

Multiple Image Support on JN51xx
Application Note

JN-AN-1228

Revision 1.1

11-Nov-2016

 Multiple Image Support on JN51xx
Application Note

2 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

Contents
About this Application Note 3

Organisation 3
Related Documents 3
Support Resources 3
Trademarks 3

1 Multiple Applications in JN51xx Internal Flash 4
1.1 Switching between Applications Using the App ID 4
1.2 Invalidating Application Headers 4
1.3 Limitations 4

2 Using the Application ID 5
2.1 Allowing Different Application IDs 5
2.2 Specifying an Application ID 6
2.3 Building and Running the Demonstration 7

2.3.1 Details of the Test Application 7
2.3.2 Building the Applications 8
2.3.3 Merging the Applications into a Single Image 8
2.3.4 Loading and Running the Image 9

3 Using Application Header Validation 10
3.1 Header Format 10
3.2 Building and Running the Demonstration 11

3.2.1 Details of the Test Application 11
3.2.2 Building the Application 12
3.2.3 Merging Multiple Applications into a Single Image 12
3.2.4 Loading and Running the Image 13

4 Miscellaneous Topics 15
4.1 Application Compatibility 15
4.2 Importing and Building in BeyondStudio 15

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 3

About this Application Note
The NXP JN516x wireless microcontrollers are capable of running multiple
applications in internal Flash memory. This Application Note demonstrates two
methods that can be used to improve production tests and calibration, or simply
run one of two stored applications based upon a DIO value at start-up.

This document makes reference to test applications, BootTestApp and
ValidateImage, which are supplied in the Application Note package.

Organisation
This manual consists of four chapters, as follows:

• Chapter 1 introduces the concepts for using multiple JN51xx images.

• Chapter 2 describes the approach of using the Application ID of the image
to select the image to run.

• Chapter 3 details the approach of using application headers to select the
image to run.

• Chapter 4 lists the compatible NXP hardware and software, and describes
the use of BeyondStudio to build an application

Related Documents
JN-UG-3087 JN516x Integrated Peripherals API User Guide

JN-AN-1003 Boot Loader Operation Application Note

Support Resources
To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:

www.nxp.com/products/interface-and-connectivity/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

Trademarks
All trademarks are the property of their respective owners.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity

 Multiple Image Support on JN51xx
Application Note

4 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

1 Multiple Applications in JN51xx Internal Flash
The JN516x internal Flash memory is divided into 32Kbyte sectors. The JN516x
bootloader checks for valid images that start in any of the sectors. If one is
found, the Flash is remapped so that the sector in which the image begins is
designated as Sector 0 starting at address 0, and any subsequent sectors
occupied by the image are numbered contiguously (1, 2,…). Any sectors not
occupied by the image are not remapped. After the remapping, the image is run.

Here we demonstrate two methods for switching between applications in internal
Flash memory.

1.1 Switching between Applications Using the App ID
The first approach is to use a function in the bootloader called
VLoadBootImage(uint16 u16AppID) that can be used to execute
applications that are compiled with a particular Application ID. The advantage of
this approach is that no internal Flash memory is reprogrammed when switching
between the applications and both applications are still valid in Flash and can be
restarted later. This approach is described further in Chapter 2.

1.2 Invalidating Application Headers
The second approach invalidates (by setting to 0xFF) the headers of the
applications that are not required. This means that only the application with a
valid header will run. Once this application has run and is no longer required
(e.g. a production test or factory calibration application), the header for the main
application can be validated (header reprogrammed with valid data) while the
current application is invalidated (header reprogrammed to zero), and the device
is restarted. Without erasing the sector, it is then no longer possible to run the
original test application. This approach is described further in Chapter 3.

1.3 Limitations
When starting from power-up or reset, one image must have a valid header and
an Application ID of zero. Otherwise, the bootloader will check for valid images in
external Flash memory and reprogram the internal Flash memory if it finds one.
Failing this, the bootloader will enter programming mode.

