest of this
chapter, which covers the following topics:

 Initialising the PDM module - see Section 2.2

 Managing data in EEPROM - see Section 2.3

 Storing counters in EEPROM - see Section 2.4

 PDM features including mutexes, EEPROM wear counts and event handling -
see Section 2.5

The PDM can be used with ZigBee PRO, JenNet-IP and IEEE802.15.4 wireless
networking protocols.

Note : The PDM functions referenced in this chapter are
detailed in Chapter 6.

Tip: In this chapter, a cold start refers to either a first-
time start or a re-start without memory (RAM) held. A
warm start refers to a re-start with memory held (for
example following sleep with memory held).
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 15

Chapter 2
Persistent Data Manager (PDM)

2.2 Initialising the PDM and Building a File System

The PDM module must be initialised by the application following a cold or warm start,
irrespective of the PDM functionality used (e.g. context data storage or counter
implementation). PDM initialisation is performed using the function PDM_eInitialise().

This function requires the following information to be specified:

 The number of EEPROM segments to be used by PDM (a zero value means
use all segments)

 An optional mutex in order to serialise PDM function calls and prevent
concurrent calls - for information on this mutex, refer to Section 2.5

Once the PDM_eInitialise() function has been called, the PDM module builds a file
system in RAM containing information about the segments that it manages in
EEPROM. The PDM reads the header data from each EEPROM segment and builds
the file system.

The file system allows the PDM to perform efficient searches when operating on data,
track the occupation of all the segments in the EEPROM and keep track of the number
of segments available for data allocation at any time. It also helps to even out the wear
across EEPROM segments - for more information on EEPROM segment wear, refer
to Section 2.5.4.

For ZigBee PRO, the PDM is used in its most general form, as described above, in
which the serialisation mutex is optional. The sub-sections below provide special
instructions for using the PDM with the IEEE802.15.4 and JenNet-IP protocols.

2.2.1 Using PDM with IEEE802.15.4

To use the PDM in applications developed using a ZigBee 3.0 SDK (JN-SW-4170 or
JN-SW-4270) or the IEEE802.15.4 SDK (JN-SW-4163), the flag PDM_NO_RTOS
must be defined in the makefile, as follows:

CFLAGS += -DPDM_NO_RTOS

The serialisation mutex cannot be used in this case and the relevant parameter is
removed from the PDM_eInitialise() function.

2.2.2 Using PDM with JenNet-IP

When the PDM is used in applications developed using the JenNet-IP SDK
(JN-SW-4165), no makefile modifications need to be made. However, the serialisation
mutex is always implemented and a non-zero value must be passed to the relevant
parameter in the PDM_eInitialise() function.
16 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
2.3 Managing Data in EEPROM

This section describes use of the PDM module to persist data in EEPROM in order to
provide continuity of service when the JN51xx device resumes operation after a cold
start or a warm start without memory held.

Data is stored in EEPROM in terms of ‘records’. A record occupies at least one
EEPROM segment but may be larger than a segment and occupy multiple segments.
Any number of records of different lengths can be created, provided that they do not
exceed the EEPROM capacity. The records are created automatically for stack
context data and by the application (as indicated in Section 2.3.1) for application data.
Each record is identified by a unique 16-bit value which is assigned when the record
is created - for application data, this identifier is user-defined.

The stack context data which is stored in EEPROM includes the following:

 Application layer data:

 AIB members, such as the EPID and ZDO state

 Group Address table

 Binding table

 Application key-pair descriptor

 Trust Centre device table

 Network layer data:

 NIB members, such as PAN ID and radio channel

 Neighbour table

 Network keys

 Address Map table

On performing a JN51xx cold start or warm start without RAM held, the PDM must be
initialised in the application as described in Section 2.2.

 If this is the first ever cold start, there will be no stack context data or
application data preserved in the EEPROM.

 If it is a cold or warm start following previous use (such as after a reset), there
should be stack context data and application data preserved in the EEPROM.

On start-up, the PDM builds a file system in RAM and scans the EEPROM for valid
data. If any data is found, it is incorporated in the file system.

The PDM saves a Cyclic Redundancy Code (CRC) for each segment of a record. Any
failure will result in the data being unrecoverable and the record becoming invalid.

Saving, recovering and deleting application data in EEPROM are described in the sub-
sections below.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 17

Chapter 2
Persistent Data Manager (PDM)

2.3.1 Saving Data to EEPROM

Application data and stack context data are saved from RAM to EEPROM as
described below.

Application Data

You should save application data to EEPROM when important changes have been
made to the data in RAM. Application data in RAM can be saved to an individual
record in EEPROM using the function PDM_eSaveRecordData(). A buffer of data in
RAM is saved to a single record in EEPROM (a record may span multiple EEPROM
segments).

The first time that a record is saved using PDM_eSaveRecordData(), the record is
created and the data is written in its entirety, provided there are enough free EEPROM
segments to hold the data (you can first find out how many segments are available
using the function PDM_u8GetSegmentCapacity()). When a record is first created, a
unique 16-bit identifier must be assigned to the record by the application - this identifier
is subsequently used to reference the record. The value used must not clash with
those used by the NXP libraries - the ZigBee PRO stack libraries use values above
0x8000 and the JenNet-IP libraries use values between 0x3000 and 0x3007.

Subsequently, in performing a re-save to the same record (specified by its 16-bit
identifier), the original EEPROM segments associated with the record will be over-
written but only the segment(s) containing data changes will be altered (if no data has
changed, no write will be performed). This method of only making incremental saves
improves the occupancy level of the size-restricted EEPROM.

If a save fails, the function PDM_eSaveRecordData() will return the code
PDM_E_STATUS_NOT_SAVED. Alternatively, the callback event
E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED can be used to notify the
application of a save failure - this requires a PDM callback function to have been
registered using the function PDM_vRegisterSystemCallback(), as described in
Section 2.5.2.

Stack Context Data

The NXP ZigBee PRO stack automatically saves its own context data from RAM to
EEPROM when certain data items change. This data will not be encrypted.

Note: During a data save, if the EEPROM needs to be
defragmented and purged, this will be performed
automatically resulting in all records being re-saved.
18 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
2.3.2 Recovering Data from EEPROM

Application data and stack context data are loaded from the EEPROM to RAM as
described below.

Application Data

Application data records in EEPROM can be read by the application using the function
PDM_eReadDataFromRecord(). The record to be read is specified using its 16-bit
identifier and a data buffer in RAM must also be specified in which the read data will
be stored.

Before calling PDM_eReadDataFromRecord(), it may be useful to call the function
PDM_bDoesDataExist() in order to determine whether a record with the specified
identifier exists in the EEPROM and, if it does, to obtain its size and therefore the
length of the required RAM buffer.

During a cold start or a warm start without memory held, once the PDM module has
been initialised (see Section 2.2), PDM_eReadDataFromRecord() must be called for
each record of application data in EEPROM that needs to be copied to RAM.

Stack Context Data

The function PDM_eReadDataFromRecord(), described above, is not used for
records of stack context data. Loading this data from the EEPROM to RAM is handled
automatically by the stack (provided that the PDM has been initialised).

2.3.3 Deleting Data in EEPROM

An individual record of application data in the EEPROM can be deleted using the
function PDM_eDeleteData() - the record to be deleted is specified using its 16-bit
identifier. Alternatively, all records (application data and stack context data) in the
EEPROM can be deleted using the function PDM_eDeleteAllData().

Caution: You are not recommended to delete records of
ZigBee PRO stack context data by calling
PDM_eDeleteAllData() before a rejoin of the same
secured network. If these records are deleted, data sent
by the node after the rejoin will be rejected by the
destination node since the frame counter has been reset
on the source node. For more information and advice,
refer to the “Application Design Notes” appendix in the
ZigBee 3.0 Stack User Guide (JN-UG-3113).
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 19

Chapter 2
Persistent Data Manager (PDM)

2.4 Storing Counters in EEPROM

The PDM provides a means of using the JN516x/7x EEPROM to store counters, such
as frame counters and acknowledgement sequences, as found in many
communications protocols. A counter is implemented within a single EEPROM
segment as follows:

 Start value which is held in pure binary form inside the counter’s header

 Incremental value (over the start value) which is represented as a bitmap

Each bit of the bitmap represents an increment (by one) of the counter and is set when
the corresponding increment occurs. There is a maximum incremental value that can
be represented in one segment. When this value is reached, the counter is silently
moved to a new segment in which the start value (in the header) is increased
appropriately and the bitmap is reset to zero. To avoid increasing the segment wear
count, the old bitmap segment is not formally deleted when a new segment is started.
This process continues while there are segments free in the EEPROM.

The sub-sections below describe how to manage a counter in EEPROM using the
PDM functions.

2.4.1 Creating a Counter

The function PDM_eCreateBitmap() can be used to create a counter in the EEPROM.
In this function call, the new counter must be given a user-defined 16-bit identifier and
a start value (these values will be stored in the counter’s header).

2.4.2 Incrementing a Counter

The application can increment the counter by calling the function
PDM_eIncrementBitmap(). When an increment results in the counter filling the
current bitmap/segment, the function will indicate this by returning
PDM_E_STATUS_SATURATED_OK. The next time the function is called, the
counter will automatically be moved to a new bitmap/segment (as described above).
However, if there is no free segment available, the function will be unable to perform
the increment and will return PDM_E_STATUS_USER_PDM_FULL.

2.4.3 Reading a Counter

A counter in EEPROM can be read using the function PDM_eGetBitmap(). This
function obtains the start value (stored in the counter’s header) and the incremental
value from the bitmap. The current value of the counter is then the sum of these two
results.

The above function should be called when the JN516x/7x device comes up from a cold
start, to check whether a counter is present in EEPROM.
20 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
2.4.4 Deleting a Counter

Once a counter is no longer required, it can be removed from EEPROM using the
function PDM_eDeleteBitmap(). This clears the current segment and all the older
(expired) segments for the counter. This deleton increments the wear counts for these
segments (see Section 2.5.4) and should be done only if absolutely necessary, as
expired bitmap segments can be re-used directly via the PDM without formal deletion.

2.5 PDM Features

2.5.1 Mutex in PDM

PDM functions are not re-entrant and a mutex can be optionally used to prevent
concurrent PDM function calls - if enabled, the mutex is applied automatically during
a PDM function call. If required, a mutex can be specified when the PDM module is
initialised using the function PDM_eInitialise() - see Section 2.2.

2.5.2 Event and Error Handler for EEPROM

The internal PDM library allows a handler to be called to alert the application of events
and error conditions in the JN516x/7x internal EEPROM. This callback function is
registered by calling the function PDM_vRegisterSystemCallback(). The PDM
events/error conditions are listed and described in Section 10.1.3.

An application must trap E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE
and E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED callback errors
during testing. The ZigBee PRO stack uses multiple records. Once an ‘out of space’
error has occurred, the records will be in an inconsistent state. The software must be
altered to use smaller record sizes or an external SPI Flash device. The PDM record
sizes for the ZigBee PRO stack are dependent on table sizes set in the ZPS
Configuration Editor.

Note: The mutex does not remain optional when the
PDM is used with IEEE802.15.4, ZigBee 3.0 and
JenNet-IP applications. In applications developed using
a ZigBee 3.0 SDK (JN-SW-4170 or JN-SW-4270) or the
IEEE802.15.4 SDK (JN-SW-4163), the mutex is not
available and the relevant parameter is removed from
PDM_eInitialise(). In applications developed using the
JenNet-IP SDK (JN-SW-4165), the mutex is always
implemented and a non-zero value must be passed to
the relevant parameter of PDM_eInitialise(). For more
information, refer to Section 2.2.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 21

Chapter 2
Persistent Data Manager (PDM)

The registered callback function may also be designed to handle a Wear Count event
E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED which
indicates that the Wear Count for an EEPROM segment has reached the configured
trigger level (see Section 2.5.4).

