

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 1

Application Note: JN-AN-1193

JN516x Lauterbach JTAG Debugger

This Application Note details how to configure a debug environment for code running
on a NXP JN516x wireless microcontroller using a Lauterbach JTAG Debugger.

An example application is provided along with instructions on how to configure
boards from the JN516x-EK001 Evaluation Kit to allow the code running on them to be
debugged using the Lauterbach JTAG Debugger. A description of the operation of the
debugger IDE (Integrated Development Environment) is beyond the scope of this
Application Note - full documentation is available from Lauterbach.

1 Introduction

This Application Note describes how to use the Lauterbach JTAG Debugger to debug code
running on a JN516x wireless microcontroller fitted to a board from the JN516x-EK001
Evaluation Kit. This document refers to an example application for which source code is
provided in the ZIP package of this Application Note. There is also a troubleshooting
checklist in Appendix B which provides assistance in getting your own application to run with
the debugger.

The following components are required:

 NXP DR1174 Carrier Board fitted with a DR1199 Generic Expansion Board (both
available within the JN516x-EK001 Evaluation Kit)

 Lauterbach PowerDebug Module - any one of the following:

o LA-3500 PowerDebug USB3.0

o LA-7705 PowerDebug Ethernet

o LA-7699 PowerDebug II

o LA-7708 PowerDebug USB2.0

 Lauterbach JTAG Debug Cable - LA-3793 Beyond Debugger

 Lauterbach Beyond-to-NXP JTAG adapter

 Lauterbach IDE - TRACE32 PowerView

The evaluation kit and its components are described in the JN516x-EK001 Evaluation Kit
User Guide (JN-UG-3093).

The example software was developed using the JN516x Integrated Peripherals API. This
API is described in the JN516x Integrated Peripherals API User Guide (JN-UG-3087).

Documentation for the Lauterbach hardware and software components can be found on the
Lauterbach website: http://www.lauterbach.com.

http://www.lauterbach.com/

 JN516x Lauterbach JTAG Debugger

2 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

2 Compatibility

The software and set-up instructions provided with this Application Note are intended for use
with the following evaluation kit and SDK (Software Developer’s Kit) versions:

Product Type Part Number Version or Build

Evaluation Kit JN516x-EK001 -

BeyondStudio for NXP JN-SW-4141 V1111

SDK Libraries JN-SW-4163 V1052

3 Getting Started

3.1 System Overview

This Application Note uses the Lauterbach In-Circuit Debug (ICD) solution, which is a
standalone system that can be used alongside the NXP development tools in order to debug
software running on a JN516xx wireless microcontroller located on an NXP carrier board.
This system is illustrated in the figure below.

Figure 1: System Architecture

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 3

3.2 Debugging the Example Application

The following sub-sections detail the steps required to debug the example application
provided with this Application Note using the Lauterbach JTAG Debugger.

3.2.1 Install the Lauterbach software

You will need the TRACE32 PowerView DVD. Follow the instructions from
http://www.lauterbach.com.

Expand the [+] Support menu on the lefthand-side of the home page, expand
[+] Download Centre and then select TRACE32 Manuals.

Finally, select ICD Quick Installation, as shown below:

 Note: During the installation process you will be asked to select the
debug method. You should choose In Circuit Debug (ICD). When
asked for the CPU, you should choose the BEYOND option for correct

customisation of the IDE for the JN516x.

3.2.2 Build the example application using the NXP SDK

Before you start to build the application, please ensure that you have following installed on
your development PC:

 BeyondStudio for NXP (JN-SW-4141)

 JN516x IEEE802.15.4 SDK (JN-SW-4163)

 Note: For the installation instructions, please refer to BeyondStudio for

NXP Installation and User Guide (JN-UG-3098)

The above resources are available from the NXP Wireless Connectivity TechZone.

In order to build the supplied software, the Application Note folder
(JN-AN-1193-JN516x-Lauterbach-JTAG-Debugger) must be placed under
<BeyondStudio for NXP Installation root>\workspace\, where <BeyondStudio for NXP
Installation root> is the path into which BeyondStudio for NXP was installed (by default,
this is C:\NXP\bstudio_nxp). The workspace directory is automatically created when you
start BeyondStudio for NXP.

http://www.lauterbach.com/
http://www.nxp.com/techzones/wireless-connectivity

 JN516x Lauterbach JTAG Debugger

4 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

To build the application, follow the instructions below:

1. Ensure that the project directory is located in

<BeyondStudio for NXP Installation root>\workspace

 2. Start the Eclipse platform and import the relevant as follows:

a) In BeyondStudio, follow the menu path File>Import to display the Import dialogue
box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported and click Finish.