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 5

2 Using the Application ID
This chapter describes how an Application ID can be used to dictate which
application the JN516x bootloader will run from multiple applications stored in
JN516x internal Flash memory.

2.1 Allowing Different Application IDs
In the JN516x bootloader, there is a function with the following prototype:

VLoadBootImage(uint16 u16AppID)

This function can be called to execute an image with a specified Application ID
(u16AppID). The function is not in a fixed location, but depends on the
bootloader version that is running. For the current production JN516x devices,
the bootloader version number and the address of the function in boot Flash are
given below.

Device Firmware Version (Hex) Address (Hex)

JN5161, JN5164, JN5168 0x00080006 0x09E3

JN5169 0x000B0002 0x1A76

In order to build images with different Application IDs, a change is required to the
AppBuildStart.ld file that is located in the following folder within the JN516x
Software Developer’s Kit (SDK) installation:

C:\NXP\bstudio_nxp\sdk\<SdkVersion>\Chip\<ChipVersion>
The change is to define a variable called _application_id and then replace
SHORT(0x0000) with SHORT(_application_id) as shown below. Updated
versions of these files are include in the Application Note package.

/* Set minimum heap size unless it is already set from App_Stack_Size.ld */
_minimum_heap_size = DEFINED(_minimum_heap_size) ? _minimum_heap_size : 3350;
_application_id = DEFINED(_application_id) ? _application_id : 0;

_SwConfig = (DEFINED(g_bSWConf_Debug)) |
(DEFINED(g_bSWConf_AltDebugPort)<<1);

MEMORY
{
 flash : ORIGIN = 0x00080000, LENGTH = 0x80000
 ram : ORIGIN = 0x0400004c, LENGTH = 0x07fb4
}

/* Now building all code at once, so include vectors. MAC address is
embedded
 in build for now */
SECTIONS
{
 .version ABSOLUTE(ORIGIN(flash)-4):
 {
 /*
 000b - Chip Type 5169
 03 - 32K Ram
 0f - 512K Flash

 Multiple Image Support on JN51xx
Application Note

6 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

 */
 LONG(0x0f03000b)
 } > flash

 .bir ABSOLUTE(ORIGIN(flash)):
 {
 _flash_start = ABSOLUTE(.);
 _flash_beg = ABSOLUTE(.);
 /* Magic number */
 LONG(0x12345678)
 LONG(0x11223344)
 LONG(0x55667788)

 /* Configuration A (32K, DRE, 16MHz) */
 BYTE(0x08)

 /* Configuration B (version 1) */
 BYTE(0x01)

 /* Application ID */
 SHORT(_application_id)
 } > flash

 .flashheader :
 {
 /* Encryption IV */
 LONG(0x00000000)
 LONG(0x00000000)
 LONG(0x00000000)
 SHORT(0x0000)

2.2 Specifying an Application ID

 Note: This has already been done in the test application.

To change the Application ID in an image, modify the application makefile to
define _application_id when linking:
Define the _application_id for the correct value when linking
LDFLAGS += -Wl,--defsym,_application_id=$(APP_ID)

To define the function, modify the makefile to create a function name that points
to the correct address in the bootloader.

#Define the vLoadBootImage function call in the Bootloader
ifeq ($(JENNIC_CHIP),JN5168)
LDFLAGS += -Wl,--defsym,vLoadBootImage=0x000009e3
endif
ifeq ($(JENNIC_CHIP),JN5164)
LDFLAGS += -Wl,--defsym,vLoadBootImage=0x000009e3
endif
ifeq ($(JENNIC_CHIP),JN5161)
LDFLAGS += -Wl,--defsym,vLoadBootImage=0x000009e3
endif
ifeq ($(JENNIC_CHIP),JN5169)
LDFLAGS += -Wl,--defsym,vLoadBootImage=0x00001a76
endif

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 7

2.3 Building and Running the Demonstration
To run the test application, BootTestApp, supplied in this Application Note, you
must modify the AppBuildStart.ld file as described in Sections 2.1 and 2.2.