2.5.3 EEPROM Capacity

The JN516x/7x internal EEPROM consists of multiple small segments. There are 63
segments of 64 bytes each. The internal PDM library can store no more than one data
record in each segment, although a large record may be stored across multiple
segments. The PDM library needs to store some system information in each segment,
so in practice each segment can hold only up to 56 bytes of record data. This means
that a PDM record that has a single byte of information will need the same space as a
56-byte record and that a 57-byte record will need two segments (the same as a 112-
byte record).

The function PDM_u8GetSegmentCapacity() returns the number of segments that
are free for PDM. The function PDM_u8GetSegmentOccupancy() returns the
number of segments that are in use. One of these functions may be called after all the
records have been created and saved (including records in the ZigBee PRO stack).
When updating a record, the PDM saves the new data before deleting the old data (to
ensure that data is retained over any unexpected power cycles). Therefore, there must
be sufficient capacity in the EEPROM to store another copy of a record before the old
copy is deleted. To allow for the worst-case scenario, the value returned by
PDM_u8GetSegmentCapacity() must be greater than the number of segments
required to store the largest record.

2.5.4 EEPROM Wear Count

An EEPROM device supports a limited number of data writes to each byte before the
storage medium begins to fail. For the JN516x/7x EEPROM, at least 100000 writes
are guaranteed and a million writes should be typically possible. For each EEPROM
segment, a record is kept of the number of writes made to the segment so far. This is
the ‘Wear Count’, which is stored and maintained in the segment header. The PDM
manages the use of EEPROM segments in a way that minimises wear and attempts
to spread the wear evenly across the segments.

The function PDM_eGetSegmentWearCount() allows the current value of the Wear
Count of a particular segment to be obtained. It is also possible to set up the
generation of an event when the Wear Count of any segment reaches a certain trigger
level. This trigger level can be configured (for all segments) using the function
PDM_vSetWearCountTriggerLevel(). The Wear Count event is
E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED and
the user-defined PDM callback function (see Section 2.5.2) should be designed to
process this Wear Count event.
22 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
2.5.5 Ensuring Consistency of PDM Records

The data in the PDM may differ in structure from that expected by the application. The
structures stored by the ZigBee PRO libraries can change due to altering table sizes
in the ZPS Configuration Editor, as well as between releases of the ZigBee PRO stack
libraries. Inconsistency can occur under the following circumstances:

 The internal EEPROM on a JN516x/7x device is not erased when programming
an application with the JN51xx Flash Programmer. If multiple applications are
run on the same hardware, it is unlikely that the structures will be consistent
between the applications.

 When a ZigBee Over-The-Air (OTA) software update is performed, the PDM
data is not erased. This is normally a benefit because it allows the application
to rejoin the network. However, if any of the PDM structures change, a factory
reset must be performed by calling PDM_eDeleteAllData()

Applications normally contain a way to perform a factory reset of the PDM module -
for example, by calling PDM_eDeleteAllData() if a button is held down during reset.

The application can automatically check for PDM consistency by storing an
application-specific ‘magic number’ in a record. A new magic number should be used
if the application software or ZigBee PRO libraries PDM usage is inconsistent with the
previous version of the software. Immediately after calling PDM_eInitialise(), the
application should call PDM_eReadDataFromRecord(). If the magic number does
not match, the application should call PDM_eDeleteAllData() to erase all records
before attempting to start the ZigBee PRO stack. If the call to
PDM_eReadDataFromRecord() indicates that the record has not been found, the
application should also call PDM_eDeleteAllData() because another application may
have been running that does not use the same record ID but has written inconsistent
ZigBee PRO records to the PDM module.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 23

Chapter 2
Persistent Data Manager (PDM)

24 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
3. Power Manager (PWRM)

This chapter describes the Power Manager (PWRM) module, which manages the
transitions of the JN51xx device into and out of low-power modes.

Low-power modes are typically used to prolong the battery life of a node by reducing
the power consumption of the device during periods when the node does not need to
receive, transmit or perform any other activities. Thus, low-power modes only apply to
End Devices, as the Co-ordinator and Routers always need to remain fully alert for
routing purposes.

3.1 Low-Power Modes

A number of low-power modes are available on the JN51xx device. In descending
order of power consumption, the modes are:

 Doze mode

 Sleep modes:

 Sleep with memory held

 Sleep without memory held

 Deep Sleep mode

When the node is inactive, the Power Manager will put the device into the lowest
power mode possible.

The above low-power modes are described in the sub-sections below. For further
information on the low-power modes of a JN516x or JN517x device, refer to the
relevant device Data Sheet.

3.1.1 Doze Mode

In Doze mode, the CPU of the chip pauses (the CPU clock is stopped) but all other
parts of the JN51xx device continue to run. Any interrupt will cause Doze mode to
terminate and the application program will continue running from the next instruction.
To prevent the Watchdog firing when in Doze mode, the application should ensure that
a timer is running at a higher frequency than the Watchdog expiry period.

3.1.2 Sleep Mode with Memory Held

During Sleep with memory held, the contents of on-chip RAM are maintained,
including stack context data and application data. Thus, on waking, the device can
recover from sleep very quickly to continue normal operation from the next instruction.

In this mode, all power domains are powered down except those for the on-chip RAM
and VDD supply. In addition, the 32-kHz on-chip oscillator can optionally be left
running, which allows the device to be woken from sleep using wake timers.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 25

Chapter 3
Power Manager (PWRM)

Otherwise, the device can only be woken by changes on the DIO pins or the
comparator input, or by a pulse counter expiry.

Although the contents of memory are held, on waking it is still necessary to re-
configure the IEEE 802.15.4 stack layers and to re-initialise most of the on-chip
peripherals. Wake callback functions can be registered for this purpose:

 You DO NOT have to re-initialise the DIOs, wake timers and comparator.

 You DO have to re-initialise everything else, including all other on-chip
peripherals, the IEEE 802.15.4 MAC layer and, if using callbacks, the
Programmable Interrupt Controller (PIC) - the callback functions must be re-
registered. On the JN51xx device, the SPI hardware must also be re-initialised.

3.1.3 Sleep Mode without Memory Held

During Sleep without memory held, on-chip RAM is powered down, and therefore
stack context data and application data are not preserved on-chip. Normally, this data
must be saved to NVM (Non-Volatile Memory) before the chip enters sleep mode, and
then recovered from NVM on waking (see Chapter 2).

In this mode, all power domains are powered down except the VDD power supply
domain. Again, the 32-kHz on-chip oscillator can optionally be left running, which
allows the device to be woken from sleep using wake timers. Otherwise, the device
can only be woken by changes on the DIO pins or the comparator input, or by a pulse
counter expiry.

On waking, the application program must be re-loaded from Flash memory before the
node can resume operation. All variables and peripherals must be re-initialised,
except those used as wake sources and the DIO lines.

3.1.4 Deep Sleep Mode

In Deep Sleep mode, all switchable power domains are powered down and the 32-kHz
oscillator is stopped. The device can be woken from deep sleep either via a hardware
reset (by taking the RESETN pin low or by power cycling the device) or a change on
the DIO pins.

On waking, the application program must be re-loaded from Flash memory before the
node can resume operation. All variables and peripherals must be re-initialised,
including the DIO lines.
26 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
3.2 Callback Functions for Power Manager

If you intend to use the Power Manager, a number of callback functions must be
available for the Power Manager to call in order to:

 start the application (see Section 3.2.1)

 perform housekeeping tasks when entering and leaving low-power mode (see
Section 3.2.2)

 handle interrupts from Wake Timer 1 (see Section 3.2.3)

3.2.1 Essential Callback Function

When your application uses the Power Manager, you must define and use the callback
function vAppMain() in your code. The main task of your application must be included
in this function (which must never return).

3.2.2 Pre-sleep and Post-sleep Callback Functions

In order to implement low-power modes, you must provide the Power Manager with
user-defined callback functions to perform housekeeping tasks when the node enters
and leaves low-power mode. Registration functions are provided for these callback
functions, where the registration functions must be called in the user-defined callback
function vAppRegisterPWRMCallbacks().

 The pre-sleep callback function is called by the Power Manager just before
putting the device into low-power mode. This callback function is registered in
your code through the API function PWRM_vRegisterPreSleepCallback().

 The post-sleep callback function is called by the Power Manager just after the
device leaves low-power mode (irrespective of how the device was woken from
sleep). This callback function is registered in your code through the API
function PWRM_vRegisterWakeupCallback().

vAppRegisterPWRMCallbacks() is called by the stack as part of a cold start.

The pre- and post-sleep callback function themselves must each be declared in the
code using the macro

PWRM_CALLBACK(fn_name)

where fn_name is the name of the callback function.

Each of these callback functions must also have a descriptor. This is a structure that
is used in the above registering functions to specify the callback function to register.

The callback descriptor must be declared using the macro

PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name)

where desc_name is the descriptor name and fn_name is the callback function name.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 27

Chapter 3
Power Manager (PWRM)

For example:

PWRM_CALLBACK(vPreSleepCB1);

PWRM_DECLARE_CALLBACK_DESCRIPTOR(pscb1_desc, vPreSleepCB1);

3.2.3 Wake Timer Callback Function

If you intend to use wake events, derived from Wake Timer 1, your interrupt handler
must call the pre-defined callback function PWRM_WakeInterruptCallback(). This
function maintains the list of scheduled wake events - if required, it will re-start the
wake timer for the next wake point. It also calls the user-defined callback function
specified through PWRM_vScheduleActivity().

For further information on waking the device using scheduled wake events, refer to
Section 3.6.

3.3 Initialising and Starting the Power Manager

The Power Manager is initialised and started using the function PWRM_vInit(). This
function requires one of five possible low-power configurations to be specified:

 Sleep with 32-kHz oscillator running and memory held

 Sleep with 32-kHz oscillator running and memory not held

 Sleep with 32-kHz oscillator not running and memory held

 Sleep with 32-kHz oscillator not running and memory not held

 Deep sleep (oscillator not running and memory not held)

The specified configuration is the low-power mode in which the Power Manager will
attempt to put the device during inactive periods. Note that Doze mode cannot be
explicitly specified, but the Power Manager may put the device into Doze mode at
times when the specified mode cannot be entered (see Section 3.8.1).

The criteria for selecting a sleep mode are as follows:

 Oscillator setting:

 If the 32-kHz oscillator is left running during sleep, a wake point can be
scheduled using PWRM_vScheduleActivity() - see Section 3.6.

 Otherwise, the device must be woken by an external event (a change on a
DIO line or comparator input, a pulse counter expiry or a reset).

 Memory setting:

 If memory is held during sleep, stack context data and application data will
be preserved in memory, allowing the device to quickly resume operation
through a warm re-start following sleep.

 Sleep without memory held provides a greater power saving. However,
stack context data and application data must be saved to NVM before
entering sleep mode and restored into on-chip memory during a cold re-
start on exiting sleep (see Chapter 2).
28 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
3.4 Enabling Power-Saving

To enable the Power Manager to put the JN51xx device into low-power mode at
appropriate times, you must call the function PWRM_vManagePower(), normally
from an idle loop. Once this function has been called, the Power Manager will,
whenever possible, put the JN51xx device into the sleep mode specified through
PWRM_vInit() (or, alternatively, into Doze mode - see Section 3.8.1).

3.5 Non-interruptible Activities

In order to enter sleep mode, no activities must be running that must not be interrupted
by sleep. This condition for entering sleep mode is monitored using an activity counter
- sleep mode can only be entered when this counter is zero. The application is
responsible for maintaining the activity counter, as follows:

 Whenever an activity is started that must not be interrupted by sleep, the
application must notify the Power Manager using the function
PWRM_eStartActivity(), which increments the activity counter.

 Whenever such an activity is completed, the application must notify the Power
Manager using the function PWRM_eFinishActivity(), which decrements the
activity counter.

You can obtain the current value of the activity counter using the function
PWRM_u16GetActivityCount().