3. Build the application. To do this, ensure that the project is highlighted in the left panel of

BeyondStudio and use the drop-down list associated with the hammer icon in the
toolbar to select the build configuration – once selected, the application will
automatically build. The binary file will be created in the Build directory.

3.2.3 Load the binary file into the JN516x using the Flash programmer

The first time a device is programmed with a debug-enabled binary file, it must be done
serially. You can do this using the integrated JN51xx Flash Programmer (described in the
BeyondStudio for NXP Installation and User Guide (JN-UG-3098)). Subsequent loads of
debug-enabled binary files can then be performed using the Lauterbach IDE.

3.2.4 Enable JTAG debugging on the DR1174 Carrier Board

Remove the DR1199 Expansion Board from the DR1174 Carrier Board and ensure the
JTAG jumper is in the enabled (EN) position, as shown in the photograph below, and then
re-connect DR1199 to DR1174.

Figure 2: DR1174 JTAG Jumper Position

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 5

 Note: Once the jumper is in the JTAG position, UART 0 will be disabled.
You must therefore load the debug-enabled binary file before changing
the jumper. You must change the jumper position to disable JTAG before
using the Flash programmer.

3.2.5 Connect the Lauterbach Debug Module to the DR1174 board

Using the adapter board, plug the Debug cable onto the JTAG connector (J6) on the
DR1174 Carrier Board. Ensure that pin 1 of the adapter board cable aligns with pin 1 of the
DR1174 board.

Figure 3: DR1174 JTAG Connector

3.2.6 Mount the DR1199 Generic Expansion Board onto the carrier board

The DR1199 Generic Expansion Board contains the LED which is controlled in the example
application.

3.2.7 Apply power to the DR1174 Carrier Board

The carrier board can be powered by the USB connector, even though UART0 has been
disabled.

 JN516x Lauterbach JTAG Debugger

6 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

3.2.8 Start the Lauterbach TRACE32 IDE and run the start-up script

Start the Lauterbach TRACE32 PowerView application and then run the start-up script found
in the Build folder as follows:

1. From toolbar menu, select File and then Run Batchfile.

2. Select the debugblinky.cmm file contained within the Build folder with path
<BeyondStudio for NXP Installation root>\workspace\ JN-AN-1193-JN516x-
Lauterbach-JTAG-Debugger\Build and then click the Open button.

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 7

3. Another dialog box will now open allowing a binary file for download to be selected.
Select the AN1193_Blinky_JN5168_hwdbg.bin file contained within the Build folder
with path <BeyondStudio for NXP Installation root>\workspace\JN-AN-1193-
JN516x-Lauterbach-JTAG-Debugger\Build and then click the Open button.

4. The selected binary file will be downloaded to the JN5168 device and the bootloader
will automatically start. The debugger stops execution at the AppColdStart() entry
point. The TRACE32 IDE will display the example application source code.

 JN516x Lauterbach JTAG Debugger

8 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

3.2.9 Debug the example application

The example application can now be debugged by setting breakpoints, single-stepping and
watching the values of variables, etc. It is recommended that you follow the Lauterbach
training, which can be accessed via:

 Help->Training Manuals->Debugger

 Help->Training Manuals->Hll Debugging

Instructions concerning the operation of the Lauterbach TRACE32 IDE can also be found at:
http://www.lauterbach.com/manual.html.

Note that if you rebuild your application binary file, it can be downloaded via JTAG.

4 Debugging a Sleeping Application

The JTAG debug registers are not preserved over sleep. Additional steps are therefore
required to enable debugging to continue after sleep.

