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Introduction
Multicore processors have become 
mainstream, introducing advanced levels 
of performance to servers, desktops, 
netbooks and even the latest generation 
of tablets. The potential benefits for 
embedded systems are even greater. 
Networking elements, medical  
devices and defense and aerospace 
applications are all growing in 
complexity and demanding ever-
increasing computational power. 
At the same time, many of these 
systems must continue to address 
the thermal dissipation and low power 
constraints inherent to embedded 
devices. Freescale QorIQ processors 
directly address these requirements 
by providing much better processing 
capacity per watt and per square 
inch than conventional single-core 
processors.

Multicore processors such as Freescale 
QorIQ platforms are, in effect, 
multiprocessing systems-on-chip (SoC). 
Many Freescale SoCs have separate 
L1 and L2 caches per core, but use a 
shared L3 cache, memory subsystem, 
interrupt subsystem and peripherals. 
To take advantage of these processors, 
embedded developers must graduate 
from a serial execution model, where 
software tasks take turns running on a 
single processor, to a parallel execution 
model, where multiple software tasks 
can run simultaneously. The more 
parallelism developers can achieve, 
the better their multicore systems will 
perform.

To address these challenges, developers 
must find tools that can analyze the 
complex system-level behavior that 
occurs in a multicore chip. At any 
instant, threads can be migrating across 
cores, communicating with threads 
on other cores or sharing resources 
with threads on other cores —complex 
interactions that conventional debug 
tools were never designed to analyze.

Fortunately, vendors such as QNX 
Software Systems have introduced 
system tracing tools that provide 
a comprehensive view of multicore 
behavior, allowing the developer to 
visualize interactions between cores 
and eliminate a variety of performance 
bottlenecks. Using the information that 
these tools generate, the developer can 
reduce resource contention, optimize 
thread migration, identify opportunities 
for parallelism and achieve maximum 
utilization of every processor core.

Multiprocessing Modes and 
the Role of the OS
Developers must also choose the 
appropriate form of multiprocessing 
for their application requirements. This 
choice will determine how easily both 
new and existing code can achieve 
maximum concurrency. As Table 1 
illustrates, developers have three basic 
forms to choose from: Asymmetric 
multiprocessing (AMP), symmetric 
multiprocessing (SMP) and bound 
multiprocessing (BMP).

Running AMP, SMP or BMP Mode  
for Multicore Embedded Systems
QNX Software Systems

 Table 1: Three Approaches to Multiprocessing
Model How it Works Key Advantages

Asymmetric 
multipro-
cessing 
(AMP)

A separate OS, or a separate copy 
of the same OS, manages each 
core. Typically, each software 
process is locked to a single core 
(e.g. process A runs only on core 
1, process B runs only on core 2, 
etc.).

Provides an execution environment similar 
to that of uniprocessor systems, allowing 
simple migration of legacy code. Also 
allows developers to manage each core 
independently.

Symmetric 
multipro-
cessing 
(SMP)

A single OS manages all processor 
cores simultaneously. The OS can 
dynamically schedule any process 
on any core, enabling full utilization 
of all cores. 

Provides greater scalability and parallelism 
than AMP, along with simpler shared 
resource management.

Bound mul-
tiprocessing 
(BMP)

A single OS manages all cores 
simultaneously. As in SMP, the 
OS can dynamically schedule 
processes on any core. However, 
the developer can also lock any 
process (and all of its associated 
threads) to a specific core.

Combines the developer control of AMP 
with the transparent resource management 
of SMP. The option to lock threads to any 
core simplifies migration of legacy code 
and allows designers to dedicate cores to 
specific operations.
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Asymmetric Multiprocessing 
(AMP)
AMP provides an execution environment 
similar to that of conventional 
uniprocessor systems, which most 
developers already know and 
understand. Consequently, it offers a 
relatively straightforward path for porting 
legacy code. It also provides a direct 
mechanism for controlling how the CPU 
cores are used. And, in most cases, 
it lets developers work with standard 
debugging tools and techniques.