Note: Sleep mode cannot be entered while there are
software timers active (in running or expired states). You
must therefore de-activate any such timers to allow the
Power Manager to put the JN51xx device into sleep
mode.

Caution: PWRM_eFinishActivity() must only be called
by an application following a matching call to
PWRM_eStartActivity(). The ZigBee PRO stack also
uses the activity counter, so calling
PWRM_eFinishActivity() inappropriately can leave the
ZigBee PRO stack in an inconsistent state.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 29

Chapter 3
Power Manager (PWRM)

3.6 Terminating Low-Power Mode

Low-power modes can be terminated in a number of ways:

 Any Interrupt: When in Doze mode, the device can be woken by any interrupt.

 Wake Timer: When in Sleep mode in which the 32-kHz oscillator runs, the
device can be woken by a scheduled wake event configured using the function
PWRM_vScheduleActivity(). For more information on scheduled wake
events, refer to Section 3.6.

 External Wake Event: The following external wake events are available:

 DIO: When in Sleep and Deep Sleep modes, the device can be woken by
a change of state of a DIO line.

 Comparator input: When in Sleep mode, the device can be woken by a
change of state of the comparator input.

 Pulse counter: When in Sleep mode, the device can be woken on expiry
of the pulse counter, which counts pulses on an external input.

The above external wake events can be controlled by functions of the JN516x or
JN517x Integrated Peripherals API, described in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087) or JN517x Integrated Peripherals
API User Guide (JN-UG-3118).

 Hardware Reset: When in Deep Sleep mode, the device can be woken by a
hardware reset.

The valid wake sources for the different low-power modes are summarised in Table 1
below.

On leaving low-power mode, the Power Manager will call the user-defined callback
function that has been registered using PWRM_vRegisterWakeupCallback().

Low-Power Mode

Wake Source

Any
Interrupt

Wake
Timer

DIO Comparator
Pulse

Counter
Hardware

Reset

Doze mode

Sleep mode with oscillator
running and memory held

Other Sleep modes

Deep Sleep mode

Table 1: Valid Wake Sources for Low-Power Modes
30 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
3.7 Scheduling Wake Events

In PWRM_vInit(), if you have selected the Sleep mode with the 32-kHz oscillator
running and memory held, you can schedule wake events which ensure that the
device will be awake at certain times - that is, if the device is sleeping, it will be woken
at the scheduled time. This scheduling uses Wake Timer 1 of the JN51xx device,
which operates at 32 kHz.

A wake event can be scheduled using the function PWRM_eScheduleActivity(). This
function requires you to specify the number of ticks of the wake timer until the wake
event. You must also specify the user-defined callback function that must be called
when the wake event occurs.

When the wake timer expires for a scheduled wake event, an interrupt is generated.
The application’s interrupt handler then calls the pre-defined callback function
PWRM_WakeInterruptCallback(). This function maintains the list of scheduled wake
events and, if necessary, re-starts the wake timer for the next scheduled wake event.
The function also calls the user-defined callback function specified through
PWRM_eScheduleActivity().

3.8 Doze Mode

Doze mode is a lighter power-saving mode than the sleep modes, as all elements of
the JN51xx device remain powered but the CPU is paused (CPU clock is stopped).

This low-power mode cannot be explicitly selected in PWRM_vInit(). The Power
Manager will put the JN51xx device into Doze mode only in certain circumstances,
described in Section 3.8.1 below. However, to enter Doze mode, the Power Manager
must have been initialised using PWRM_vInit() and the power-saving modes must
have been enabled using PWRM_vManagePower().

Note: This section is only applicable to the sleep mode
in which the 32-kHz oscillator is left running and memory
is held.

Note: In addition, when the device wakes from sleep,
the user-defined callback function registered through
PWRM_vRegisterWakeupCallback() will also be
called. However, this is a general-purpose wake-up
function which is called irrespective of how the device
was woken (it is not unique to scheduled wake events,
but also called for external wake events).
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 31

Chapter 3
Power Manager (PWRM)

3.8.1 Circumstances that Lead to Doze Mode

Although Sleep and Deep Sleep modes cannot be entered while there are activities
running that must not be interrupted by sleep (see Section 3.5), the Power Manager
can put the device into Doze mode while the activity counter is non-zero.

Even when the activity counter is zero, if a sleep mode has been configured with the
32-kHz oscillator running (see Section 3.3) but no wake event has been scheduled
(see Section 3.6), the Power Manager will put the device into Doze mode instead of
Sleep mode.

The decision to put a device into a Sleep mode or Doze mode is illustrated in the
flowchart in Figure 2 below.

Figure 2: Flowchart of Decision to Enter Doze Mode

Start

Activity
counter = 0

32-kHz
oscillator on

Wake
scheduled

SLEEP

DOZE

Y

N

Y

N

Y

N

SLEEP
32 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
3.8.2 Doze Mode Monitoring During Development

Depending on the circumstances described in Section 3.8.1, the JN51xx device may
spend a significant proportion of its time in Doze mode. The Power Manager API
provides a function that allows you to investigate the fraction of time that the JN51xx
device typically spends in Doze mode for a given application. The function provides a
doze monitoring output on the DIO1 pin of the JN51xx device. This functionality can
be used when the application is running in debug mode.

The function PWRM_vSetupDozeMonitor() must be called to start a monitoring
session. The state of the DIO1 pin will then reflect the doze state of the device,
allowing you to make doze state measurements using external equipment. The
fraction of time that the JN51xx device spends in Doze mode can then be estimated
as (see Figure 3): Total time in Doze mode during session / Elapsed time of session

To obtain sensible results, doze monitoring should be allowed to run for a significant
period of time.

Figure 3: Doze Monitoring

Doze Doze Doze Doze

Doze monitoring session
started using

PWRM_vSetupDozeMode()

Calculate total time spent in
Doze mode during session

Calculate elapsed time since
session started
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 33

Chapter 3
Power Manager (PWRM)

34 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
4. Protocol Data Unit Manager (PDUM)

Communication between nodes in a wireless network is implemented using messages
which contain application data. The part of a message which contains this data is
called the Application Protocol Data Unit (APDU). The Protocol Data Unit Manager
(PDUM) is concerned with APDU memory management, and assembling and
disassembling APDUs - that is, inserting data into APDUs to be transmitted and
extracting data from received APDUs.

The Protocol Data Unit Manager (PDUM) is intended for use with ZigBee PRO
applications.

4.1 Message Assembly and Disassembly

A message travels over a wireless network as a packet (usually an 802.15.4 packet)
containing application data surrounded by header and footer information relating to
the different layers of the protocol stack.

A message to be sent is prepared at the application level, at the top of the protocol
stack, by creating an Application Protocol Data Unit (APDU) containing the application
data to be included in the message. This APDU is then passed down the layers of the
stack, with each layer adding its own protocol information to the header and footer. On
reaching the ‘physical’ layer at the bottom of the stack, the message is complete and
ready to be transmitted.

For transmission, the message is converted to an NPDU (Network Protocol Data Unit).
If the length of the message is greater than the packet size used in network
communication (e.g. 802.15.4 packet size), the message is divided up and
transmitted in multiple NPDUs (Network Protocol Data Units). You will need to be
aware of this if using a sniffer to detect transmitted packets.

A received message is passed up the protocol stack, with each stack layer stripping
out the corresponding protocol information from the header and footer. On reaching
the application level, only the APDU remains. The application data can then be
extracted from this APDU.

The assembly and disassembly of a message, described above, are illustrated in the
figure below, in which the lower stack layers (MAC and Physical) are provided by the
IEEE 802.15.4 protocol.

Note: Data is stored in memory in the JN51xx device in
big-endian byte order but is transmitted over the
network in little-endian byte order.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 35

Chapter 4
Protocol Data Unit Manager (PDUM)

4.2 Preparing the PDU Manager

In order to use the PDU Manager:

 You must statically define the required APDUs using the ZPS Configuration
Editor (described in the ZigBee 3.0 Stack User Guide (JN-UG-3113)). Each
APDU is given a unique handle. While the data payload of an APDU can be of
arbitrary length, a maximum length is set for an APDU.

 Before calling any other PDUM functions in your code, you must call the
function PDUM_vInit() to initialise the PDU Manager.

Figure 4: Message Assembly and Disassembly

Application Data

Physical layer

MAC layer

Network layer

Application level

Application Data

APDU APDU

Message transmitted in NPDU

Data inserted in APDU Data extracted from APDU

NPDU NPDU NPDU

Transmitting Node Receiving Node

If message is larger than packet size, it will be divided up
and transmitted as a sequence of NPDUs
36 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
4.3 Inserting Data into Outgoing Message

When sending a message to another node, you must first create an APDU containing
the application data to be sent. To do this, first allocate an APDU instance by calling
the function PDUM_hAPduAllocateAPduInstance() and then populate the APDU
instance with data using PDUM_u16APduInstanceWriteNBO(), in which you must
specify:

 the handle of the APDU instance in which data is to be inserted (this is the
handle returned by PDUM_hAPduAllocateAPduInstance())

 the starting position of the data in the APDU - that is, the position of the least
significant data byte

 the format of the data payload - the data can be made up of a sequence of data
values of different types

 the data values to be inserted in the data payload

Alternatively, the function PDUM_u16APduInstanceWriteStrNBO() can be used to
populate the APDU instance - this function allows a data structure to be inserted into
the APDU.

You must then use the relevant ZigBee PRO API function to send the message - refer
to the ZigBee 3.0 Stack User Guide (JN-UG-3113). Once the message has been sent,
the ZigBee PRO stack automatically de-allocates the memory-space used for the
APDU instance.

Note that PDUM_u16APduInstanceWriteNBO() performs the necessary data
conversion from big-endian byte order to little-endian byte order for transmission.

Alternatively, you can produce your own code to insert data into the payload of an
APDU. To help you, two functions are provided:

 PDUM_pvAPduInstanceGetPayload(): This function returns a pointer to the
start of the payload section of the APDU instance.

 PDUM_eAPduInstanceSetPayloadSize(): This function sets the size, in
bytes, of the data payload.

Caution: Data must be stored in memory in big-endian
order but is transmitted over the network in little-endian
byte order. Therefore, if you use your own code to insert
data into an APDU, you must reverse the byte order of
the data before inserting it. Failure to change the
endianness of the data will result in an alignment
exception.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 37

Chapter 4
Protocol Data Unit Manager (PDUM)

4.4 Extracting Data from Incoming Message

The function PDUM_u16APduInstanceReadNBO() provides an easy way of
extracting the data payload from an incoming message. The
PDUM_u16APduInstanceReadNBO() function requires the following to be specified:

 the handle of the APDU instance containing the data to be extracted (this is the
handle contained in the ZPS_EVENT_AF_DATA_INDICATION stack event
which notified the application of the arrival of the data message)

 the starting position of the data in the APDU - that is, the position of the least
significant data byte

 the format of the data payload - the data can be made up of a sequence of data
values of different types

 a pointer to a structure in which the extracted data will be stored

Once the data has been extracted, you should de-allocate the memory space used for
the APDU instance by calling the function PDUM_eAPduFreeAPduInstance().

Note that PDUM_u16APduInstanceReadNBO() performs the necessary data
conversion from little-endian byte order to big-endian byte order for storage.

Alternatively, you can produce your own code to extract the payload data from an
APDU. To help you, two functions are provided:

 PDUM_pvAPduInstanceGetPayload(): This function returns a pointer to the
start of the payload data in the APDU instance.

 PDUM_u16APduInstanceGetPayloadSize(): This function returns the size, in
bytes, of the data payload.

Caution: Data is received from the network in little-
endian byte order, but must be stored in memory in big-
endian order. Therefore, if you use your own code to
extract data from an APDU, you must reverse the byte
order of the data before storing it. Failure to change the
endianness of the data will result in an alignment
exception.
38 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
5. Debug (DBG) Module

This chapter describes the Debug (DBG) module which allows application code to be
debugged by means of diagnostic messages that are output to a display device.