4.1 Enable Polling

The debugger can continuously poll the JTAG interface when the JN516x device is asleep.
When the device wakes and enables the debug registers, the debugger can then connect.
The debugblinky.cmm file already has polling enabled via the line:

SYS.Option LPMDebug ON

4.2 Preserving the Contents of Registers through Sleep

The file AN1193_Sleep.c, located at <BeyondStudio for NXP Installation
root>\workspace \JN-AN-1193-JN516x-Lauterbach-JTAG-
Debugger\Source\AN1193_Sleep.c, contains an example application that sleeps. The file
scope variable below is used to store the register contents during sleep:

uint32 u32DebugRegisters[AHI_STORE_DEBUG_REGISTER_COUNT];

The register contents are saved just before sleep by the line:

vAHI_StoreDebug(u32DebugRegisters);

The application then sleeps with RAM held so that the contents of the above variable are
preserved. Further information on sleep modes and the wake timers can be found in the
JN516x Integrated Peripherals API User Guide (JN-UG-3087).

When the application wakes, the bootloader calls the AppWarmStart() function. The
registers are restored during the warm start by:

vAHI_RestoreDebug(u32DebugRegisters);

 Note: The JenOS PWRM library contains calls to store and restore the
debug registers. ZigBee PRO applications therefore do not require these
calls. JenNet-IP applications do not use the PWRM library and so do
require the debug registers to be preserved.

http://www.lauterbach.com/manual.html

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 9

4.3 Building the Example Application

The following sub-sections detail the necessary steps to build the example sleep application.

Using the drop down list associated with the hammer icon in Eclipse, select AN1193_Sleep
to build the example sleeping application.

4.4 Downloading and Running the Example Application

Run the start-up script debugblinky.cmm as described above. This time, select the
AN1193_Sleep_hwdbg.bin file.

Note that running the script downloads the new application via JTAG without requiring the
Flash programmer.

Start the application by pressing Go.

The LED should flash. When the LED is off, the device is awake and executing a busy wait
loop. When the LED is on, the device is asleep.

4.4.1 Debugging a Sleeping Application

At the bottom of the Lauterbach application, a green bar will change from “Running” to
“Running (not responding)” as the device sleeps.

Pressing Break while in the “Running” state will allow the debugger to gain control.
Breakpoints can be set. If a breakpoint is set, it will be hit even if it is not executed until after
the device has slept and woken.

Pressing Break while in the “Running (not responding)” state will result in an error displayed
in red: “Access timeout, processor running”.

Attempting to run the script debugblinky.cmm to load another program or to restart the
application will result in an error if the device is asleep when the script is run. To avoid this,
manually reset the target by pressing the “Reset” button before running the script.

Appendix C describes how to modify the hardware so that the debugger can drive the reset
line automatically.

 JN516x Lauterbach JTAG Debugger

10 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

5 Using Debug (DBG) Module with Lauterbach

5.1 Using UART1

When the JTAG debugger is connected, it is no longer possible to use UART0 for displaying
debug information. Debug information can either use UART1 or a terminal within the
Lauterbach IDE. The configuration for UART1 with the evaluation kit depends on the
expansion board.

The Generic Expansion Board (DR1199) has a USB connector to access UART1. This can
be accessed by initialising the DBG function as shown below:

DBG_vUartInit(DBG_E_UART_1, DBG_E_UART_BAUD_RATE_115200);

When using the LCD Expansion Board (DR1215), UART1 must be configured to single-wire
(transmit only) mode:

vAHI_UartTxOnly(E_AHI_UART_1, TRUE);

DBG_vUartInit(DBG_E_UART_1, DBG_E_UART_BAUD_RATE_115200);

The yellow wire (RXD) of an FDTI serial cable may then be connected to the IO pin labelled
Digital 4 towards the top-right of the expansion board.

When using the Lighting/Sensor Expansion Board (DR1175), the UART must be configured
to use the alternative output pins:

vAHI_UartSetLocation(E_AHI_UART_1, TRUE);

vAHI_UartTxOnly(E_AHI_UART_1, TRUE);

DBG_vUartInit(DBG_E_UART_1, DBG_E_UART_BAUD_RATE_115200);

The yellow wire (RXD) of an FDTI serial cable may then be connected to the IO pin labelled
14 on the top-left of the expansion board.

Note that an FDTI cable is not supplied as part of the evaluation kit.

5.2 Using the Lauterbach Terminal

The Lauterbach terminal may be used as an alternative to UART1.

The sample application, AN1193_Terminal.c, demonstrates how to use DBG_vPrintf()
debugging to send output to a terminal within the Lauterbach IDE.

