
88

Introduction
Multicore devices are now widespread
and are used in many different market
areas. They are not new, of course—
they have been around for decades
as single cores per board which were
then put into racks, through multiple
individual cores on a board, to multiple
cores on a die. What has changed
in recent years is the rise—and tight
integration—of homogeneous general
purpose processors. Homogeneous
systems are ones where identical
processors are implemented. With
the Freescale QorIQ P series of
processors, ranging from the single
e500 core P1010 to eight e500 cores
in the P4080, there is a vast range of
programming methods.

This article will look at different aspects
of programming the multicore versions
of the QorIQ processor family with
specific emphasis on asymmetric
multiprocessing (AMP), and present
a few examples of where this can be
a hard requirement with the P1022
processor as an example.

System Software
Many system designers will use
these processors in symmetric
multiprocessing (SMP) mode. In an SMP
system, one copy of a single operating
system (OS) runs across multiple
identical cores. Application threads are
scheduled across these cores by the
OS to make the best use of available
horsepower.

In an AMP system, each core executes
its own instance of an operating system
as if it were running in a single-core
environment.

A system can be a combination of SMP
and AMP, executing the same instance
of an operating system across some
of the multiple cores, and a separate
instance of one or more operating
systems on additional cores. Such a
hybrid system is beyond the scope of
this article.

Within a multicore system, the
processor cores usually communicate
with each other and pass data back and
forth. This is done using some form of
inter process communication (IPC).

Symmetric
Multiprocessing (SMP)
Mentor® Embedded Linux® and all
QorIQ multicore products support
SMP mode. This software reference
architecture from Mentor Graphics
is one of the most basic software
architectures for Linux OS. Mentor
Embedded Linux programmers
can, with simple configuration files,
instantly utilize an effective SMP Linux
configuration which will utilize the
entire CPU in the Freescale system-
on-chip (SoC) with a single operating
system running across the cores.
Unless there are specific affinity
requirements within the programmers

view, the operating system takes care
of all the housekeeping tasks and
allocates individual tasks and threads
to an appropriate core during run time.
SMP systems are used to boost the
processing power of a system and also
have the flexibility to load share across
the processors, allowing maximum
advantage of the power-saving features
to be utilized when appropriate.
Figure 1 shows a simple diagram of
an SMP system.

Asymmetric
Multiprocessing (AMP)
In an AMP system, each core executes
its own instance of an operating system
as if it were running within a single
core environment. The cores may
be homogeneous (as in the case of
P1022), but an AMP system can equally
cope with heterogeneous processors
where the processor architectures may
be diverse to meet the demands of
the overall system. An example of this
is the QorIQ P1022 processor running
Android™ OS on one core and Mentor
Embedded Linux OS on another core.
Freescale’s QorIQ dual- and multicore
processors all support this mode of
operation.

Figure 2: A Simple
AMP SystemA Simple AMP system

Core A

Linux® OS

Core B

RTOS
IPC

Figure 1: A Simple
SMP SystemA Simple SMP system

Core A
Linux® OS

Core B

Mentor Graphics Contributed Article

Communicating Efficiently between
QorIQ Cores in Medical Applications

Enablement

89freescale.com

Beyond Bits Power Architecture Edition

The choice of OS for each core
is determined by the function and
performance that each core has to
perform. It’s highly likely that multiple
operating systems may be selected.
There could be a requirement for rich
OS on one core and OS with hard real
time and determinism capability on
another core. Security and certification
also play a part in which OS runs on
which core. Figure 2 shows a simple
diagram of an AMP system with IPC
between core A and core B.

Inter Process
Communication (IPC)
For SMP systems, IPC is handled by
the OS. In AMP, although each core
executes independently, at some point
applications running on the different
cores will need to exchange data. An
example of this scenario is a system
in which one core executes Linux
OS on the control plane to provide
a sophisticated user interface (UI) to
capture user input while the other core
executes an embedded RTOS on the
data plane for deterministic activities.
The Linux core passes user input to
the RTOS core for processing, which
then passes back the result of some
execution. It is crucial to select an IPC
suitable for the final system design that
is supported by each OS.

The IPC, therefore, should be able to
operate on different cores and also on
different operating systems. There are
multiple ways of implementing IPC.
Roll your own with shared memory is
popular so that the IPC exactly matches
both the hardware and software
requirements of the system, but this
can suffer from scalability limitations.
TIPC, Linx, TCP/IP and RPC are other
methods which have their pros and
cons, however here we will look in a bit
more detail at multicore communications
API (MCAPI). This is an API defined
by a consortium of interested parties
including silicon vendors such as
Freescale, and software vendors.

Multicore Communications
API (MCAPI)
First released in 2008, MCAPI was
developed by a group of industry
professionals under the umbrella of
The Multicore Association™. MCAPI is
not a protocol, but an API only. It was
designed for IPC within tightly coupled
systems as a lightweight alternative
to more complex solutions. MCAPI
partitions communicating units into
nodes and further groups nodes into
domains. The definition of a node and
scope of a domain are implementation-
defined to provide greater flexibility
to the system designer. Nodes and
domains are assigned unique identifiers
by the application at initialization. Nodes
communicate across ports, using
handles called endpoints which are
assigned by MCAPI, and are unique
to the node. Endpoints are addressed
hierarchically via <domain, node, port>.

MCAPI offers a lot of flexibility for the
transfer of data. Broadly, there are
three options:

•	 Messages are datagrams—chunks
of data—sent from one endpoint to
another. No connection needs to
be established to send a message.
This is the most flexible form of
communication, like User Datagram
Protocol (UDP) in networking, where
senders and receivers may be
changing along with priorities.

