
92

Introduction
Multicore processors have become
mainstream, introducing advanced levels
of performance to servers, desktops,
netbooks and even the latest generation
of tablets. The potential benefits for
embedded systems are even greater.
Networking elements, medical
devices and defense and aerospace
applications are all growing in
complexity and demanding ever-
increasing computational power.
At the same time, many of these
systems must continue to address
the thermal dissipation and low power
constraints inherent to embedded
devices. Freescale QorIQ processors
directly address these requirements
by providing much better processing
capacity per watt and per square
inch than conventional single-core
processors.

Multicore processors such as Freescale
QorIQ platforms are, in effect,
multiprocessing systems-on-chip (SoC).
Many Freescale SoCs have separate
L1 and L2 caches per core, but use a
shared L3 cache, memory subsystem,
interrupt subsystem and peripherals.
To take advantage of these processors,
embedded developers must graduate
from a serial execution model, where
software tasks take turns running on a
single processor, to a parallel execution
model, where multiple software tasks
can run simultaneously. The more
parallelism developers can achieve,
the better their multicore systems will
perform.

To address these challenges, developers
must find tools that can analyze the
complex system-level behavior that
occurs in a multicore chip. At any
instant, threads can be migrating across
cores, communicating with threads
on other cores or sharing resources
with threads on other cores —complex
interactions that conventional debug
tools were never designed to analyze.

Fortunately, vendors such as QNX
Software Systems have introduced
system tracing tools that provide
a comprehensive view of multicore
behavior, allowing the developer to
visualize interactions between cores
and eliminate a variety of performance
bottlenecks. Using the information that
these tools generate, the developer can
reduce resource contention, optimize
thread migration, identify opportunities
for parallelism and achieve maximum
utilization of every processor core.

Multiprocessing Modes and
the Role of the OS
Developers must also choose the
appropriate form of multiprocessing
for their application requirements. This
choice will determine how easily both
new and existing code can achieve
maximum concurrency. As Table 1
illustrates, developers have three basic
forms to choose from: Asymmetric
multiprocessing (AMP), symmetric
multiprocessing (SMP) and bound
multiprocessing (BMP).

Running AMP, SMP or BMP Mode
for Multicore Embedded Systems
QNX Software Systems

 Table 1: Three Approaches to Multiprocessing
Model How it Works Key Advantages

Asymmetric
multipro-
cessing
(AMP)

A separate OS, or a separate copy
of the same OS, manages each
core. Typically, each software
process is locked to a single core
(e.g. process A runs only on core
1, process B runs only on core 2,
etc.).

Provides an execution environment similar
to that of uniprocessor systems, allowing
simple migration of legacy code. Also
allows developers to manage each core
independently.

Symmetric
multipro-
cessing
(SMP)

A single OS manages all processor
cores simultaneously. The OS can
dynamically schedule any process
on any core, enabling full utilization
of all cores.

Provides greater scalability and parallelism
than AMP, along with simpler shared
resource management.

Bound mul-
tiprocessing
(BMP)

A single OS manages all cores
simultaneously. As in SMP, the
OS can dynamically schedule
processes on any core. However,
the developer can also lock any
process (and all of its associated
threads) to a specific core.

Combines the developer control of AMP
with the transparent resource management
of SMP. The option to lock threads to any
core simplifies migration of legacy code
and allows designers to dedicate cores to
specific operations.

Enablement

93freescale.com

Beyond Bits Power Architecture Edition

Asymmetric Multiprocessing
(AMP)
AMP provides an execution environment
similar to that of conventional
uniprocessor systems, which most
developers already know and
understand. Consequently, it offers a
relatively straightforward path for porting
legacy code. It also provides a direct
mechanism for controlling how the CPU
cores are used. And, in most cases,
it lets developers work with standard
debugging tools and techniques.

AMP can be either homogeneous,
where each core runs the same type
and version of OS, or heterogeneous,
where each core runs either a different
OS or a different version of the same
OS. In a homogeneous environment,
developers can make best use of the
multiple cores by choosing an OS that
offers a distributed programming model,
such as the QNX® Neutrino® RTOS.
Properly implemented, the model will
allow applications running on one core
to communicate transparently with
applications and system services (e.g.
device drivers, protocol stacks) on
other cores, but without the high CPU
utilization imposed by traditional forms
of interprocessor communication.

A heterogeneous environment has
somewhat different requirements.
In this case, the developer must
either implement a proprietary
communications scheme or choose two
OSs that share a common infrastructure
(likely IP based) for interprocessor
communications. To help avoid resource
conflicts, the OSs should also provide
standardized mechanisms for accessing
shared hardware components. In
virtually all cases, OS support for a
lean and easy-to-use communications
protocol will greatly enhance core-to-
core operation. In particular, an OS
built with the distributed programming
paradigm in mind can take greater
advantage of the parallelism provided by
the multiple cores.