The Debug (DBG) module is described in the JenOS User Guide (JN-UG-3075).

To initialise the Lauterbach terminal, instead of initialising the UART via

DBG_vUartInit(DBG_E_UART_1, DBG_E_UART_BAUD_RATE_115200);

Initialise the Lauterbach DBG module instead via the function below:

DBG_vLauterbachInit();

The DBG library may be configured to flush data to the terminal is several ways, via the
DBG_u32Flags variable.

If the DBG_FLAG_AUTO_FLUSH flag is set in DBG_u32Flags, the DBG_vPrintf() function
calls DBG_vFlush() at the end of each line.

If the DBG_FLAG_FLUSH_WHEN_FULL flag is set in DBG_u32Flags, the DBG_vPrintf()
function calls DBG_vFlush() when the output buffer (256 bytes) is full.

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 11

The flush function calls a trap instruction to trigger a software breakpoint. The Lauterbach
debug probe intercepts this trap instruction and transfers data between the terminal and the
DBG module.

 Note: The hardware debugger will stall the CPU for approximately 2 ms
while the software breakpoint is being processed. This may occasionally
cause protocol stacks to behave differently and will affect the real-time
behavior of user applications. For example, the Touchlink message
exchange in the Zigbee Light Link Application Note is likely to fail.

 The IDE indicates this intrusive action in the status line. Next to the
running state, the red “I” informs about Intrusive actions of the debugger.
This is similar to “S” which means Slow as the IDE interacts with the

target (e.g. software emulated breakpoints).

5.3 Script Settings for Lauterbach Terminal

The terminal method BufferQUICK configures the debugger for use with the terminal. The
general syntax is:

TERM.METHOD BufferQUICK <AddressOfTrap> <BufferTargetToGui>

<BufferGuiToTarget>

The line below should be used to configure the terminal with the required symbols:

TERM.METHOD BQUICK ADDRESS.OFFSET(sYmbol.BEGIN(DBG_vLbSpot))

ADDRESS.OFFSET(Var.ADDRESS(DBG_au8LbPutBuffer))

ADDRESS.OFFSET(Var.ADDRESS(DBG_au8LbGetBuffer))

The BQUICK terminal mode is a new feature that has been added for the JN516x device. It
is only available in the Lauterbach IDE from the 2013.08 version. Use Help->About in the
Lauterbach IDE to verify the installed version and contact Lauterbach technical support for
an updated version, if required.

The example script debugterminal.cmm contains additional terminal related commands.
The script has a TERM.RESet near the start that deletes any existing terminal windows/data.
This is required to allow the Flash memory to be reprogrammed. After the TERM.METHOD,
the following lines configure the terminal window with a scroll-back, and set its position and
name in the IDE.

TERM.Scroll On

term.size 50 3000

WinPOS ,,,,,,myterm

TERM

5.4 Building and Running the Example Application

The example application can be built by selecting the target from the drop down list
associated with the hammer icon in Eclipse.

The application should be run with a different script: debugterminal.cmm, as this script
contains the terminal commands above. The script has a hard-coded filename rather than
prompting to select the binary file.

 JN516x Lauterbach JTAG Debugger

12 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

Upon running the script, there should be a terminal window and a Data.List window. You
may need to resize the windows to see them both. You can use WinPOS commands in your
script to automatically reposition the windows.

Pressing GO in the Data.List window will start the application. The serial output should
appear in the TERM window.

After looping 10 times, an assert is triggered. Selecting View->Stack frame with locals
brings up a stack trace which can be used to locate the function that triggered the assertion.

6 Enabling Debug in your own Application

Upon start-up (or reset), the JN516x bootloader examines the header of the application
image stored in Flash memory to determine whether JTAG-based debugging has been
enabled and, if so, which set of DIO pins are to be used as the JTAG interface.

To set the appropriate bits in the image header, re-link the application with the following build
options added to the Makefile or passed via the command line:

DEBUG=HW

DEBUG_PORT=UART0

The DEBUG=HW option sets the debug enable bit in the application header. By default all

compiler optimisations and link time optimisation are turned off for debug builds. To reenable
compile optimisations you may use the option below.

DEBUG=HW_NOOPT

Note that this can sometimes compromise single-stepping and variable examination from the
C code.