5.1 Overview

The Debug module comprises an API containing diagnostic functions that can be
embedded in your application code. Application debugging using the Debug module
requires the JN51xx device to be connected to a display device (such as a PC) via an
IO interface, such as one of the on-chip UARTs. The display device must provide a
dumb terminal through which output from the JN51xx device can be viewed. A typical
implementation is illustrated in the figure below.

The API provides the essential printf- and assert-style debug functions, which can be
strategically placed in your code:

 DBG_vPrintf() is used to output formatted strings and data values at an
appropriate point during program execution, in order to indicate progress.

 DBG_vAssert() is used to test a logical condition, and to stop program
execution if the test fails (condition is FALSE).

User-specified callback functions are used by the Debug module to control the IO
interface (see Section 5.3).

The terminal on the PC can also supply input to the JN51xx UART. The function
DBG_iGetChar() can be used by the application to obtain a character from this input
source. This input can then be handled by the JN51xx application.

Figure 5: Typical Hardware Set-Up for Debugging

Application

PC

Terminal
Window

UART
Serial Connection

JN51xx

Debug Module

Callbacks

printf() assert() GetChar()
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 39

Chapter 5
Debug (DBG) Module

5.2 Enabling the Debug Module

The Debug module API is defined in the header file DBG.h, which must be included
in your code.

In order to use the Debug module, it must be explicitly enabled at build time by defining
DBG_ENABLE in the build - for example, by adding -DDBG_ENABLE to the compiler.
If the module is not enabled in this way, all the Debug functions embedded in your
code will be ignored.

In addition, the functions DBG_vPrintf() and DBG_vAssert() each include a Boolean
parameter which can be used to enable/disable individual instances of these
functions. Two or more instances of these functions can be grouped to form a ‘stream’
for which this Boolean parameter is a common constant used to enable/disable the
whole function group. This constant can be set at build time (see Section 5.5).

5.3 Initialising and Configuring the Debug Module

The way that the Debug module is configured and initialised depends on the serial IO
interface which is to be used to output debug information from the JN51xx device to
the attached PC:

 If a JN51xx UART is to be used for output, the required initialisation/
configuration is as described in Section 5.3.1. This option will be taken by most
users.

 If any other serial IO interface is to be used for output, the required initialisation/
configuration is as described in Section 5.3.2.

Flags are provided in the global variable DBG_u32Flags for configuring certain
aspects of the Debug module - for details, refer to Section 5.4.

5.3.1 Using JN51xx UART Input/Output

When a JN51xx UART is to be used for the input/output of debug information, the
configuration and initialisation of the Debug module is accomplished with a single call
to the function DBG_vUartInit(), which allows selection of the UART (0 or 1) and the
baud-rate to be used. This function is used both during a cold start of the JN51xx
device and during a warm start (where the latter is a device re-start with memory
contents retained).

Tip: By default, the Debug module will display each
‘printf line’ as passed. However, if DBG_VERBOSE is
defined at build time then each line displayed will be
prefixed with the file name and line number of the debug
statement.
40 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
5.3.2 Using Alternative Serial Output

When an alternative to an on-chip UART is to be used for the output of debug
information, the required IO interface must first be configured and enabled (using the
relevant functions from the JN516x or JN517x Integrated Peripherals API).

The Debug module must then be initialised using the function DBG_vInit(). This
function is used both during a cold start of the JN51xx device and during a warm start
(where the latter is a device re-start with memory contents retained). The function
takes as input a structure which contains pointers to four callback functions needed
for debugging:

 typedef struct

 {

 void (*prInitHardwareCb)(void);

 void (*prPutchCb) (char c);

 void (*prFlushCb) (void);

 void (*prFailedAssertCb)(void);

 } tsDBG_FunctionTbl;

The callback functions are user-defined and are described in the table below.

Pointer Callback Function

*prInitHardwareCb Function which re-initialises the IO interface after a warm
start, e.g. when JN51xx device wakes from sleep.

*prPutchCb Function used by DBG_vPrintf() to output a single character
to the IO interface.

*prFlushCb Function used by DBG_vPrintf() to flush the IO interface
buffer to allow buffered output characters to be displayed. If
the output is unbuffered, this function should do nothing or
wait for the last character output using the putch() function to
be made available. Note that the function should not append
a newline character, as this should be handled by the format-
ting string passed to DBG_vPrintf().

*prFailedAssertCb Function which is called when DBG_vAssert() fails. The
function should stop execution and may reset the device.

Table 2: Callback Functions Specified in DBG_vInit()
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 41

Chapter 5
Debug (DBG) Module

5.4 Debug Configuration Flags

The Debug module has a global variable DBG_u32Flags which is a bitmap containing
configuration flags. The bits/flags are enumerated, and are listed and described in the
table below.

Flag/Enumeration Description (if flag is set)

DBG_FLAG_NONE None of the flags are set

DBG_FLAG_OUTGOING_NL_CRNL Every \n character in the outgoing string is sent as \r\n.
This is for compatibility with certain terminal programs.

DBG_FLAG_AUTO_FLUSH DBG_vFlush() is called at the end of each DBG_vPrintf()
invocation. The application may instead choose to flush
the outgoing characters in idle time rather than at the end
of each outputted string.

DBG_FLAG_FLUSH_WHEN_FULL If the DBG back-end buffers outgoing characters then it
will automatically flush the buffer when full. Otherwise,
characters that do not fit in the buffer may be lost.

Table 3: Debug Configuration Flags

Note: The flags DBG_FLAG_OUTGOING_NL_CRNL
and DBG_FLAG_AUTO_FLUSH are set by default.
42 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
5.5 Example Diagnostic Code

The following code fragment illustrates use of the Debug module API. The JN51xx
UART 0 is used. Two debug ‘streams’ (1 and 2) are used to separately enable/disable
two groups of debug lines.

#include <jendefs.h>

#include "DBG.h"

#include "DBG_Uart.h"

#ifndef DBG_STREAM_1

#define DBG_STREAM_1 FALSE

#endif

#ifndef DBG_STREAM_2

#define DBG_STREAM_2 FALSE

#endif

void appColdStart(void)

{

int i = 0;

/* Initialise the standard UART hardware */

DBG_vUartInit(DBG_E_UART_0, DBG_E_UART_BAUD_RATE_115200);

/* Now we can use DBG_vPrintf() and DBG_vAssert() to output characters

 to the UART device */

DBG_vPrintf(DBG_STREAM_1, "Printing to stream 1\n");

DBG_vPrintf(DBG_STREAM_2, "Printing an integer %i to stream 2\n", 10);

DBG_vAssert(DBG_STREAM_1, i == 1);

}

When building this application, you have following options:

 Debug disabled (the default)

 Debug enabled only for stream 1 - build with:

 -DDBG_ENABLE -DDBG_STREAM_1=TRUE

 Debug enabled only for stream 2 - build with:

 -DDBG_ENABLE -DDBG_STREAM_2=TRUE

 DBG enabled for both streams - build with:

 -DDBG_ENABLE -DDBG_STREAM_1=TRUE -DDBG_STREAM_2=TRUE
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 43

Chapter 5
Debug (DBG) Module

44 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
Part II:
Reference Information
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 45

46 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
6. PDM API

This chapter details the functions of the Persistent Data Manager (PDM) API that
supports context data and application data saving in Non-Volatile Memory (NVM). For
the JN516x and JN517x devices, this memory is internal EEPROM and this chapter
will therefore refer to EEPROM.

The API is defined in the header file pdm.h and is divided into the following categories:

 EEPROM PDM functions - see Section 6.1

 EEPROM PDM Bitmap Counter functions - see Section 6.2

 EEPROM PDM miscellaneous functions - see Section 6.3

Note: For more information on how to use the functions
described in this chapter, refer to Chapter 2.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 47

Chapter 6
PDM API

6.1 EEPROM PDM Functions

The EEPROM PDM functions are listed below, along with their page references:

Function Page

PDM_eInitialise 49

PDM_eSaveRecordData 50

PDM_eReadDataFromRecord 51

PDM_eDeleteData 52

PDM_eDeleteAllData 53

PDM_u8GetSegmentCapacity 54

PDM_u8GetSegmentOccupancy 55

PDM_bDoesDataExist 56

Note: For a description of how to use these functions,
refer to Section 2.3.
48 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_eInitialise

Description

This function initialises the PDM module and registers the required PDM functions. It
must be called during both a warm start and a cold start.

The function initialises the PDM environment and builds the underlying EEPROM file
system. A RAM-based file system is created to allow the PDM to map data to/from
the EEPROM. The EEPROM sectors are scanned for evidence of any valid user
data, which is mapped into the RAM file system. This routine handles any write errors
that may have occurred if the EEPROM was powered down whilst data was being
written to the PDM system. Once the file system has been constructed, you can then
write data to and read data from the EEPROM via PDM.

The PDM can operate within any number of EEPROM segments, as specified
through the parameter u8NumberOfEEPROMsegments. However, if a zero value is
specified for this parameter, the function will auto-configure the PDM by interrogating
the JN516x/7x chip to obtain the variant and scaling the PDM accordingly, giving the
application access to the full EEPROM.

An optional mutex can be specified in order to serialise PDM function calls. If
specified, this mutex is automatically applied during a PDM function call to prevent
concurrent calls. Note that:

 The mutex is not available when using the PDM in applications developed with a
ZigBee 3.0 SDK (JN-SW-4170 or JN-SW-4270) or the IEEE802.15.4 SDK
(JN-SW-4163), in which case the flag PDM_NO_RTOS must be defined in the makefile
- the function parameter hPdmMutex is then disabled.

 The mutex is always implemented when using the PDM in applications developed with
the JenNet-IP SDK (JN-SW-4165), in which case the function parameter hPdmMutex
must be set to a non-zero value.

For more information on using the PDM without the RTOS, refer to Section 2.2.

Parameters

u8NumberOfEEPROMsegments

Number of contiguous EEPROM sectors to be managed. A
zero value indicates that the full EEPROM should be used.

hPdmMutex Optional handle of the mutex to be used to serialise PDM calls

Returns

PDM_E_STATUS_OK

PDM_E_STATUS_INTERNAL_ERROR

PDM_teStatus PDM_eInitialise(
uint8 u8NumberOfEEPROMsegments

#ifndef PDM_NO_RTOS
,
OS_thMutex hPdmMutex

#endif);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 49

Chapter 6
PDM API

PDM_eSaveRecordData

Description

This function saves the specified application data from RAM to the specified record
in EEPROM. The record is identified by means of a 16-bit user-defined value.

When a data record is saved to the EEPROM for the first time, the data is written
provided there are enough EEPROM segments available to hold the data. Upon
subsequent save requests, if there has been a change between the RAM-based and
EEPROM-based data buffers then the PDM will attempt to re-save only the
segments that have changed (if no data has changed, no save will be performed).
This is advantageous due to the restricted size of the EEPROM and the constraint
that old data must be preserved while saving changed data to the EEPROM.

Provided that you have registered a callback function with the PDM (see Section 6.3),
the callback mechanism will signal when a save has failed. Upon failure, the callback
function will be invoked and pass the event
E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED to the application.

Parameters

u16IdValue User-defined ID of the record to be saved (see Caution above)

*pu8DataBuffer Pointer to data buffer to be saved in the record in EEPROM

u16Datalength Length of data to be saved, in bytes

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)

PDM_E_STATUS_NOT_SAVED (save to EEPROM failed)

PDM_teStatus PDM_eSaveRecordData(
uint16 u16IdValue,
uint8 *pu8DataBuffer,
uint16 u16Datalength);

Caution: The application software must not use record
identifier values that would clash with those used by the NXP
libraries used with the application. The ZigBee PRO stack
libraries use values above 0x8000. The JenNet-IP libraries
use values between 0x3000 and 0x3007.
50 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_eReadDataFromRecord

Description

This function reads the specified record of application data from the EEPROM and
stores the read data in the supplied data buffer in RAM. The record is specified using
its unique 16-bit identifier.