•	 A packet channel is a first-in, first-out,
unidirectional stream of variable-sized
data packets, sent from one endpoint
to another, after a connection has
been established.

•	 A scalar channel is similar to a packet
channel, but processes single words
of data, where a word may be 8, 16,
32, or 64 bits of data.

MCAPI does not define the protocol,
this is left to the implementer. As a
result, there is no expectation that
one vendor’s MCAPI implementation
will interoperate with another’s, even if
they both fully comply with the MCAPI
specification. To address this issue,
OpenMCAPI was created. This is a
complete, open source implementation
of MCAPI for Linux OS, which is
designed for easy portability to other
systems. It may be obtained from
openmcapi.org at no charge.

90

Enablement

Figure 4: Example Implementation in AMP Configuration

Figure 3: Aggregator for Medical Applications Using the QorIQ P1022 Processor

Aggregator for Medical Applications

ISO
IEEE®

USB
Bluetooth®

ZigBee®

IHE
HL7
W3C

IHE
HL7

Personal Devices Aggregation
Manager

Telehealth
Service Center

Health
Records

Thermometer

Pulse Oximeter

Pulse/Blood
Pressure

Weight Scale

Glucose Meter

Cardio/Strength

Independent Living
Activity

Peak Flow

Medication
Adherence

Insulin Pump

HRNPAN WAN

TELEHEALTH

HOME AUTOMATION

Freescale Technology Wireless ConnectionWired Connection

HHH Panic Alarm
MC12311

Nonin Pulse Ox
MC9S08GP32

Blood Glucose
Meter

Blood Pressure
Monitor

Weight
Scale

Thermometer

868 MHz RF

Ethernet

Bluetooth®
HDP

Bluetooth
SPP

Bluetooth
Low Energy

USB
PHDC

Expansion
Capabilities

Smart Plugs
Smart Appliances
Safety/Security
Lighting Control

Local Display

i.MX53 Tablet
with Medical

User Interface
Physician

Monitoring Center,
Loved One’s

Social Network

Home Health Hub Reference Platform Demonstration

Data Aggregator
Based on the

QorIQ P1022RDK

Health
Care

91freescale.com

Beyond Bits Power Architecture Edition

Example Implementation:
Aggregator for Medical
Applications
There is an emerging breed of devices
in the medical and telehealth markets
where there are diverse requirements
put upon the system, especially from a
software point of view. There are two
primary use cases for data aggregators
in the medical market. One use case
is the clinical or hospital setting, where
one might aggregate multiple patient
statistics reads to a central location.
The other primary use case is the home
telehealth gateway, which provides
remotely monitored statistics about a
patient from the comfort of their home
to the primary caretaker or potentially to
a doctor’s office.

Figure 3 shows a data aggregator
without a UI in an AMP configuration
using the QorIQ P1022 RDK.
This example depicts a hospital-
like environment where no patient
interaction is required.

Figure 4 shows the Continua Health
Alliance view of this area where the
aggregation manager is a device with
a graphical user interface (GUI) that
gathers information from sensors
such as weighing scales, glucose
meters, etc., stores it and then makes
it available on request to a doctor,
service provider or the actual user.
The home-based aggregators are
becoming more like full-featured smart
phones from a user perspective, simple
enough to be used by anyone, including
those with disabilities or even those

who are not technically inclined. The
device should not appear as a medical
device, but rather as a useful tool to
be used in other aspects of one’s life.
Consequently, such a device would
have an OS like Linux or Android
running on it. A simple-to-navigate
GUI based on Android can provide the
ease of use needed for this telehealth
gateway.

Since vital information is shared over IP
networks, security within the system is
critical. Freescale’s QorIQ processors,
along with Mentor Embedded Linux
OS, provide a secure connection
through which patient statistics can
be transmitted. The addition of trust
architecture to the QorIQ platforms
protects the aggregators from attack
or tamper.

Using a dual OS system provides this
separation. An open OS is used for the
user interface and also the connection
to the external network through Wi-Fi®,
cable, etc. The other OS needs the size
kept to a minimum to make certification
through FDA easier and therefore less
costly. Security and integrity of data can
be guaranteed by having the right IPC
communication defined across the OS
interfaces.

There are many other diverse application
areas, such as printing for example,
where the same logic is applicable.

Dual OS systems can be implemented
on a single processor core using
virtualization. However, using a dual-
core device such as the P1022 delivers
an optimized approach.

Conclusion
For many applications, it is useful to
select a different operating system for
each core, depending on the functions
that the core is performing. If it is
real time, then a conventional RTOS
makes sense; for other purposes, Linux
or Android may be a good choice.
Example applications, where a multi-OS
approach is optimal, include numerous
medical applications as well as high
performance network printers. These
systems are characterized by their
need for real-time functionality, a user
interface and extensive networking
capabilities.

The software architecture may be SMP,
where a single OS is run across all the
cores, or AMP, where each core runs its
own OS. When AMP is employed, a key
issue is inter-core communication and
MCAPI provides a proven, standardized
method to address this matter. In either
case, Freescale QorIQ devices offer
great flexibility to the hardware and
software developer.

The registered trademark Linux® is used pursuant to a
sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a worldwide basis.

Home Page:
freescale.com

Power Architecture
Portfolio Information:
freescale.com/power

e-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675 2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright license granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

How to Reach Us:

Beyond Bits Power Architecture Edition

For more information, visit freescale.com/power
Freescale, the Freescale logo and QorIQ are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks licensed by Power.org.
All other product or service names are the property of their respective owners.
© 2012 Freescale Semiconductor, Inc.

Document Number: PWRARBYNDBITSCE REV 0