Link time optimisation is turned off for debug builds because the aggressive optimisations it
performs compromise debugging. This will also make the output binary larger. If the binary
will no longer fit into the device, you may have to re-enable link time optimisation. To do this,
add the following flags to the CFLAGS and LDFLAGS in the application Makefile:

CFLAGS += -flto

LDFLAGS += -flto

The DEBUG_PORT=UART0 setting instructs the bootloader to use the UART0 pins (DIO4,

DIO5, DIO6 and DIO7) as the JTAG interface. This option should be selected if the
debugger is to be connected to J6 on the DR1174 board.

 Note: When JTAG-based debugging is enabled using the DEBUG=HW or

DEBUG=HW_SIZEOPT build options, the application will no longer boot

unless a debugger is connected.

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 13

6.1 .cmm Script

Example scripts for the JN516x hardware can be found in the installation at:

C:\T32\demo\beyond\hardware\jn5168\big_endian\

When debugging your own application, it is recommended to base the .cmm script on
flashdemo.cmm in this directory, rather than blinky.cmm.

6.2 Bootloader Symbols

The bootloader contains functions such as memcpy() and some Flash access functions that
are used by the JN516x Integrated Peripherals API. To allow the stack unwinding to work
correctly through these functions, it is necessary to load the bootloader symbols. For
example, if there is an exception caused by an incorrect parameter to memcpy(), it is useful
to be able to see the function which called memcpy(). Debugblinky.cmm contains the line
below to load these symbols:

Data.Load.ELF "BootLoader_JN5168.elf" /NoClear /NoCODE /NoRegister

The bootloader symbols are provided in the Build folder of the Application Note.

 JN516x Lauterbach JTAG Debugger

14 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

Appendix A: Checking the Debugger with Demo Code

The following procedure checks basic debugger operation with the source code supplied as
part of this Application Note. It is assumed that the user has completed all the steps in
Section 3.2 “Debugging the Example Application”.

Trace32 PowerView should be displaying the B::List view (Source View).

1. Move the cursor to line 105 and click on vAHI_DioSetOutput. Right-click to add a
breakpoint, as shown below.

2. This displays the ‘set breakpoint’ dialogue box, as shown below. Click OK.

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 15

3. List the breakpoints by clicking the ‘red box’ icon on the top menu.

4. Next, select the GPIO view.

 JN516x Lauterbach JTAG Debugger

16 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

5. This displays a ‘GPIO registers monitor’ window in which the LED drive can be seen on
DIO0. Note that both the output and input will change as the LED is driven.

6. Click on vAHIDioSetOutput in the B::Break.List window to display the breakpoint

dialogue box and then resize the four windows as shown below.

7. Press the Go [] button. The code executes until a call is made to the API function that
changes the DIO state. Each time the button is pressed, you will see the LED toggle its
state and the ‘GPIO registers monitor’ window will reflect the activity on the DIO that
drives the LED. The B::Break.List window will highlight the listed breakpoint as being
reached.

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 17

Appendix B: Troubleshooting

If you have not previously used the Lauterbach debugger with the NXP JN516x-EK001
Evaluation Kit, you are advised to follow the step-by-step guide in this Application Note. If
you have previously followed this guide and are now having problems with your own
application, check the following:

1. The JTAG jumper is correctly set

The JTAG jumper on the DR1174 Carrier Board must be set to match the type of application
that is currently loaded. If a non-debug application is currently loaded, the jumper must be
set to DIS so that the Flash programmer can connect and download an application to unlock
JTAG. If the current application unlocks JTAG, the jumper must be set to EN so that the
debugger can connect to JTAG. Refer to Section 3.2.4.

2. The currently loaded application unlocks JTAG in the bootloader

The bootloader determines whether the JTAG interface or UART0 is enabled in an
application. If the application currently loaded has been built without JTAG enabled, it will not
be possible to connect the Lauterbach debugger to download a new application. In this case,
an application which unlocks JTAG must be downloaded using the JN51xx Flash
Programmer. It is not necessary to download the application that you are currently
debugging. Any application built for debug can be used to unlock JTAG. Once the debugger
connects, it can then update the Flash memory with the new application. The application
built as part of this Application Note can be used as a JTAG unlock application. To ensure
that your application has been built with JTAG, follow the steps in Section 6.