The rest of this section describes how to build and load a JN516x image
containing two instances of the test application with different Application IDs, 0
and 1. On start-up of the JN516x device, the bootloader will always run the
application with an Application ID of 0. Once running, the test application will
itself switch execution to the application with an Application ID of 1.

2.3.1 Details of the Test Application
BootTestApp is a simple test application that:

1. Prints out text indicating which version of the code is running (derived
from the Application ID)

2. Adds a delay (to make the text readable)

3. Calls vBootImage() with the other Application ID to restart with the
corresponding application.

The main body of the code is shown below:
#if IMAGE_ID==0
 vPrintf("Running Boot Image 0\n\n");
 AppID = 1;
#elif IMAGE_ID==1
 vPrintf("Running Boot Image 1\n\n");
 AppID = 0;
#else
#pragma message "* Application ID not defined *"
#endif

 // Add a delay
 for (u32ctr=0;u32ctr<500000; u32ctr++);

 // Run the other application
 vLoadBootImage(AppID);

 // should never get here
 while(1);

 Multiple Image Support on JN51xx
Application Note

8 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

2.3.2 Building the Applications
The application can be built with an Application ID of 0 or 1. The application can
also be built for either the JN5168 or JN5169 device. Combinations of these
build options are listed as options 1 to 4 in the BeyondStudio project (shown
below).

Therefore build two applications for the same chip (see Section 4.2), one with an
Application ID of 0 and one with an Application ID of 1.

2.3.3 Merging the Applications into a Single Image
You have produced two different binary files (or images) that can be individually
programmed into the JN516x internal Flash memory. However, in this case you
need to combine the two images into a single image to be programmed into
Flash memory. To do this, you can use a utility called ImageMerge that is
included with this Application Note package. When using ImageMerge, specify
–a <filename> to –h <filename> to define the order of the images
(with -a specifying the first image) in the final output file. The final output file is
specified with –o. For example:
ImageMerge -a BootTestApp_JN5168_ID0.bin -b BootTestApp_JN5168_ID1.bin
-o BootTestApp_JN5168_ID0and1.bin

This utility can be called by using build option 5 (for JN5168) or option 6 (for
JN5169) in the BeyondStudio project to create the final output file
(BootTestApp_JN5168_ID0and1.bin).

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 9

2.3.4 Loading and Running the Image
The image can be programmed into the JN516x device using the Flash
programmer within BeyondStudio, as describe in the BeyondStudio for NXP
Installation and User Guide (JN-UG-3098). This requires a serial connection to be
established between the development PC and a board hosting the target JN516x
device. You must also set up a terminal window (such as Tera Term) associate
with this serial connection on the PC, in order to display messages received from
the JN516x device.

Once loaded, the application will automatically run and the following output will be
displayed in the terminal window:

 Multiple Image Support on JN51xx
Application Note

10 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

3 Using Application Header Validation
This chapter describes how application headers can be used to dictate which
application the JN516x bootloader will run from multiple applications stored in
JN516x internal Flash memory.

3.1 Header Format
Each application built for the JN516x devices has a header that provides details
about the image to the bootloader, including:

• Where the entry points for AppColdStart() and AppWarmStart() are
located

• The size of the application in Flash

• The size of the RAM segment that contains pre-initialised variables (these
are copied by the bootloader into RAM)

• The size of the BSS segment (this is an area of RAM that needs to be pre-
initialised to zero - the bootloader will do this initialisation before executing
the application)

• The Application ID

• “Magic Bytes” that define the header as being valid, invalid or blank – this
value comprises four bytes as follows:

 0xFF is used to indicate a blank header corresponding to an application
instance that has not yet been run - an unused application

 0x00 is used to indicate an invalid header corresponding to an
application instance that cannot be run – an already used application

 A pre-defined value is used to indicate a valid header corresponding to
the application instance that is currently running - the active application

The supplied ValidateImage application tests these headers at the beginning of
each Flash sector to assess which sectors contain unused images.

Once the bootloader has established that an unused image is available in
JN516x internal Flash memory, it will remap the addresses in Flash if necessary
(to ensure that when running the application, the address map starts from zero,
as this is how the image will have been built). If an image uses multiple sectors
then all the sectors used are remapped so that the image appears contiguously
from address zero in the memory map.

