

#### i.MX6 - Linux 1-day training design



Adeneo Embedded April 2012

## Document objectives

- Define the overall objectives and prerequisites of the training
- Define the **outline** of the training:
  - Lecture
  - Labs
  - Demos
- Estimate the **duration** of the different modules

#### NP I raining objectives

- Awareness training
- Which tools do we want to use?
- How can we get our board up and running?
- How to build the different software components?
- How to write applications for our system?
- How to work efficiently with the i.MX6 processor?
- How do I design a custom platform based on the i.MX6?
- There will be a strong focus on hands-on labs, preceded by explanatory slides.

# I raining agenda

- Morning
  - Introduction to the i.MX6 platform (20 mins)
  - Introduction to Linux (45 mins)
  - Community and licensing (15 mins)
  - Development environment (20 mins)
  - The different components of a Linux system: programs, frameworks and libraries (10 mins)
  - Compiling the code using toolchains (10 mins)
  - Building a Linux system (10 mins)
  - Using LTIB (30 mins)
  - Ubuntu on the i.MX6 (20 mins)

## I raining agenda

- Afternoon
  - Working with U-Boot (30 mins)
  - Working with the Linux kernel (60 mins)
  - Application development (60 mins)
  - Adapting Linux for a custom i.MX6 design (20 mins)
  - Going further (10 mins)

## Hardware requirements

- Use cheap equipment (easily purchased by trainees)
- Development laptop
  - + Power supply
  - VMWare Workstation installed
- i.MX6 Evaluation board
  - + Power supply
  - + LCD screen
- Cables and peripherals
  - USB to serial port (FTDI chip recommended)
  - USB SD Card reader
  - Network cable (to connect the PC directly to the board)
  - Several SD Cards (Sandisk is preferred as they are faster)



- Knowledge of embedded systems
- Basic knowledge of C
- Basic understanding of operating systems in the context of embedded systems



#### Introducing the i.MX6

## I.MX6 Intro - Module description

- Duration: 20 minutes
- Objectives:
  - Describe the i.MX family
  - Describe the i.MX6 line of processors
  - Introduce software support for different operating systems
- Notes:
  - This section is common to all the trainings

## I.MX6 Intro - Module outline

- The i.MX family
- The i.MX6
  - Hardware highlights: ARM micro-architecture, multi-core, compatibility, multimedia and graphics acceleration, capture and display, networking, power management, ...
  - **Reference platforms**: *SABRE Lite, QSB, ...* (to be updated when finalized)
  - Software support: Linux, Android, Windows Embedded Compact, QNX



#### Introduction to Linux

#### Linux Intro - Module description

- **Duration**: 15 minutes (lecture) + 30 minutes (lab)
- Objectives:
  - Introduce Linux for embedded systems
  - Give an idea of the big picture: what are the main components that make a Linux system? What happens when we boot?
  - Give an idea of how the different pieces fit together before describing them in detail
  - Show how to start using the board

## Linux Intro - Module outline

- General Introduction
  - History
  - Facts and figures
  - The advantages of using Linux
- Overview of a Linux system:
  - Bootloader
  - Kernel
  - Root filesystem (and how the files are organized)
- Description of the boot process

#### Linux Intro - Module outline

- Lab: Flashing prebuilt Linux images on the development board.
  - Getting familiar with the development environment, basic shell usage
  - Plugging the equipment
  - Configuring the boards
  - Flashing a prebuilt image
  - Booting the board
  - Understanding the layout of the SD Card



#### **Community and Licensing**

#### **Community - Module description**

- **Duration**: 15 minutes (lecture)
- Objectives:
  - Describe the Linux ecosystem, understand where the different pieces come from
  - Know where to find support and what to expect
  - Understanding the concept of "mainline"
  - Understanding the rights and obligations of free software. Dispel some misconceptions

#### Community - Module outline

- Linux ecosystem: players and interactions
  - Open-source communities
  - Freescale
  - Linaro (and how they are not equivalent to Freescale)
  - Other third-parties (e.g. Timesys)

#### Freescale BSPs

- Where to find documentation
- iMXCommunity, support

#### Community - Module outline

- Example of a Linux community: the kernel
  - What is the "mainline"?
  - How does it compare to the Freescale BSP?
  - How to contribute?
- Licensing:
  - Rights and obligations of open-source software
  - Licenses primer: GPL, LGPL, Apache, BSD, proprietary
  - How to keep your intellectual property
  - More resources



#### **Development Environment**

## Dev Env - Module description

- **Duration**: 20 minutes (lecture)
- Objectives:
  - Show how to set up a machine for Linux development
  - How to use a virtual machine
  - Introduce useful hardware and software tools for:
    - Coding
    - Debugging
    - Managing the code

## Jev Env - Module outline

- Choosing a Linux distribution
- Using a Virtual Machine: benefits, recommendations and pitfalls
- Hardware and software tools:
  - Serial connection
  - TFTP and NFS (how they can dramatically increase your productivity)
  - JTAG: major vendors (Lauterbach, BDI3000, ARM, ...),
    OpenOCD
  - USB gadgets
  - QEMU

## Dev Env - Module outline

- Editors and IDEs
  - Standard editors: vi, emacs
  - Eclipse
- Version control:
  - Why version control?
  - Quick introduction to Git



#### The different components of a Linux system

#### **Components - Module description**

- **Duration**: 10 minutes (lecture)
- Objectives:
  - Highlight one of the main advantages of Linux: reusability
  - Learn about the different components that can be reused when creating a Linux system
  - Get to know the major projects used in the embedded world

#### **Components - Module outline**

• Why **reusing** open-source components? How to choose?