In the homogenous example shown
in Figure 1, one core of the P2020
processor handles ingress traffic from
a hardware interface while the other
handles the egress traffic. Because
the traffic exists as two independent
streams, the two cores don’t need
to communicate or share data with
each other. As a result, the OS doesn’t
have to provide core-to-core IPC. It
must, however, provide the real-time
performance needed to manage the
traffic flows.

Figure 2 shows another homogenous
example, but this time both e500
cores implement a distributed control
plane, with each core handling different
aspects of a data plane. To control
the data plane correctly, applications
running on the multiple cores must
function in a coordinated fashion. To
enable this coordination, the OS should
provide strong IPC support, such as a
shared memory infrastructure for routing
table information.

In the heterogeneous example shown
in Figure 3, one core implements the
control plane, while the other handles
all the data plane traffic, which has real-
time performance requirements. In this
case, the OSs running on the two cores
both need to provide a consistent IPC
mechanism, such as the transparent
inter-process communication (TIPC)
protocol, that allows the cores to
communicate efficiently, possibly
through shared data structures.

In virtually all cases, OS support for a
lean and easy-to-use communications
protocol will greatly enhance core-to-
core operation. In particular, an OS
built with the distributed programming
paradigm in mind can take greater
advantage of the parallelism provided by
the multiple cores.

Figure 1: Using
Homogenous AMP to
Handle Both Ingress and
Egress Traffic

Figure 3: AMP Control/Data
Plane

Figure 2: Using
Homogenous AMP to
Implement a Distributed
Control Plane

AMP Control/Data Plane

Control Plane/Data Plane

QNX Neutrino

Core 1

Linux IPC

Core 0

Homogenous AMP

Distributed Control Plane

QNX Neutrino

Data Plane Hardware

Core 1

IPC

Core 0

QNX Neutrino

Homogenous AMP: Ingress and Egress Traffic

Data Plane (Half-Duplex Mode)

Core 0

QNX Neutrino QNX Neutrino

Core 1

94

Enablement

CPU Utilization in
AMP Mode
In AMP mode, a process and all of its
threads are locked to a single processor
core. While this approach is useful for
running legacy code, it can result in
underutilization of processor cores.
For instance, if one core becomes
busy, applications running on that
core cannot, in most cases, migrate
to a core that has more CPU cycles
available (refer Figure 4). Though such
dynamic migration is possible, it typically
involves complex checkpointing of the
application’s state and can result in a
service interruption while the application
is stopped on one core and restarted on
another. This migration becomes even
more difficult, if not impossible, if the
cores use different OSs.

Symmetric Multiprocessing
(SMP) Mode
Allocating resources in a multicore
design can be difficult, especially when
multiple software components are
unaware of how other components
are employing those resources. SMP
addresses many of the issues by
running only one copy of an OS across
all the chip’s cores. Because the OS
has insight into all system elements
at all times, it can allocate resources
on multiple cores with little or no input
from the application designer. By
running only one copy of the OS, SMP
can dynamically allocate resources
to specific applications rather than to
CPU cores, thereby enabling greater
utilization of available processing power.

Figure 4: AMP Multicore SystemAMP Multicore System

Apps Apps Apps Apps

OS 1 OS 2 OS 3 OS 4

CPU

I/O I/O I/O I/O

CPU CPU CPU

OS 1 Memory

OS 2 Memory

OS 3 Memory

OS 4 Memory

Shared Memory

System Interconnect

Memory Controller

User management
of shared resources
complicates design

95freescale.com

Beyond Bits Power Architecture Edition

Because a single OS controls every
core, all intercore IPC is local. This
reduces the memory footprint and
improves performance dramatically
as the system no longer needs
a heavy networking protocol to
implement communication between
applications running on different cores.
Communication and synchronization
can take the simple form of POSIX
primitives (e.g. semaphores) or a native
lightweight local-transport capability
such as QNX distributed processing.

A single instance of the OS across
all cores simplifies optimization and
debugging. Visualization tools such
as the system profiler in the QNX
Momentics® Tool Suite can track
thread migration from core to core,
scheduling events, application-to-
application messaging, CPU utilization
and other events, all with high-resolution
timestamping.

A well-designed SMP OS such as the
QNX Neutrino RTOS allows the threads
of execution within an application to
run concurrently on any core. This
concurrency makes the majority of the
compute power of the chip available
to applications at nearly all times. If the
OS provides appropriate preemption
and thread prioritization capabilities, it
can also help the application designer
ensure that CPU cycles go to the
application that needs them the most.