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 11

3.2 Building and Running the Demonstration

3.2.1 Details of the Test Application
ValidateImage is a simple application that is duplicated in all eight Flash sectors,
but only one of these eight application instances will be active at any one time.
The functionality of the application is to:

1. Check each sector to find the valid (active) image. When it is found,
display the application configuration that is in the header.

2. Find all unused images (with their header’s magic bytes set to 0xFF).

3. If one exists then select the one in the highest sector, validate its image
(set its magic bytes to a valid value) and invalidate the current image (set
its magic bytes to 0x00).

4. Restart the device with the newly activated application and repeat until all
images have been used, and then stop with the message “Complete”.

The current application can be invalidated using the function:
void vInvalidateCurrentImage(void)

This function will set the magic bytes of the current application to zero. It does
not matter which sector the application was stored in, as the Flash will have been
remapped so that the application starts at the first sector. This means that
programming the first sixteen bytes to zero invalidates the header. Sixteen bytes
are selected because the bAHI_FullFlashProgram() function requires a multiple
of 16 bytes.

To validate an image, the following function can be used:
void vValidateImage(uint32 u32Address)

This function will program the correct magic bytes to the start of the application
given by the address u32Address. It assumes that that the header is currently
set to 0xFF.

The program is based around a FOR loop that calls the vDumpFlash() function
for each of the sector. vDumpFlash() accepts the following parameters:

• uint32 u32Sector: The number of the sector being checked

• uint32 u32Remap: The current value of the Remap register to establish
where the actual program is located

The function performs the following operations.

1. Check that the 12 magic bytes match the expected values. If so, display
the information that is in the header.

2. Detect if the header is all zeros (already used and cannot be
reprogrammed) or all ones (blank and so the image can be validated)

3. Store the sector and address of the next highest blank header (to be used
later to decide validate that image).

 Multiple Image Support on JN51xx
Application Note

12 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

Once the FOR loop has completed, a check is performed to see if all eight
sectors have been covered. If so, the “Complete” message is displayed.
Otherwise, the next highest blank header is validated, the current image is
invalidated and application execution restarted.

3.2.2 Building the Application
The ValidateImage test application can be built for the JN5168 device using
build option 8 in the BeyondStudio project (shown below).

Therefore build the application for the JN5168 device (see Section 4.2).

3.2.3 Merging Multiple Applications into a Single Image
You have now created a binary (with a valid header). To test this application, you
need eight copies of the application with each aligned to a different Flash sector.

To do this, you can use the utility ImageMerge that is included within this
Application Note package. When using ImageMerge, specify
–a <filename> to –h <filename> to define the order of the images
(with -a specifying the first image) in the final output file. The final output file is
specified with –o.

You should set the headers’ magic bytes to 0xFF in the first seven images and
force the only valid image to be in the eighth sector. You can use the
–p <sector> option of ImageMerge to set the magic bytes to 0xFF in the
specified sector. In this case, use the –s option to strip four bytes out of the
beginning of each image in the final binary.

The build command is:
ImageMerge

-a ValidImage_TestApp_JN5168.bin

-b ValidImage_TestApp_JN5168.bin

-c ValidImage_TestApp_JN5168.bin

-d ValidImage_TestApp_JN5168.bin

-e ValidImage_TestApp_JN5168.bin

-f ValidImage_TestApp_JN5168.bin

-g ValidImage_TestApp_JN5168.bin

-h ValidImage_TestApp_JN5168.bin

-o ValidImage_TestApp_JN5168_Joined.bin

-p 0 -p 1 -p 2 -p 3 -p 4 -p 5 –p 6 –s

This can be achieved using option 7 in the BeyondStudio project.