Before calling this function, it may be useful to call PDM_bDoesDataExist() in order
to determine whether a record with the specified identifier exists in the EEPROM and,
if it does, to obtain its size.

Parameters

u16IdValue User-defined ID of the record to be read

*pvDataBuffer Pointer to the data buffer in RAM where the read data is to
be stored

u16DataBufferLength Length of the data buffer, in bytes

*pu16DataBytesRead Pointer to a location to receive the number of data bytes
read

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)

PDM_teStatus PDM_eReadDataFromRecord(
uint16 u16IdValue,
void *pvDataBuffer,
uint16 u16DataBufferLength,
uint16 *pu16DataBytesRead);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 51

Chapter 6
PDM API

PDM_eDeleteData

Description

This function deletes the specified record of application data in EEPROM.

Alternatively, all records in EEPROM can be deleted using the function
PDM_eDeleteAllData().

Parameters

u16IdValue User-defined ID of the record to be deleted

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)

PDM_teStatus PDM_eDeleteData(uint16 u16IdValue);
52 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_eDeleteAllData

Description

This function deletes all records in EEPROM, including both application data and
stack context data, resulting in an empty PDM file system. The EEPROM segment
Wear Count values are preserved (and incremented) throughout this function call.

Alternatively, an individual record of application data can be deleted using the
function PDM_eDeleteData().

Parameters

None

Returns

None

PDM_teStatus PDM_eDeleteAllData(void);

Caution: You are not recommended to delete records of
stack context data before a rejoin of the same secured
network. If these records are deleted, data sent by the node
after the rejoin will be rejected by the destination node since
the frame counter has been reset on the source node. For
more details, refer to “Application Design Notes” appendix
in the ZigBee 3.0 Stack User Guide (JN-UG-3113).
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 53

Chapter 6
PDM API

PDM_u8GetSegmentCapacity

Description

This function returns the number of unused segments that remain in the EEPROM.

Parameters

None

Returns

Number of EEPROM segments free

uint8 PDM_u8GetSegmentCapacity(void);
54 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_u8GetSegmentOccupancy

Description

This function returns the number of used segments in the EEPROM.

Parameters

None

Returns

Number of EEPROM segments used

uint8 PDM_u8GetSegmentOccupancy(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 55

Chapter 6
PDM API

PDM_bDoesDataExist

Description

This function checks whether data associated with thd specified record ID exists in
the EEPROM. If the data record exists, the function returns the data length, in bytes,
in a location to which a pointer must be provided.

Parameters

u16IdValue User-defined ID of the record to be found

*pu16DataLength Pointer to location to receive length, in bytes, of data record (if
any) associated with specified record ID

Returns

TRUE if data record found, FALSE otherwise

bool_t PDM_bDoesDataExist(uint16 u16IdValue,
uint16 *pu16DataLength);
56 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
6.2 EEPROM PDM Bitmap Counter Functions

The EEPROM PDM Bitmap Counter functions are listed below, along with their page
references:

Function Page

PDM_eCreateBitmap 58

PDM_eIncrementBitmap 59

PDM_eGetBitmap 60

PDM_eDeleteBitmap 61

Note: For a description of how to use these functions,
refer to Section 2.4.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 57

Chapter 6
PDM API

PDM_eCreateBitmap

Description

The function creates a bitmap structure for a counter in a segment of the EEPROM.
A user-defined ID and a start value for the bitmap counter must be specified.

The start value is stored in the counter’s header. A bitmap is created to store the
incremental value of the counter (over the start value). This bitmap can subsequently
be incremented (by one) by calling the function PDM_eIncrementBitmap(). The
incremental value stored in the bitmap and the start value stored in the header can
be read at any time using the function PDM_eGetBitmap().

If the specified ID value has already been used or the specified start value is NULL,
the function returns PDM_E_STATUS_INVLD_PARAM. If the EEPROM has no free
segments, the function returns PDM_E_STATUS_USER_PDM_FULL.

Parameters

u16IdValue User-defined ID for bitmap counter to be created

u32InitialValue Initial 32-bit value of bitmap counter

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_E_STATUS_PDM_FULL (there is no space to store this bitmap)

PDM_teStatus PDM_eCreateBitmap(uint16 u16IdValue,
uint32 u32InitialValue);
58 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_eIncrementBitmap

Description

The function increments the bitmap value of the specified counter in the EEPROM.
The counter must be identified using the user-defined ID value assigned when the
counter was created using the function PDM_eCreateBitmap().

The bitmap can be incremented within an EEPROM segment until its value saturates
(contains all 1s). At this point, the function returns the code
PDM_E_STATUS_SATURATED_OK. The next time that this function is called, the
counter is automatically moved to a new segment (provided that one is available),
the start value in its header is increased appropriately and the bitmap is reset to zero.
To avoid increasing the segment Wear Count, the old segment is not formally deleted
before a new segment is started. If the EEPROM has no free segments when the
above overflow occurs, the function returns the code
PDM_E_STATUS_USER_PDM_FULL.

If the specified ID value has already been used, the function returns
PDM_E_STATUS_INVLD_PARAM.

Parameters

u16IdValue User-defined ID of counter to be incremented

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_E_STATUS_PDM_FULL (no further EEPROM segments for the bitmap)

PDM_E_STATUS_BITMAP_SATURATED_OK (increment made but segment now
saturated)

PDM_teStatus PDM_eIncrementBitmap(uint16 u16IdValue);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 59

Chapter 6
PDM API

PDM_eGetBitmap

Description

The function reads the specified counter value from the EEPROM. The counter must
be identified using the user-defined ID value assigned when the counter was created
using the function PDM_eCreateBitmap(). The function returns the counter’s start
value (from the counter’s header) and incremental value (from the counter’s bitmap).

The counter value is calculated as:

Start Value + Incremental Value

or in terms of the function parameters:

*pu32InitialValue + *pu32BitmapValue

Note that the start value may be different from the one specified when the counter
was created, as the start value is updated each time the counter outgrows a segment
and the bitmap is reset to zero.

This function should be called when the device comes up from a cold start, to check
whether a bitmap counter is present in EEPROM.

If the specified ID value has already been used or a NULL pointer is provided for the
received values, the function returns PDM_E_STATUS_INVLD_PARAM.

Parameters

u16IdValue User-defined ID for bitmap counter to be accessed

*pu32InitialValue Pointer to location to receive the start value of the counter

*pu32BitmapValue Pointer to location to receive the incremetal value of the
counter

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_teStatus PDM_eGetBitmap(uint16 u16IdValue,
uint32 *pu32InitialValue,
uint32 *pu32BitmapValue);
60 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_eDeleteBitmap

Description

This function deletes the specified counter in the EEPROM. The counter must be
identified using the user-defined ID value assigned when the bitmap was created
using the function PDM_eCreateBitmap().

The function can be used to formally delete a counter. It clears the current segment
occupied by the counter and also all the older (expired) segments used for the
counter. This deletion increments the Wear Counts for these segments and should
be done only if absolutely necessary, as the expired segments can be re-used
directly via the PDM without formal deletion.

If the specified ID value does not exist in the PDM, the function returns
PDM_E_STATUS_INVLD_PARAM.

Parameters

u16IdValue User-defined ID for bitmap counter to be deleted

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_teStatus PDM_eDeleteBitmap(uint16 u16IdValue);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 61

Chapter 6
PDM API

6.3 EEPROM PDM Miscellaneous Functions

The EEPROM PDM miscellaneous functions include a function for registering a user-
defined PDM system callback function and functions related to the Wear Counts of
EEPROM segments. The functions are listed below, along with their page references:

Function Page

PDM_vRegisterSystemCallback 63

PDM_vSetWearCountTriggerLevel 64

PDM_eGetSegmentWearCount 65

Note: For a description of how to use these functions,
refer to Section 2.5.2 and Section 2.5.4.
62 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_vRegisterSystemCallback

Description

This function registers a user-defined callback function to handle PDM events and
errors.

Parameters

fpvPDM_SystemEventCallback Pointer to the application callback function. The
function type PDM_tpfvSystemEventCallback
is documented in Section . The events generated
by the PDM library are documented in Section
10.1.3

Returns

None

void PDM_vRegisterSystemCallback(
PDM_tpfvSystemEventCallback

 fpvPDM_SystemEventCallback);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 63

Chapter 6
PDM API

PDM_vSetWearCountTriggerLevel

Description

This function sets the Wear Count value of an EEPROM segment at which a Wear
Count event will be triggered and the PDM callback function will be activated. The
invoked callback function is user-defined and is registered using the function
PDM_vRegisterSystemCallback().

The callback function will only be invoked once for a particular segment, when the
specified Wear Count value occurs (it will not be invoked for every occurrence
afterwards when the segment Wear Count exceeds the trigger value).

Parameters

u32WearCountTriggerLevel Wear Count value that triggers a Wear Count event

Returns

None

void PDM_vSetWearCountTriggerLevel(
uint32 u32WearCountTriggerLevel);
64 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDM_eGetSegmentWearCount

Description

This function obtains the current Wear Count value of the specified EEPROM
segment.

Parameters

u8SegmentIndex Index of EEPROM segment for which Wear Count needed

pu32WearCount Pointer to location to receive obtained Wear Count value

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_teStatus PDM_eGetSegmentWearCount(
uint8 u8SegmentIndex,
uint32 *pu32WearCount);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 65

Chapter 6
PDM API

66 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
7. PWRM API

This chapter describes the functions of the Power Manager (PWRM) API. The API is
defined in the header file pwrm.h.

The PWRM API functions are divided into the following categories:

 ‘Core’ functions, described in Section 7.1

 ‘Callback Set-up’ functions, described in Section 7.2

 ‘Debugging’ functions, described in Section 7.3

7.1 Core Functions

The PWRM core functions are listed below, along with their page references:

Function Page

PWRM_vInit 68

PWRM_eStartActivity 69

PWRM_eFinishActivity 70

PWRM_u16GetActivityCount 71

PWRM_eScheduleActivity 72

PWRM_vManagePower 73

Caution: The Power Manager uses Wake Timer 1 of
the JN51xx device if scheduled wake events are
configured. In this case, do not use this wake timer for
any other purpose in your application.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 67

Chapter 7
PWRM API

PWRM_vInit

Description

This function is used to initialise the Power Manager and specify the low-power mode
in which the JN51xx device should be put when inactive.

There are five possible low-power modes that can be specified:

 Sleep with 32-kHz oscillator running and memory held

 Sleep with 32-kHz oscillator running and memory not held

 Sleep with 32-kHz oscillator not running and memory held

 Sleep with 32-kHz oscillator not running and memory not held

 Deep Sleep (32-kHz oscillator not running and memory not held)

The enumerations for the above power modes are listed below and described in
Section 10.2.1. For further information on these low-power modes and how to wake
from them, refer to Section 3.1.

Note that if the Power Manager is unable to put the JN51xx device into the specified
low-power mode, it will put the device into Doze mode instead - see description of
PWRM_vManagePower().

If the 32-kHz oscillator is run, the JN51xx device’s Wake Timer 1 is calibrated and
made available (and then must not be used for any other purpose).

Parameters

ePowerMode The power mode to be used during sleep, one of:
PWRM_E_SLEEP_OSCON_RAMON
PWRM_E_SLEEP_OSCON_RAMOFF
PWRM_E_SLEEP_OSCOFF_RAMON
PWRM_E_SLEEP_OSCOFF_RAMOFF
PWRM_E_SLEEP_DEEP

Returns

None

void PWRM_vInit(PWRM_tePowerMode ePowerMode);
68 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PWRM_eStartActivity

Description

This function is used to notify the Power Manager that an activity has been started
which must not be interrupted by sleep. Thus, while such an activity is running, the
JN51xx device will not enter sleep mode.