The flashdemo.cmm script below checks that JTAG is enabled before programming a new
image:

C:\T32\demo\beyond\hardware\jn5168\big_endian\flashdemo.cmm

If JTAG is not enabled in the application, the following warning is displayed:

If you click ‘Yes’ to proceed, the application will be loaded and the debugger will no longer
be able to access the JTAG interface. You will need to switch the JTAG jumper back to DIS
to enable the UART for Flash programming and debugging.

3. The Lauterbach debug adapter cable has pin 1 correctly aligned
on the DR1174 Carrier Board

The connection on the Carrier Board is not polarised. See the diagram in Section 3.2.5.

 JN516x Lauterbach JTAG Debugger

18 © NXP Laboratories UK 2014 JN-AN-1193 (v1.4) 9-Dec-2014

Appendix C: Additional Hardware Modifications

Details on the JTAG adapter can be found at:

http://www.lauterbach.com/frames.html?adnxp.html

Additional functionality is available that has not been tracked on the DR1174 Carrier Board.
If you are designing your own hardware you can include the following:

1. Reset Control

The Lauterbach debug hardware drives NRESET to reset the JN516x device. This is pin 8 of
the 10-way connector. Connecting NRESET to the reset line on the JN516x device is useful
when the JTAG hardware does not allow reset. In particular, the JTAG hardware is disabled
when the JN516x device is in sleep mode, as described in Section 4.

2. Automatic Unlock

The bootloader executes a short delay with JTAG enabled, if the MISO (program) line of the
JN516x device is held during boot. This gives the Lauterbach hardware time to connect,
even if the currently programmed application does not unlock the JTAG interface. Note that
the JTAG jumper on the Carrier Board must still be set to EN. The MISO line is pin 7 on the
adapter cable. This line is driven via an open collector circuit on the adapter board so that
the connection is isolated if the line is not being driven. The jtag_unlock.cmm script below
can be run to drive the MISO line during boot:

C:\T32\demo\beyond\hardware\jn5168\big_endian\jtag_unlock.cmm

http://www.lauterbach.com/frames.html?adnxp.html

JN516x Lauterbach JTAG Debugger

JN-AN-1193 (v1.4) 9-Dec-2014 © NXP Laboratories UK 2014 19

Revision History

Version Notes

1.0 First Beta version

1.1 Second Beta version

1.2 First full release version

1.3 Updated to use Digital 4 for UART 1 with LCD Expansion Board (DR1215)

1.4 Updated for BeyondStudio

Important Notice

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	1 Introduction
	2 Compatibility
	3 Getting Started
	3.1 System Overview
	3.2 Debugging the Example Application
	3.2.1 Install the Lauterbach software
	3.2.2 Build the example application using the NXP SDK
	3.2.3 Load the binary file into the JN516x using the Flash programmer
	3.2.4 Enable JTAG debugging on the DR1174 Carrier Board
	3.2.5 Connect the Lauterbach Debug Module to the DR1174 board
	3.2.6 Mount the DR1199 Generic Expansion Board onto the carrier board
	3.2.7 Apply power to the DR1174 Carrier Board
	3.2.8 Start the Lauterbach TRACE32 IDE and run the start-up script
	3.2.9 Debug the example application

	4 Debugging a Sleeping Application
	4.1 Enable Polling
	4.2 Preserving the Contents of Registers through Sleep
	4.3 Building the Example Application
	4.4 Downloading and Running the Example Application
	4.4.1 Debugging a Sleeping Application

	5 Using Debug (DBG) Module with Lauterbach
	5.1 Using UART1
	5.2 Using the Lauterbach Terminal
	5.3 Script Settings for Lauterbach Terminal
	5.4 Building and Running the Example Application

	6 Enabling Debug in your own Application
	6.1 .cmm Script
	6.2 Bootloader Symbols

	Appendix A: Checking the Debugger with Demo Code
	Appendix B: Troubleshooting
	1. The JTAG jumper is correctly set
	2. The currently loaded application unlocks JTAG in the bootloader
	3. The Lauterbach debug adapter cable has pin 1 correctly aligned on the DR1174 Carrier Board

	Appendix C: Additional Hardware Modifications
	1. Reset Control
	2. Automatic Unlock