In the control plane scenario in
Figure 5, SMP allows all of the threads
in the various processes to run on any
core. For instance, the command-line
interface (CLI) process can run at the
same time that the routing application
performs a compute-intensive
calculation.

Once designed, a process can run
equally well on a single-core, dual-core,
or N-core system, the only potential
change being the number of threads
that the application needs to create
to maximize performance. In full SMP
mode, an RTOS like QNX Neutrino
will schedule the highest-priority ready
thread to execute on the first available
CPU core. As a result, application
threads can utilize the full extent of
available CPU power rather than being
restricted to a single CPU.

Figure 5: SMP Multicore SystemSMP Multicore System

Applications

OS

CPU

I/O I/O I/O I/O

CPU CPU CPU

OS 1 Memory

System Interconnect

Memory Controller

OS transparently manages all
resource sharing and arbitration issues.

96

Enablement

Bound Multiprocessing
(BMP) Mode
BMP, an approach pioneered by
QNX Software Systems, offers the
benefits of SMP’s transparent resource
management, but gives designers the
ability to lock any application (and all
of its threads) to a specific core to
help migrate uniprocessor code to a
multicore environment.

As with SMP, a single copy of the
OS maintains an overall view of all
system resources, allowing them to
be dynamically allocated and shared
among applications. But, during
application initialization, a setting
determined by the system designer
forces all of an application’s threads to
execute only on a specified core.

Compared to full, floating SMP
operation, BMP offers several
advantages.

•	 Allows	legacy	applications	written	
for uniprocessor environments to run
correctly in a concurrent multicore
environment, without modifications

•	 Eliminates	the	processor-cache	
“thrashing” that can sometimes
reduce performance in an SMP
system

•	 Enables	simpler	application	
debugging than traditional SMP by
running all execution threads within
an application on a single core

•	 Supports	simultaneous	BMP	and	
SMP operation, allowing legacy
applications to coexist with
applications that take full advantage
of parallelism of multicore hardware

In the example shown in Figure 6, a
BMP system is running in half-duplex
mode. A receive process with multiple
threads runs on core 0 and a transmit
process, also with multiple threads, runs
on core 1. As in SMP, the OS is fully
aware of what all the cores are doing,
making operational and performance
information for the system as a whole
readily available. This approach spares
developers the onerous task of having
to gather information from each of the
cores separately and then somehow
combining that information for analysis.

In the example shown in Figure 7,
control plane applications (command-
line interface; operations, administration,
and maintenance; data plane
management) run on core 0, while data
plane ingress and egress applications
run on core 1. Developers can easily
implement the IPC for this scenario,
using either local OS mechanisms
or synchronized protected shared
memory structures.

A Solid Foundation
Making the leap to multicore processors
may seem daunting at first, but the
benefits can far outweigh any potential
misgivings. The choice of hardware
and software is not to be taken lightly
and may dictate many design decisions
and ultimately the success of the
project. Selecting an OS that supports
processing models which allow for
both migration of legacy code and full
symmetric operation while minimizing
complexity provides a solid foundation
on which to build new products. Tools
play a key role as well. The ability to
visualize thread-level interaction, CPU
utilization and other key variables across
multiple cores provides the developer
with a white-box view into system
operation.

QNX Software Systems and
Freescale have jointly supported
many development programs using
multiprocessing in their products.
Starting more than 10 years ago with
dual MPC744x processors combined
with a discrete SMP system controller to
the latest QorIQ processors, QNX and
Freescale have been at the forefront of
multicore development.

Figure 6: Using BMP for Half-Duplex Mode

BMP for Control-Plane/Data-Plane Operations

Control Plane/Data Plane

CLI (Core 0)

OAM (Core 0)

DPM (Core 0)

Rx (Core 1)

Tx (Core 1)

QNX Neutrino (single copy)

Core 1Core 0

Using BMP for Half-Duplex Mode

Rx (Core 0) Tx (Core 1)
QNX Neutrino (single copy)

Core 1Core 0

Data Plane (Half-Duplex Mode)

Figure 7: Using BMP for Both Control-Plane and
Data-Plane Operations

Home Page:
freescale.com

Power Architecture
Portfolio Information:
freescale.com/power

e-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675 2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright license granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

How to Reach Us:

Beyond Bits Power Architecture Edition

For more information, visit freescale.com/power
Freescale, the Freescale logo and QorIQ are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks licensed by Power.org.
All other product or service names are the property of their respective owners.
© 2012 Freescale Semiconductor, Inc.

Document Number: PWRARBYNDBITSRAS REV 0