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 13

3.2.4 Loading and Running the Image
The final image (ValidImage_TestApp_JN5168_Joined.bin) can be
programmed using the Flash programmer within BeyondStudio as describe in
the BeyondStudio for NXP Installation and User Guide (JN-UG-3098). However,
the following warning will be displayed:

This warning is because the image does not have the first four bytes (that
indicate which processor the image was built for) or a valid header at the
beginning of the image. The “program raw?” message is asking if you wish to
program the image raw (i.e. without stripping off any bytes). In this case you do,
so click OK.

The above requires a serial connection between the development PC and a
board hosting the target JN516x device. You must also set up a terminal window
(such as Tera Term) associate with this serial connection on the PC, in order to
display messages received from the JN516x device.

Once loaded, the application will automatically run and the following output will be
displayed in the terminal window:

 Multiple Image Support on JN51xx
Application Note

14 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 15

4 Miscellaneous Topics

4.1 Application Compatibility
The software supplied with this Application Note allows stand-alone applications
to be built and outputs the results to a terminal window. These applications have
been designed for use with the following hardware and software:

Product Type Part Number Version Supported Chips

Evaluation Kit JN516x-EK001

JN516x-EK004

- JN5161
JN5164
JN5168
JN5169

SDK Libraries JN-SW-4163

JN-SW-4168

V1307 or higher

V1279 or higher

JN5161
JN5164
JN5168
JN5169

BeyondStudio
for NXP

JN-SW-4141 V1308 JN5161
JN5164
JN5168
JN5169

4.2 Importing and Building in BeyondStudio
To build an application and load it into a JN516x-based module:

1. Start the BeyondStudio platform and import the relevant project files
(.project and .cproject) as follows:

2. In BeyondStudio, follow the menu path File>Import to display the Import
dialogue box.

a. In the dialogue box, expand General, select Existing Projects into
Workspace and click Next.

b. Enable Select root directory, browse to the Application directory
and click OK.

c. In the Projects box, select the project to be imported and click
Finish.

3. Build the application. To do this, ensure that the project is highlighted in
the left panel of BeyondStudio and use the drop-down list associated with
the hammer icon in the toolbar to select the relevant build configuration –
once selected, the application will automatically build. The binary file will
be created in the Build directory, the resulting filename indicating the chip
type (e.g. JN5168) for which the application was built.

4. Load the resulting binary file into the module. You can do this directly
from within BeyondStudio.

For more information, refer to the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

 Multiple Image Support on JN51xx
Application Note

16 © NXP Laboratories UK 2016 JN-JN-AN-1228 1.1

Revision History
Version Date Description

1.0 8-Feb-2016 First release

1.1 11-Nov-2016 Document re-worked for public release

Multiple Image Support on JN51xx
Application Note

JN-JN-AN-1228 1.1 © NXP Laboratories UK 2016 17

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the consequences of use of such information.
NXP Semiconductors takes no responsibility for the content in this document if provided by an information source
outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential
damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the
removal or replacement of any products or rework charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published
in this document, including without limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable
for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death
or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such
inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes
only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP
Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors
product is suitable and fit for the customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is
based on any weakness or default in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s
applications and products using NXP Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party customer(s). NXP does not accept any
liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control
regulations. Export might require a prior authorization from competent authorities.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	About this Application Note
	Organisation
	Related Documents
	Support Resources
	Trademarks

	1 Multiple Applications in JN51xx Internal Flash
	1.1 Switching between Applications Using the App ID
	1.2 Invalidating Application Headers
	1.3 Limitations

	2 Using the Application ID
	2.1 Allowing Different Application IDs
	2.2 Specifying an Application ID
	2.3 Building and Running the Demonstration
	2.3.1 Details of the Test Application
	2.3.2 Building the Applications
	2.3.3 Merging the Applications into a Single Image
	2.3.4 Loading and Running the Image

	3 Using Application Header Validation
	3.1 Header Format
	3.2 Building and Running the Demonstration
	3.2.1 Details of the Test Application
	3.2.2 Building the Application
	3.2.3 Merging Multiple Applications into a Single Image
	3.2.4 Loading and Running the Image

	4 Miscellaneous Topics
	4.1 Application Compatibility
	4.2 Importing and Building in BeyondStudio