The function PWRM_eFinishActivity() must then be called when the activity has
completed. However, if PWRM_eStartActivity() has also been called for other
activities that have not yet finished, the device will not be able to enter sleep mode
until PWRM_eFinishActivity() has been called for all such activities.

The activity for which PWRM_eStartActivity() is called does not need to be
identified, since the function simply increments a counter of running activities that
must not be interrupted by sleep. There is an upper limit of 64K to the value of this
counter. If this limit is exceeded, an overflow error is returned.

Parameters

None

Returns

PWRM_E_OK (success)

PWRM_E_ACTIVITY_OVERFLOW (activity counter limit exceeded)

PWRM_teStatus PWRM_eStartActivity(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 69

Chapter 7
PWRM API

PWRM_eFinishActivity

Description

This function is used to notify the Power Manager that an activity has completed
which was not to be interrupted by sleep.

The function call must be paired with a previous call to PWRM_eStartActivity().
Sleep mode cannot be entered until PWRM_eFinishActivity() has been called for
all activities for which PWRM_eStartActivity() has been previously called.

The activity for which PWRM_eFinishActivity() is called does not need to be
identified, since the function simply decrements a counter of running activities that
must not be interrupted by sleep. Sleep mode must not be entered until this counter
reaches zero. If this function is called when the counter is already zero, an underflow
error is returned.

Parameters

None

Returns

PWRM_E_OK (success)

PWRM_E_ACTIVITY_UNDERFLOW (activity counter already zero)

PWRM_teStatus PWRM_eFinishActivity(void);
70 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PWRM_u16GetActivityCount

Description

This function obtains the current value of the activity counter which indicates the
number of activities currently running that must not be interrupted by sleep. Sleep
mode cannot be entered until the value of this counter is zero.

Parameters

None

Returns

Current value of activity counter

uint16 PWRM_u16GetActivityCount(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 71

Chapter 7
PWRM API

PWRM_eScheduleActivity

Description

This function can be used to add a wake point and associated callback function to a
list of scheduled wake points and callbacks. The new wake point is linked to an
exclusive 32-kHz software wake timer, through the specified structure.

The function takes as input the number of ticks of the wake timer until the scheduled
wake point. When the wake timer expires, the JN51xx device will be woken from
sleep and the specified callback function will be called.

To use this function, the Power Manager must be configured through PWRM_vInit()
to implement a low-power mode in which the 32-kHz oscillator is running and
memory is held (otherwise, the list of scheduled wake points will be lost when the
device enters sleep mode).

The function will return an error (see below) if the 32-kHz oscillator has not been
configured to run during sleep or the software wake timer is already running for
another wake point.

Parameters

*psWake Pointer to a structure to be populated with the wake point and
callback function (see below)

u32Ticks The number of ticks of the 32-kHz wake timer until wake point

*prCallbackfn Pointer to callback function associated with wake point

Returns

PWRM_E_OK (wake timer started successfully)

PWRM_E_TIMER_RUNNING (wake timer already running for another wake point)

PWRM_E_TIMER_INVALID (oscillator not configured to run during sleep)

PWRM_teStatus PWRM_eScheduleActivity(
pwrm_tsWakeTimerEvent *psWake,
uint32 u32Ticks,
void (*prCallbackfn)(void));
72 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PWRM_vManagePower

Description

This function instructs the Power Manager to manage the power state of the JN51xx
device. The device must be idle when this function is called, i.e. the function is
typically called from the OS idle task.

Once this function has been called, whenever appropriate, the Power Manager will
put the device into the low-power mode specified through the function
PWRM_vInit(). To allow the device to enter sleep mode:

 No activities that are uninterruptable by sleep must be running - that is, the activity
counter must be zero.

 If the 32-kHz oscillator will run during sleep, a wake point must have been scheduled
using PWRM_vScheduleActivity() (this condition does not apply when the oscillator is
not used)

If the above two conditions are not satisfied, the function will put the device into Doze
mode instead of sleep mode. Doze mode simply pauses the on-chip CPU, leaving all
components powered (e.g. radio), and requires an interrupt to be configured to wake
the device.

Before putting the device into sleep mode, this function calls any user-defined
callback functions that have been registered using the function
PWRM_vRegisterPreSleepCallback().

Parameters

None

Returns

None

void PWRM_vManagePower(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 73

Chapter 7
PWRM API

7.2 Callback Set-up Functions

The PWRM callback set-up functions are used to introduce user-defined callback
functions that must be defined when using the Power Manager.

The functions are listed below, along with their page references:

Function Page

vAppMain 75

PWRM_vRegisterPreSleepCallback 76

PWRM_vRegisterWakeupCallback 77

vAppRegisterPWRMCallbacks 78

PWRM_vWakeInterruptCallback 79
74 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
vAppMain

Description

This is a user-defined callback function which is the application entry point when
using the Power Manager. This function should never return.

Parameters

None

Returns

None

void vAppMain(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 75

Chapter 7
PWRM API

PWRM_vRegisterPreSleepCallback

Description

This function is used to register a user-defined callback function that will be called by
the Power Manager before the JN51xx device enters sleep mode. You must specify
a pointer to a structure containing a descriptor for your callback function.

The callback function must have been declared using the macro
PWRM_CALLBACK(fn_name), where fn_name is the name of the callback function.

The callback descriptor must have been declared using the macro
PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name), where
desc_name is the descriptor name and fn_name is the callback function name.

For example:

PWRM_CALLBACK(vPreSleepCB1);

PWRM_DECLARE_CALLBACK_DESCRIPTOR(pscb1_desc, vPreSleepCB1);

The callback function should perform any housekeeping tasks that are necessary
before the device enters sleep mode.

Note that this registration function is normally called within the user-defined function
vAppRegisterPWRMCallbacks(). This ensures that the callback is registered
during a cold start.

Parameters

*psCBDesc Pointer to callback descriptor structure

Returns

None

void PWRM_vRegisterPreSleepCallback(
tsCallbackDescriptor *psCBDesc);
76 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PWRM_vRegisterWakeupCallback

Description

This function is used to register a user-defined callback function that will be called by
the Power Manager when the JN51xx device wakes from sleep (this may be due to
a change on a DIO line or comparator input, or the expiry of a wake timer). You must
specify a pointer to a structure containing a descriptor for your callback function.

The callback function must have been declared using the macro
PWRM_CALLBACK(fn_name), where fn_name is the name of the callback function.

The callback descriptor must have been declared using the macro
PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name), where
desc_name is the descriptor name and fn_name is the callback function name.

For example:

PWRM_CALLBACK(vWakeUpCB1);

PWRM_DECLARE_CALLBACK_DESCRIPTOR(wucb1_desc, vWakeUpCB1);

The callback function should perform any housekeeping tasks that are necessary
after the device wakes from sleep.

Note that this registration function is normally called within the user-defined function
vAppRegisterPWRMCallbacks(). This ensures that the callback is registered
during a cold start.

Parameters

*psCBDesc Pointer to callback descriptor structure

Returns

None

void PWRM_vRegisterWakeupCallback(
tsCallbackDescriptor *psCBDesc);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 77

Chapter 7
PWRM API

vAppRegisterPWRMCallbacks

Description

This is a user-defined function to register pre- and post-sleep callback functions, if
required.

The function definition must itself use PWRM_vRegisterPreSleepCallback() and
PWRM_vRegisterWakeupCallback() to register the required callbacks.

Parameters

None

Returns

None

void vAppRegisterPWRMCallbacks(void);
78 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PWRM_vWakeInterruptCallback

Description

This function is a pre-defined callback function which must be called from the
application’s interrupt handler to deal with interrupts from Wake Timer 1 on the
JN51xx device.

The function is needed to maintain the scheduled wake points list, by restarting the
wake timer for the next wake-up event (if any) when the previous one has just
completed. The function also calls the user-defined callback function specified
through PWRM_vScheduleActivity().

Parameters

None

Returns

None

void PWRM_vWakeInterruptCallback(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 79

Chapter 7
PWRM API

7.3 Debugging Function

The PWRM debugging function can be used to investigate how long the JN51xx
device spends in Doze mode. The Doze state is output on the JN51xx DIO1 pin for
external monitoring, allowing you to calculate the proportion of time that the device
typically spends in Doze mode for a given application.

The function is listed below, along with its page reference:

Function Page

PWRM_vSetupDozeMonitor 81
80 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PWRM_vSetupDozeMonitor

Description

This function can be used during debug to start a Doze mode monitoring session on
the JN51xx device - that is, to investigate the proportion of the time that the device
typically spends in Doze mode.

The Doze state of the device is output on the pin DIO1. This allows the times spent
in and out of Doze mode to be measured externally.

Parameters

bUseIO Always set to TRUE

Returns

None

void PWRM_vSetupDozeMonitor(bool_t bUseIO);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 81

Chapter 7
PWRM API

82 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
8. PDUM API

This chapter describes the functions of the Protocol Data Unit Manager (PDUM) API.
The API is defined in the header file pdum.h.

The PDUM API functions are listed below, along with their page references:

Function Page

PDUM_vInit 84

PDUM_hAPduAllocateAPduInstance 85

PDUM_eAPduFreeAPduInstance 86

PDUM_u16APduInstanceReadNBO 87

PDUM_u16APduInstanceWriteNBO 88

PDUM_u16APduInstanceWriteStrNBO 89

PDUM_u16SizeNBO 90

PDUM_u16APduGetSize 91

PDUM_pvAPduInstanceGetPayload 92

PDUM_u16APduInstanceGetPayloadSize 93

PDUM_eAPduInstanceSetPayloadSize 94

PDUM_vDBGPrintAPduInstance 95

Note: In ZigBee PRO, the APDUs used by the
application must be pre-defined (before building the
application) using the ZPS Configuration Editor. This
tool is detailed in the ZigBee 3.0 Stack User Guide
(JN-UG-3113).
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 83

Chapter 8
PDUM API

PDUM_vInit

Description

This function initialises the PDU Manager and must therefore be the first PDUM
function called.

Parameters

None

Returns

None

void PDUM_vInit();
84 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDUM_hAPduAllocateAPduInstance

Description

This function allocates an instance of an Application Protocol Data Unit (APDU) - that
is, memory space is allocated to the APDU instance.

The available APDUs (types and their handles) are pre-defined using the ZPS
Configuration Editor (refer to the ZigBee 3.0 Stack User Guide (JN-UG-3113)).

The allocated APDU instance can subsequently be populated with data and sent to
another node.

Parameters

hAPdu Handle of APDU (type)

Returns

Handle of allocated APDU instance

PDUM_INVALID_HANDLE if no APDU instances free

PDUM_thAPduInstance
PDUM_hAPduAllocateAPduInstance(

PDUM_thAPdu hAPdu);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 85

Chapter 8
PDUM API

PDUM_eAPduFreeAPduInstance

Description

This function de-allocates the specified APDU instance, thus freeing the associated
memory space.

Parameters

hAPduInstance Handle of APDU instance

Returns

PDUM_E_INTERNAL_ERROR

PDUM_teStatus PDUM_eAPduFreeAPduInstance(
PDUM_thAPduInstance hAPduInst);
86 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDUM_u16APduInstanceReadNBO

Description

This function reads data from the specified APDU instance and inserts the data into
a C structure. The byte position of the start (least significant byte) of the data in the
APDU instance must be specified, as well as the format of the data.

Data is read from the APDU instance in packed network byte order (little-endian) and
translated into unpacked host byte order for the C structure (big-endian for the
JN51xx device).

Parameters

hAPduInst Handle of APDU instance to read the data from

u32Pos The starting position (least significant byte) of the data within
the APDU

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnn nn (hex) bytes of packing

*pvStruct Pointer to C structure to receive the data

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Total number of data bytes read from the APDU instance

uint16 PDUM_u16APduInstanceReadNBO(
PDUM_thAPduInstance hAPduInst,
uint16 u16Pos,
const char *szFormat,
void *pvStruct);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 87

Chapter 8
PDUM API

PDUM_u16APduInstanceWriteNBO

Description

This function writes the specified data values into the specified APDU instance. The
byte position of the start of the data (least significant byte) in the APDU instance must
be specified, as well as the format of the data.