AMP can be either homogeneous, 
where each core runs the same type 
and version of OS, or heterogeneous, 
where each core runs either a different 
OS or a different version of the same 
OS. In a homogeneous environment, 
developers can make best use of the 
multiple cores by choosing an OS that 
offers a distributed programming model, 
such as the QNX® Neutrino® RTOS. 
Properly implemented, the model will 
allow applications running on one core 
to communicate transparently with 
applications and system services (e.g. 
device drivers, protocol stacks) on 
other cores, but without the high CPU 
utilization imposed by traditional forms 
of interprocessor communication. 

A heterogeneous environment has 
somewhat different requirements. 
In this case, the developer must 
either implement a proprietary 
communications scheme or choose two 
OSs that share a common infrastructure 
(likely IP based) for interprocessor 
communications. To help avoid resource 
conflicts, the OSs should also provide 
standardized mechanisms for accessing 
shared hardware components. In 
virtually all cases, OS support for a 
lean and easy-to-use communications 
protocol will greatly enhance core-to-
core operation. In particular, an OS 
built with the distributed programming 
paradigm in mind can take greater 
advantage of the parallelism provided by 
the multiple cores.

In the homogenous example shown 
in Figure 1, one core of the P2020 
processor handles ingress traffic from 
a hardware interface while the other 
handles the egress traffic. Because 
the traffic exists as two independent 
streams, the two cores don’t need 
to communicate or share data with 
each other. As a result, the OS doesn’t 
have to provide core-to-core IPC. It 
must, however, provide the real-time 
performance needed to manage the 
traffic flows. 

Figure 2 shows another homogenous 
example, but this time both e500 
cores implement a distributed control 
plane, with each core handling different 
aspects of a data plane. To control 
the data plane correctly, applications 
running on the multiple cores must 
function in a coordinated fashion. To 
enable this coordination, the OS should 
provide strong IPC support, such as a 
shared memory infrastructure for routing 
table information. 

In the heterogeneous example shown 
in Figure 3, one core implements the 
control plane, while the other handles 
all the data plane traffic, which has real-
time performance requirements. In this 
case, the OSs running on the two cores 
both need to provide a consistent IPC 
mechanism, such as the transparent 
inter-process communication (TIPC) 
protocol, that allows the cores to 
communicate efficiently, possibly 
through shared data structures.

In virtually all cases, OS support for a 
lean and easy-to-use communications 
protocol will greatly enhance core-to-
core operation. In particular, an OS 
built with the distributed programming 
paradigm in mind can take greater 
advantage of the parallelism provided by 
the multiple cores.

Figure 1: Using 
Homogenous AMP to 
Handle Both Ingress and 
Egress Traffic

Figure 3: AMP Control/Data 
Plane

Figure 2: Using 
Homogenous AMP to 
Implement a Distributed 
Control Plane
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CPU Utilization in  
AMP Mode                                                                                                                                
In AMP mode, a process and all of its 
threads are locked to a single processor 
core. While this approach is useful for 
running legacy code, it can result in 
underutilization of processor cores. 
For instance, if one core becomes 
busy, applications running on that 
core cannot, in most cases, migrate 
to a core that has more CPU cycles 
available (refer Figure 4). Though such 
dynamic migration is possible, it typically 
involves complex checkpointing of the 
application’s state and can result in a 
service interruption while the application 
is stopped on one core and restarted on 
another. This migration becomes even 
more difficult, if not impossible, if the 
cores use different OSs.

Symmetric Multiprocessing 
(SMP) Mode
Allocating resources in a multicore 
design can be difficult, especially when 
multiple software components are 
unaware of how other components 
are employing those resources. SMP 
addresses many of the issues by 
running only one copy of an OS across 
all the chip’s cores. Because the OS 
has insight into all system elements 
at all times, it can allocate resources 
on multiple cores with little or no input 
from the application designer. By 
running only one copy of the OS, SMP 
can dynamically allocate resources 
to specific applications rather than to 
CPU cores, thereby enabling greater 
utilization of available processing power. 

Figure 4: AMP Multicore SystemAMP Multicore System
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Because a single OS controls every 
core, all intercore IPC is local. This 
reduces the memory footprint and 
improves performance dramatically 
as the system no longer needs 
a heavy networking protocol to 
implement communication between 
applications running on different cores. 
Communication and synchronization 
can take the simple form of POSIX 
primitives (e.g. semaphores) or a native 
lightweight local-transport capability 
such as QNX distributed processing. 