- **Basic utilities** (includes Busybox)
- Networking tools
- Graphical interfaces (Qt, GTK, X/Windows, DirectFB)
- Multimedia (gstreamer, ALSA, OpenGL, ...)
- Web Browsers (and how to support HTML5)



# Compiling the code using toolchains

#### I oolchains - Module description

- **Duration**: 10 minutes (lecture)
- Objectives:
  - Describe cross-compilation
  - See how to get and use a toolchain optimized for the i.MX6

#### I oolchains - Module outline

- Why cross-compiling?
- The components of a toolchain: compiler, libc, binutils, ...
- Getting a toolchain:
  - From source
  - Prebuilt
  - From the Freescale BSP
- Using cross-toolchains?
- Optimizing the compilation for the i.MX6



#### Building a Linux system

#### System - Module description

- **Duration**: 10 minutes (lecture)
- Objectives:
  - See what it takes to build a system
  - Understand how to manage the build process of a system through different options
  - Compare the different solutions

## System - Module outline

- Building a system manually
- **Distributions**: Ubuntu, Debian, ...
- **Build systems** (introduction):
  - LTIB
  - OpenEmbedded, Yocto
  - Buildroot

Comparison of the different solutions



#### Using LTIB

## LIB - Module description

- **Duration**: 10 minutes (lecture) + 20 minutes (lab)
- Objectives:
  - Build images quickly using LTIB
  - Know where to look for basic operations
- Notes:
  - LTIB might be replaced by OpenEmbedded or Yocto depending on what will be officially supported at the time of delivery



- What is LTIB?
- Installing LTIB
- Configuring LTIB
- Building the different components
- **Customizing** the filesystem image (e.g. adding applications)
- **Extending** the functionality of LTIB
- Lab: Building and customizing an image with LTIB



#### **Ubuntu on the i.MX6**

#### Upuntu - Module description

- **Duration**: 20 minutes (lecture)
- Objectives:
  - Use a complete distribution and understand how it differs from a custom-built system
  - Show nice-looking demos (if available)
- Notes:
  - The lab might be replaced by a demo for the trainer if flashing the SD Cards takes too much time

## Upuntu - Module outline

• Advantages and drawbacks of using a prebuilt

distribution on a system

Customizing Ubuntu

- Lab: Flashing and using Ubuntu on the i.MX6
  - Note: Might require to use pre-flashed SD Cards since it takes a while to flash Ubuntu
  - Will show 3D and video capabilities (depending on software availability)



#### Working with U-Boot

#### U-Boot - Module description

- **Duration**: 10 minutes (lecture) + 20 minutes (lab)
- Objectives:
  - Getting the sources, building and flashing U-Boot
  - Introduction to the command-line interface
  - Know where to look when porting U-Boot (quick introduction)

## U-Boot - Module outline

- Getting the sources
- **Navigating** through the sources:
  - Explanation of the different directories (and where to look if you want to adapt the bootloader to a new platform).

- Lab: Building U-Boot (standalone and using LTIB)
- Lab: Flashing and customizing U-Boot



#### Working with the Linux kernel

#### **kernel - Module description**

- **Duration**: 30 minutes (lecture) + 30 minutes (lab)
- Objectives:
  - Identify the main kernel subsystems and their role
  - Getting the sources, building and flashing the kernel
  - Know where to look when porting the kernel (quick introduction)
  - Introduction to kernel advanced features: debugging, real-time, multi-core

## kernel - Module outline

- Kernel architecture
- Getting the sources
  - The different suppliers (mainline, Linaro, Freescale)
- **Navigating** through the sources:
  - Explanation of the different directories (and where to look if you want to adapt the kernel to a new platform).
  - Where do you find drivers?

# Kernel - Module outline

- Lab: Configuring the kernel
  - Adding support for different drivers, removing unused ones
- Lab: Building the kernel
  - Using LTIB
  - Standalone
- Lab: Flashing the kernel
  - Loading from SD Card
  - Loading from TFTP



- Debugging:
  - Traces
  - Kernel debugging features: *tracers, kernel hacking* options
  - JTAG, KGDB
- Real-time support for Linux
- Multi-core support



#### **Application development**

#### Application - Module description

- **Duration**: 20 minutes (lecture) + 40 minutes (lab)
- Objectives:
  - Identify the tools that can be used for easy and productive application development
  - Cross-compile applications
  - Using Eclipse

## Application - Module outline

- Development languages
- Development environment

- Lab: Compiling an application
  - Writing a simple simple Makefile
  - Using a cross-toolchain
- Lab: Using NFS to speed up development
- Lab: Using Eclipse to work with applications.
  Debugging from the IDE



#### Adapting Linux for a custom i.MX6 design

## Adapting - Module description

- **Duration**: 20 minutes (lecture)
- Objectives:
  - Identify the areas of interest when porting Linux to a custom i.MX6 design
  - Leverage Freescale/Adeneo's experience of porting Linux. Lessons learned
  - Optimize code/design for the i.MX6

## Adapting - Module outline

- **Software tools** for hardware design (e.g. pinmux)
- Porting activities:
  - Bootloader
  - Kernel
  - Filesystem
- **Optimizing** applications to run on the i.MX6 (using hardware acceleration, multicore capabilities).
- Manufacturing tool
- Lessons learned



#### **Going further**

#### Going further - Module description

- **Duration**: 10 minutes (lecture)
- Objectives:
  - Provide more resources (books, websites) for additional information
  - Highlight Freescale's documentation and community website



#### Quizz (TBD)