The data values are written into the APDU instance at the specified position in
packed network byte order (little-endian). The input data values should be in host
byte order (big-endian for the JN51xx device).

Parameters

hAPduInst Handle of the APDU instance to write the data into

u32Pos The starting position (least significant byte) of the data within
the APDU instance

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnnnn (hex) bytes of packing

... Variable list of data values described by the format string

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Total number of bytes written to the APDU instance

uint16 PDUM_u16APduInstanceWriteNBO(
PDUM_thAPduInstance hAPduInst,
uint16 u16Pos,
const char *szFormat, ...);
88 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDUM_u16APduInstanceWriteStrNBO

Description

This function writes data from the specified structure into the specified APDU
instance. The byte position of the start of the data (least significant byte) in the APDU
instance must be specified, as well as the format of the data.

The data values are written into the APDU instance at the specified position in
packed network byte order (little-endian). The input data values should be in host
byte order (big-endian for the JN51xx device).

Parameters

hAPduInst Handle of the APDU instance to write the data into

u32Pos The starting position (least significant byte) of the data within
the APDU instance

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnnnn (hex) bytes of packing

*pvStruct Pointer to C structure to containing data

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Total number of bytes written to the APDU instance

uint16 PDUM_u16APduInstanceWriteStrNBO(
PDUM_thAPduInstance hAPduInst,
uint16 u16Pos,
const char *szFormat,
void *pvStruct);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 89

Chapter 8
PDUM API

PDUM_u16SizeNBO

Description

This function obtains the size, in bytes, of an APDU data payload, given the format
of the data.

Parameters

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnnnn (hex) bytes of packing

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Number of bytes in data payload

uint16 PDUM_u16SizeNBO(const char *szFormat);
90 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDUM_u16APduGetSize

Description

This function obtains the maximum size, in bytes, of the specified APDU (type).

Parameters

hAPdu Handle of APDU

Returns

Number of bytes in APDU

uint16 PDUM_u16APduGetSize(PDUM_thAPdu hAPdu);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 91

Chapter 8
PDUM API

PDUM_pvAPduInstanceGetPayload

Description

This function obtains a pointer to the payload data of the specified APDU instance.

Parameters

hAPduInst Handle of APDU instance to access

Returns

Pointer to data as an array of bytes

void * PDUM_pvAPduInstanceGetPayload(
PDUM_thAPduInstance hAPduInst);
92 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDUM_u16APduInstanceGetPayloadSize

Description

This function obtains the size, in bytes, of the payload data of the specified APDU
instance.

Parameters

hAPduInst Handle of APDU instance to access

Returns

Size of the payload data, in bytes

uint16 PDUM_u16APduInstanceGetPayloadSize(
PDUM_thAPduInstance hAPduInst);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 93

Chapter 8
PDUM API

PDUM_eAPduInstanceSetPayloadSize

Description

This function sets the size, in bytes, of the payload of the specified APDU instance.

Parameters

hAPduInst Handle of APDU instance

u16Size Size of payload to set, in bytes

Returns

PDUM_OK

PDUM_E_APDU_INSTANCE_TOO_BIG

PDUM_teStatus PDUM_eAPduInstanceSetPayloadSize(
PDUM_thAPduInstance hAPduInst,
uint16 u16Size);
94 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
PDUM_vDBGPrintAPduInstance

Description

This function can be used to output the specified APDU instance via the Debug
(DBG) module.

For details of the DBG functions, refer to Chapter 8.

Parameters

hAPdu Handle of APDU instance to output

Returns

None

void PDUM_vDBGPrintAPduInstance(
PDUM_thAPduInstance hAPduInst);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 95

Chapter 8
PDUM API

96 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
9. DBG API

The chapter describes the functions of the Debug (DBG) module API. The API is
defined in the header file dbg.h.

To use the Debug module, it must be enabled at build-time by defining DBG_ENABLE
in the build - for example, by adding the -DDBG_ENABLE option to the compiler.

By default, the Debug module will just display each line as passed. However, if
DBG_VERBOSE is defined at build-time then each line displayed will be prefixed with
the file name and line number of the debug statement.

The DBG API functions are listed below, along with their page references:

Function Page

DBG_vInit 98

DBG_vUartInit 99

DBG_vPrintf 100

DBG_vAssert 102

DBG_vDumpStack 103

DBG_vFlush 104

DBG_iGetChar 105

Note: Compiling with the DBG option results in a larger
application size, requiring a lot more space in RAM.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 97

Chapter 9
DBG API

DBG_vInit

Description

This function is used to initialise the Debug module.

The function can be used during a cold start or a warm start (with memory held). Its
parameter accepts a structure containing pointers to four user-defined callback
functions concerned with the output interface:

 typedef struct

 {

 void (*prInitHardwareCb)(void);

 void (*prPutchCb) (char c);

 void (*prFlushCb) (void);

 void (*prFailedAssertCb)(void);

 } tsDBG_FunctionTbl;

The callback functions pointed to by this structure are as follows:

*prInitHardwareCb Points to function which re-initialises the interface after a
warm start, e.g. when JN51xx device wakes from sleep

*prPutchCb Points to function used by DBG_vPrintf() to output a single
character to the interface

*prFlushCb Points to function used by DBG_vPrintf() to flush the
interface buffer to allow buffered output characters to be
displayed. If the output is unbuffered, this function should do
nothing or wait for the last character output using the putch()
function to be made available. Note that the function should
not append a newline character, as this should be handled by
the formatting string passed to DBG_vPrintf()

*prAssertFailedCb Points to function which is called when DBG_vAssert() fails.
The function should stop execution and may reset the device

Parameters

*psFunctionTbl Pointer to structure containing list of callback functions.

Returns

None

void DBG_vInit(tsDBG_FunctionTbl *psFunctionTbl);

Note: If a JN51xx UART is to be used as the debug output
interface, DBG_vUartInit() must be called instead. Thus,
DBG_vInit() will not be needed by most users, since a UART
will normally be used for debug output.
98 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
DBG_vUartInit

Description

This function is used to initialise the Debug module when one of the JN51xx on-chip
UARTs is to be used as the output interface. In this case, this function should be
called instead of DBG_vInit(). This will be the case for most users, as a UART will
normally be used for debug output.

The function can be used during a cold start or a warm start (with memory held). It is
necessary to specify the UART (0 or 1) and the required baud rate.

Note that the callback functions required by DBG_vInit() are not needed for
DBG_vUartInit(), since they are pre-defined by NXP for the on-chip UARTs.

Parameters

eUart UART to use as output interface, one of:
DBG_E_UART_0 (UART0)
DBG_E_UART_1 (UART1)

eBaudRate Baud rate of UART, one of:
DBG_E_UART_BAUD_RATE_4800 (4800 bps)
DBG_E_UART_BAUD_RATE_9600 (9600 bps)
DBG_E_UART_BAUD_RATE_19200 (19200 bps)
DBG_E_UART_BAUD_RATE_38400 (38400 bps)
DBG_E_UART_BAUD_RATE_76800 (76800 bps)
DBG_E_UART_BAUD_RATE_115200 (115200 bps)

Returns

None

void DBG_vUartInit(DBG_teUart eUart,
DBG_teUartBaudRate eBaudRate);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 99

Chapter 9
DBG API

DBG_vPrintf

Description

This function is an adapted printf() function, allowing a formatted string to be output
(e.g. via the UART) for display.

The function contains a parameter which allows the output of the string to be enabled
or disabled - the value of this Boolean parameter must be a literal. If disabled, the
compiler will optimise out this function, but its parameters will still be evaluated.

The supported output formats are as follows:

void DBG_vPrintf(bool_t bStreamEnabled,
const char *pcFormat, ...);

Format Specifier Purpose

Flags

- Left align

0 Pad with zeroes

+ Sign with plus

‘ ‘ (space) Sign with space

Width

<integer> Field width

Length

l Long

ll Long long

h Short

Type

i Signed integer

d Signed integer

u Unsigned integer

x Unsigned integer as hexadecimal

p Pointer

c Character

s String

Escape sequence

\n Newline/carriage return
100 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
Parameters

bStreamEnabled Boolean which determines whether string will be output:
 TRUE: Output string
 FALSE: Do not output string (compile out function)

*pcFormat Pointer to printf-style formatting string

... For supported output formats, see above table

Returns

None
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 101

Chapter 9
DBG API

DBG_vAssert

Description

This function is an adapted assert() function, allowing a Boolean condition to be
tested.

The function contains a parameter which allows the test to be enabled or disabled -
the value of this Boolean parameter must be a literal. If disabled, the compiler will
optimise out this function.

The Boolean condition to be tested is specified as a parameter:

 If the condition is TRUE, program execution continues.

 If the condition is FALSE, an error message is output and execution is passed to a
callback function, which stops execution. This callback function is specified when
DGB_vInit() is called for a cold start.

Parameters

bStreamEnabled Boolean which determines whether test will be performed:
 TRUE: Perform test
 FALSE: Do not perform test

bAssertion Boolean expression to be tested

Returns

None

void DBG_vAssert(bool_t bStreamEnabled,
bool_t bAssertion);
102 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
DBG_vDumpStack

Description

This function outputs the contents of the CPU stack (e.g. via the UART) for display.

Parameters

None

Returns

None

void DBG_vDumpStack(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 103

Chapter 9
DBG API

DBG_vFlush

Description

This function flushes buffered characters from the JN51xx device to the display
device. If the JN51xx UART is used for debug, this function flushes the UART buffer.

Parameters

None

Returns

None

void DBG_vFlush(void);
104 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
DBG_iGetChar

Description

This function can be used to obtain a character from an input device (such as a serial
terminal connected to the JN51xx UART).

Parameters

None

Returns

ASCII value of obtained character, or -1 if no character available

int DBG_iGetChar(void);
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 105

Chapter 9
DBG API

106 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
10. JCU Structures

This chapter describes the structures (including enumerations) used by the JCU
modules:

 PDM structures are detailed in Section 10.1

 PWRM structures are detailed in Section 10.2

 DBG structures are detailed in Section 10.3

10.1 PDM Structures

10.1.1 PDM_tpfvSystemEventCallback

This type defines the callback function that receives PDM events.

typedef void (*PDM_tpfvSystemEventCallback) (

 uint32 u32eventNumber,

 PDM_eSystemEventCode eSystemEventCode);

where:

 u32eventNumber gives further information about the event depending on the
event code, as detailed in Section 10.1.3

 eSystemEventCode identifies the type of event that triggered the callback.

10.1.2 tsReg128

This is a constant structure which contains a 128-bit encryption key used by the PDM
module - the key is passed into the module via the PDM_vInit() function.

typedef struct

{

 uint32 u32register0;

 uint32 u32register1;

 uint32 u32register2;

 uint32 u32register3;

} tsReg128;

In the above structure, u32register0 contains the 32 least signifacant bits and
u32register3 contains the 32 most significant bits of the key.
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 107

Chapter 10
JCU Structures

10.1.3 PDM_eSystemEventCode

This structure contains enumerations for the events generated by the PDM library.

typedef enum

{

 E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED=0,

 E_PDM_SYSTEM_EVENT_SAVE_FAILED,

 E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE,

 E_PDM_SYSTEM_EVENT_LARGEST_RECORD_FULL_SAVE_NO_LONGER_POSSIBLE,

 E_PDM_SYSTEM_EVENT_SEGMENT_DATA_CHECKSUM_FAIL,

 // Debug event codes

 E_PDM_SYSTEM_EVENT_EEPROM_SEGMENT_HEADER_REPAIRED,

 E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_BUFFER_WEAR_COUNT_SWAP,

 E_PDM_SYSTEM_EVENT_SYSTEM_DUPLICATE_FILE_SEGMENT_DETECTED,

 E_PDM_SYSTEM_EVENT_SYSTEM_ERROR,

} PDM_eSystemEventCode;

The events are outlined in Table 1 below.