A single instance of the OS across 
all cores simplifies optimization and 
debugging. Visualization tools such 
as the system profiler in the QNX 
Momentics® Tool Suite can track 
thread migration from core to core, 
scheduling events, application-to-
application messaging, CPU utilization 
and other events, all with high-resolution 
timestamping.

A well-designed SMP OS such as the 
QNX Neutrino RTOS allows the threads 
of execution within an application to 
run concurrently on any core. This 
concurrency makes the majority of the 
compute power of the chip available 
to applications at nearly all times. If the 
OS provides appropriate preemption 
and thread prioritization capabilities, it 
can also help the application designer 
ensure that CPU cycles go to the 
application that needs them the most.

In the control plane scenario in  
Figure 5, SMP allows all of the threads 
in the various processes to run on any 
core. For instance, the command-line 
interface (CLI) process can run at the 
same time that the routing application 
performs a compute-intensive 
calculation. 

Once designed, a process can run 
equally well on a single-core, dual-core, 
or N-core system, the only potential 
change being the number of threads 
that the application needs to create 
to maximize performance. In full SMP 
mode, an RTOS like QNX Neutrino 
will schedule the highest-priority ready 
thread to execute on the first available 
CPU core. As a result, application 
threads can utilize the full extent of 
available CPU power rather than being 
restricted to a single CPU.

Figure 5: SMP Multicore SystemSMP Multicore System
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Bound Multiprocessing 
(BMP) Mode
BMP, an approach pioneered by 
QNX Software Systems, offers the 
benefits of SMP’s transparent resource 
management, but gives designers the 
ability to lock any application (and all 
of its threads) to a specific core to 
help migrate uniprocessor code to a 
multicore environment.

As with SMP, a single copy of the 
OS maintains an overall view of all 
system resources, allowing them to 
be dynamically allocated and shared 
among applications. But, during 
application initialization, a setting 
determined by the system designer 
forces all of an application’s threads to 
execute only on a specified core.

Compared to full, floating SMP 
operation, BMP offers several 
advantages.

•	 Allows	legacy	applications	written	
for uniprocessor environments to run 
correctly in a concurrent multicore 
environment, without modifications

•	 Eliminates	the	processor-cache	
“thrashing” that can sometimes 
reduce performance in an SMP 
system

•	 Enables	simpler	application	
debugging than traditional SMP by 
running all execution threads within  
an application on a single core

•	 Supports	simultaneous	BMP	and	
SMP operation, allowing legacy 
applications to coexist with 
applications that take full advantage 
of parallelism of multicore hardware

In the example shown in Figure 6, a 
BMP system is running in half-duplex 
mode. A receive process with multiple 
threads runs on core 0 and a transmit 
process, also with multiple threads, runs 
on core 1. As in SMP, the OS is fully 
aware of what all the cores are doing, 
making operational and performance 
information for the system as a whole 
readily available. This approach spares 
developers the onerous task of having 
to gather information from each of the 
cores separately and then somehow 
combining that information for analysis.

In the example shown in Figure 7, 
control plane applications (command-
line interface; operations, administration, 
and maintenance; data plane 
management) run on core 0, while data 
plane ingress and egress applications 
run on core 1. Developers can easily 
implement the IPC for this scenario, 
using either local OS mechanisms  
or synchronized protected shared 
memory structures.

A Solid Foundation
Making the leap to multicore processors 
may seem daunting at first, but the 
benefits can far outweigh any potential 
misgivings. The choice of hardware 
and software is not to be taken lightly 
and may dictate many design decisions 
and ultimately the success of the 
project. Selecting an OS that supports 
processing models which allow for 
both migration of legacy code and full 
symmetric operation while minimizing 
complexity provides a solid foundation 
on which to build new products. Tools 
play a key role as well. The ability to 
visualize thread-level interaction, CPU 
utilization and other key variables across 
multiple cores provides the developer 
with a white-box view into system 
operation.

QNX Software Systems and 
Freescale have jointly supported 
many development programs using 
multiprocessing in their products. 
Starting more than 10 years ago with 
dual MPC744x processors combined 
with a discrete SMP system controller to 
the latest QorIQ processors, QNX and 
Freescale have been at the forefront of 
multicore development. 

Figure 6: Using BMP for Half-Duplex Mode
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