Event Enumeration Description

E_PDM_SYSTEM_EVENT_WEAR_
COUNT_TRIGGER_VALUE_REACHED

An EEPROM segment has reached a set Wear Count
(set by the user or left at the manufacturer stated maxi-
mum value). u32EventNumber carries the EEPROM
segment number.

E_PDM_SYSTEM_EVENT_SAVE_
FAILED

A save has failed. u32eventNumber contains the
u16IdValue of the record that failed to save. This is a
fatal error as the stack records may be inconsistent.
Test software should log this error and halt. Production
software may need to perform a factory reset.

E_PDM_SYSTEM_EVENT_PDM_NOT_
ENOUGH_SPACE

There is not enough space to hold all the PDM records.
u32eventNumber contains the u16IdValue of the
record that was being processed. This is a fatal error as
the stack records may be inconsistent. Test software
should log this error and halt. Production software may
need to perform a factory reset.

E_PDM_SYSTEM_EVENT_LARGEST_
RECORD_FULL_SAVE_NO_LONGER_
POSSIBLE

The EEPROM occupancy is such that the largest
record in the PDM can no longer be fully saved.
u32EventNumber carries the u16IdValue of the
record that was being processed.

E_PDM_SYSTEM_EVENT_SEGMENT_
DATA_CHECKSUM_FAIL

The calculated checksum for the data in an EEPROM
segment does not match the stored checksum value.
u32EventNumber carries the number of the segment.

E_PDM_SYSTEM_EVENT_EEPROM_
SEGMENT_HEADER_REPAIRED

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

Table 1: PDM Event Codes (EEPROM)
108 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
E_PDM_SYSTEM_EVENT_SYSTEM_
INTERNAL_BUFFER_WEAR_COUNT_
SWAP

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_
DUPLICATE_FILE_SEGMENT_
DETECTED

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_
ERROR

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

Event Enumeration Description

Table 1: PDM Event Codes (EEPROM)
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 109

Chapter 10
JCU Structures

10.1.4 PDM_teStatus

This structure contains enumerations for the status codes generated by the PDM.

typedef enum

{

 PDM_E_STATUS_OK,

 PDM_E_STATUS_INVLD_PARAM,

 // EEPROM based PDM codes

 PDM_E_STATUS_PDM_FULL,

 PDM_E_STATUS_NOT_SAVED,

 PDM_E_STATUS_RECOVERED,

 PDM_E_STATUS_PDM_RECOVERED_NOT_SAVED,

 PDM_E_STATUS_USER_BUFFER_SIZE,

 PDM_E_STATUS_BITMAP_SATURATED_NO_INCREMENT,

 PDM_E_STATUS_BITMAP_SATURATED_OK,

 PDM_E_STATUS_IMAGE_BITMAP_COMPLETE,

 PDM_E_STATUS_IMAGE_BITMAP_INCOMPLETE,

 PDM_E_STATUS_INTERNAL_ERROR

} PDM_teStatus;

The status codes are described in Table 2 below.

Event Enumeration Description

PDM_E_STATUS_OK The function completed without error.

PDM_E_STATUS_INVLD_PARAM An invalid parameter value was supplied.

PDM_E_STATUS_PDM_FULL There is no available EEPROM space for PDM.

PDM_E_STATUS_NOT_SAVED A PDM save to EEPROM failed.

PDM_E_STATUS_RECOVERED The record was recovered from a previous save to
NVM.

PDM_E_STATUS_PDM_RECOVERED_NOT_SAVED The record was not recovered from a previous
save to NVM.

PDM_E_STATUS_USER_BUFFER_SIZE Not used.

PDM_E_STATUS_BITMAP_SATURATED_NO_INCREMENT Counter increment not made because the
EEPROM segment is saturated.

PDM_E_STATUS_BITMAP_SATURATED_OK Counter increment made but the EEPROM seg-
ment is now saturated.

PDM_E_STATUS_IMAGE_BITMAP_COMPLETE For internal use.

PDM_E_STATUS_IMAGE_BITMAP_INCOMPLETE For internal use.

PDM_E_STATUS_INTERNAL_ERROR An unspecified internal PDM error has occurred.

Table 2: PDM Status Codes
110 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
10.1.5 PDM_tsHwFncTable

This structure is used in the function PDM_vInit() to specify a set of user-defined
functions used to interact with a custom NVM device.

typedef struct

{

 /* This function is called after a cold or warm start */

 void (*prInitHwCb)(void);

 /* This function is called to erase the given sector */

 void (*prEraseCb) (uint8 u8Sector);

 /*This function is called to write data to an address

 * within a given sector. Address zero is the start of the

 * given sector */

 void (*prWriteCb) (uint8 u8Sector,

 uint16 u16Addr,

 uint16 u16Len,

 uint8 *pu8Data);

 /* This function is called to read data from an address

 * within a given sector. Address zero is the start of the

 * given sector */

 void (*prReadCb) (uint8 u8Sector,

 uint16 u16Addr,

 uint16 u16Len,

 uint8 *pu8Data);

} PDM_tsHwFncTable;
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 111

Chapter 10
JCU Structures

10.2 PWRM Structures

10.2.1 PWRM_teSleepMode

This structure contains the enumerations used to set the power mode of the JN51xx
device during sleep.

typedef enum

{

 PWRM_E_SLEEP_OSCON_RAMON, /*32-kHz Osc on and RAM on*/

 PWRM_E_SLEEP_OSCON_RAMOFF, /*32-kHz Osc on and RAM off*/

 PWRM_E_SLEEP_OSCOFF_RAMON, /*32-kHz Osc off and RAM on*/

 PWRM_E_SLEEP_OSCOFF_RAMOFF, /*32-kHz Osc off and RAM off*/

 PWRM_E_SLEEP_DEEP, /*Deep Sleep*/

} PWRM_teSleepMode;

10.3 DBG Structures

10.3.1 DBG_tsFunctionTbl

This structure contains callback functions used by the Debug (DBG) module to interact
with the output interface.

typedef struct

 {

 void (*prInitHardwareCb)(void);

 void (*prPutchCb) (char c);

 void (*prFlushCb) (void);

 void (*prFailedAssertCb)(void);

 } DBG_tsFunctionTbl;

For details of the callback functions, refer to the description of DBG_vInit on page 98.

112 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

 JN51xx Core Utilities
User Guide
Revision History

Version Date Comments

1.0 11-Mar-2016 First release

1.1 6-July-2016 Updated for the JN517x devices
JN-UG-3116 v1.1 © NXP Laboratories UK 2016 113

JN51xx Core Utilities
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Semiconductors

For online support resources and contact details of your local NXP office or distributor, refer to:

www.nxp.com
114 © NXP Laboratories UK 2016 JN-UG-3116 v1.1

	Contents
	Preface
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks
	Chip Compatibility

	Part I: Concept and Operational Information
	1. Introduction
	1.1 Modules and Architecture
	1.1.1 JCU Modules
	1.1.2 Software Architecture

	2. Persistent Data Manager (PDM)
	2.1 Overview
	2.2 Initialising the PDM and Building a File System
	2.2.1 Using PDM with IEEE802.15.4
	2.2.2 Using PDM with JenNet-IP

	2.3 Managing Data in EEPROM
	2.3.1 Saving Data to EEPROM
	2.3.2 Recovering Data from EEPROM
	2.3.3 Deleting Data in EEPROM

	2.4 Storing Counters in EEPROM
	2.4.1 Creating a Counter
	2.4.2 Incrementing a Counter
	2.4.3 Reading a Counter
	2.4.4 Deleting a Counter

	2.5 PDM Features
	2.5.1 Mutex in PDM
	2.5.2 Event and Error Handler for EEPROM
	2.5.3 EEPROM Capacity
	2.5.4 EEPROM Wear Count
	2.5.5 Ensuring Consistency of PDM Records

	3. Power Manager (PWRM)
	3.1 Low-Power Modes
	3.1.1 Doze Mode
	3.1.2 Sleep Mode with Memory Held
	3.1.3 Sleep Mode without Memory Held
	3.1.4 Deep Sleep Mode

	3.2 Callback Functions for Power Manager
	3.2.1 Essential Callback Function
	3.2.2 Pre-sleep and Post-sleep Callback Functions
	3.2.3 Wake Timer Callback Function

	3.3 Initialising and Starting the Power Manager
	3.4 Enabling Power-Saving
	3.5 Non-interruptible Activities
	3.6 Terminating Low-Power Mode
	3.7 Scheduling Wake Events
	3.8 Doze Mode
	3.8.1 Circumstances that Lead to Doze Mode
	3.8.2 Doze Mode Monitoring During Development

	4. Protocol Data Unit Manager (PDUM)
	4.1 Message Assembly and Disassembly
	4.2 Preparing the PDU Manager
	4.3 Inserting Data into Outgoing Message
	4.4 Extracting Data from Incoming Message

	5. Debug (DBG) Module
	5.1 Overview
	5.2 Enabling the Debug Module
	5.3 Initialising and Configuring the Debug Module
	5.3.1 Using JN51xx UART Input/Output
	5.3.2 Using Alternative Serial Output

	5.4 Debug Configuration Flags
	5.5 Example Diagnostic Code

	Part II: Reference Information
	6. PDM API
	6.1 EEPROM PDM Functions
	PDM_eInitialise
	PDM_eSaveRecordData
	PDM_eReadDataFromRecord
	PDM_eDeleteData
	PDM_eDeleteAllData
	PDM_u8GetSegmentCapacity
	PDM_u8GetSegmentOccupancy
	PDM_bDoesDataExist

	6.2 EEPROM PDM Bitmap Counter Functions
	PDM_eCreateBitmap
	PDM_eIncrementBitmap
	PDM_eGetBitmap
	PDM_eDeleteBitmap

	6.3 EEPROM PDM Miscellaneous Functions
	PDM_vRegisterSystemCallback
	PDM_vSetWearCountTriggerLevel
	PDM_eGetSegmentWearCount

	7. PWRM API
	7.1 Core Functions
	PWRM_vInit
	PWRM_eStartActivity
	PWRM_eFinishActivity
	PWRM_u16GetActivityCount
	PWRM_eScheduleActivity
	PWRM_vManagePower

	7.2 Callback Set-up Functions
	vAppMain
	PWRM_vRegisterPreSleepCallback
	PWRM_vRegisterWakeupCallback
	vAppRegisterPWRMCallbacks
	PWRM_vWakeInterruptCallback

	7.3 Debugging Function
	PWRM_vSetupDozeMonitor

	8. PDUM API
	PDUM_vInit
	PDUM_hAPduAllocateAPduInstance
	PDUM_eAPduFreeAPduInstance
	PDUM_u16APduInstanceReadNBO
	PDUM_u16APduInstanceWriteNBO
	PDUM_u16APduInstanceWriteStrNBO
	PDUM_u16SizeNBO
	PDUM_u16APduGetSize
	PDUM_pvAPduInstanceGetPayload
	PDUM_u16APduInstanceGetPayloadSize
	PDUM_eAPduInstanceSetPayloadSize
	PDUM_vDBGPrintAPduInstance

	9. DBG API
	DBG_vInit
	DBG_vUartInit
	DBG_vPrintf
	DBG_vAssert
	DBG_vDumpStack
	DBG_vFlush
	DBG_iGetChar

	10. JCU Structures
	10.1 PDM Structures
	10.1.1 PDM_tpfvSystemEventCallback
	10.1.2 tsReg128
	10.1.3 PDM_eSystemEventCode
	10.1.4 PDM_teStatus
	10.1.5 PDM_tsHwFncTable

	10.2 PWRM Structures
	10.2.1 PWRM_teSleepMode

	10.3 DBG Structures
	10.3.1 DBG_tsFunctionTbl

